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Abstract

In this report, we explore the possibility of using rollups originally developed
for Ethereum to scale sovereign application-specific blockchains. After a brief sur-
vey of Ethereum rollups, we list the infrastructure required to implement rollups
on a sovereign blockchain.

*Saravanan Vijayakumaran’s work on this paper was sponsored by Arcana Network.

1



Contents

1 Rollups in Ethereum 3

2 Rollup Components 5

3 Layer 2 State 6

4 Verifying L2 State Roots 8
4.1 Validity Rollups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Optimistic Rollups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.2.1 Application-Specific Optimistic Rollups . . . . . . . . . . . . . . . 9
4.2.2 General-Purpose Optimistic Rollups . . . . . . . . . . . . . . . . . 10

5 Rollup User Experience 12
5.1 Moving L1 Assets to L2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Setting the L2 Public Key in Validity Rollups . . . . . . . . . . . . . . . . 14
5.3 Transacting on L2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.4 Withdrawals from L2 to L1 in Validity Rollups . . . . . . . . . . . . . . . 16
5.5 Withdrawals from L2 to L1 in Optimistic Rollups . . . . . . . . . . . . . . 17
5.6 Dealing with Censorship by the Sequencer on L2 . . . . . . . . . . . . . . 19
5.7 Dealing with an Offline Sequencer . . . . . . . . . . . . . . . . . . . . . . 20

6 Infrastructure Required for Rollups in an Application-Specific Blockchain 22
6.1 Common Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.1.1 L2 Wallet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.1.2 RPC Endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.1.3 L1 Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.1.4 L2 Block Producer . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.1.5 L2 Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.1.6 Glue Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.2 Infrastructure Specific to Optimistic Rollups . . . . . . . . . . . . . . . . 24
6.2.1 Token for Staking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2.2 Infrastructure for Application-Specific Optimistic Rollups . . . . 25
6.2.3 Infrastructure for General-Purpose Optimistic Rollups . . . . . . 25

6.3 Infrastructure Specific to Validity Rollups . . . . . . . . . . . . . . . . . . 25
6.3.1 Arithmetic Circuit of State Transition Function . . . . . . . . . . . 25
6.3.2 Trusted Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.3.3 Prover Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.3.4 On-Chain Proof Verifier . . . . . . . . . . . . . . . . . . . . . . . . 26

7 Conclusion 27

2



1 Rollups in Ethereum

Rollups are a class of scaling solutions which emerged in the Ethereum ecosystem, with
the goal of increasing transaction throughput (number of transactions per second). The
computational and storage cost of an Ethereum transaction is measured in a unit called
gas. For example, an ETH transfer costs 21,000 gas and an ERC-20 token transfer costs
65,000 gas. In fact, the minimum transaction gas cost in Ethereum is 21,000 gas.

The total gas cost of all transactions in an Ethereum block cannot exceed 30 mil-
lion gas (the gas limit). So an Ethereum block can accommodate 1,428 ETH transfers.
The average inter-block time is about 13 seconds. This means Ethereum can support
about 109 ETH transfers per second. While this number is already underwhelming,
the actual transaction throughput on Ethereum is even lower at around 15 transactions
per second, due to more complex transactions (with higher gas costs) appearing in the
blocks.

When demand for Ethereum block space is high, this low transaction throughput
translates to high transaction fees for users. While users performing high-value tran-
sactions can afford higher fees, it makes a large class of Ethereum applications unusable
for other users.

Rollups emerged as a way to reduce Ethereum transaction fees without sacrificing the
security of user assets. The reduction in fees is achieved at the cost of a slightly degraded
user experience (UX). The UX degradations mainly involve higher latency in finalizing
user actions and extra steps in user on-boarding and deboarding.

Rollups are applications that maintain user state outside the Ethereum blockchain.
In this context, the Ethereum blockchain is considered as the main chain or layer 1 (L1).
The state maintained by the rollup is said to be off-chain or on layer 2 (L2). The main
challenge in building applications that depend on off-chain state is ensuring data avail-
ability, i.e. ensuring that the data required to check the correctness of application state
transitions is always available.

The main feature of rollups is that they use the L1 chain for guaranteeing data avail-
ability. They post the data required to reconstruct the L2 state on L1 as calldata. This
distinguishes them from Plasma, which required trust on an operator for guaranteeing
data availability.

Calldata refers to the arguments of smart contract method calls in Ethereum. These
arguments are not available to later method calls, but can be recovered by reading the
Ethereum node logs. The gas cost of calldata is 16 gas per non-zero byte and 4 gas per
zero byte. In contrast, the cost of storing 32 bytes in contract storage can be as large
as 22,100 gas, which is about 690 gas per byte [1]. Transaction throughput can thus be
increased by using calldata instead of contract storage for storing data.

Rollups periodically store a hash of the L2 state called the state root in a L1 smart
contract. These state roots play a critical role in the transfer of assets between L1 and
L2. As the full state is stored off-chain, rollups need a mechanism to ensure that the
state roots are correct. The two main mechanisms for ensuring state root correctness are
fault proofs and validity proofs. Rollups that use fault proofs are called optimistic rollups
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Figure 1: Ethereum scaling landscape

and those that use validity proofs are called validity rollups. Some rollups use a hybrid
mechanism that involves both fault and validity proofs.

The Ethereum Scaling Landscape Figure 1 has a classification of Ethereum scaling
solutions based on their data availability mechanism, the functionality they support on
L2, and the mechanism they use to verify L2 state root correctness. The scaling solutions
include rollups and also some others.

By a scaling solution, we mean an application that increases the number of state
changes that can be recorded in an Ethereum block. An example of a state change is a
decrease in a user’s Ethereum account balance and a corresponding increase in another
user’s account balance. Another example is the minting of an NFT and its assignment
to a particular account.
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The first classification criterion is the data availability mechanism: on-chain or off-
chain. As mentioned earlier, rollups use the L1 chain to guarantee data availability.
Solutions based on Plasma rely on an operator for off-chain data availability.

Validiums are solutions which rely on a data availability committee (DAC) for off-
chain data availability. This committee consists of organizations capable of storing the
full L2 state. For example, the StarkEx DAC consists of Nethermind, iqlusion, Cephalo-
pod Equipment, Infura, and Consensys [2]. The DAC is represented on L1 by a set of
Ethereum accounts. The L2 data corresponding to a L2 state root is considered avail-
able if a minimum number of committee accounts submit signatures attesting to its
availability. We will not discuss Plasma- or Validium-based solutions in the rest of this
report.

The second classification criterion is the L2 functionality supported by the scaling
solution. Application-specific solutions support a limited set of user actions on L2 like
Ethereum/ERC20 transfers or NFT minting and transfers. General purpose solutions
support arbitrary smart contracts on L2, as long as the contracts avoid a few opcodes
that may not be supported.

The third (and last) classification criterion is the mechanism used for checking the
validity of L2 state roots: fault proofs, validity proofs, or a hybrid of fault and validity
proofs.

For each triple of classification criteria, the figure shows examples of scaling solu-
tions that have or support the corresponding features.1

2 Rollup Components

A rollup consists of two main components: the sequencer and the bridge contract. The
sequencer is the entity that operates the rollup. Its name is due to its role in determin-
ing the sequence of L2 transactions. The interaction between these two components is
illustrated in Figure 2. The figure also shows L1 and L2 user wallets to illustrate their
role in initiating some of the interactions.

The bridge contract is an L1 smart contract that coordinates asset movement be-
tween L1 and L2. Typically, users who wish to use a rollup begin by depositing their
L1 assets to the bridge contract. This contract stores the sequence of L2 state roots and
facilitates their correctness checks. The data that can be used to recover the L2 state is
sent to the bridge contract as calldata.

A rollup has a blockchain on L2 whose blocks are created exclusively by the se-
quencer. While most rollup projects have plans to decentralize L2 block production,
the current versions have a single L2 block producer.2 The sequence of interactions is
as follows:

1 Users send their L1 assets to the bridge contract.
1We could not find an example of a general-purpose scaling solution that has off-chain data availability

and uses validity proofs for checking correctness of L2 state roots.
2Polygon Hermez 1.0 is an exception as it allows the block producer to be chosen via an auction [3].

But due to low ROI, there are no bidders and the Hermez team has been producing all L2 blocks [4].
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Figure 2: Main components of a rollup

2 The sequencer monitors the bridge contract for deposits and creates L2 tran-
sactions that mint the corresponding assets on L2.

3 The sequencer maintains an RPC endpoint that receives L2 transactions initiated
from L2 user wallets.

4 The sequencer creates L2 blocks containing L2 transactions resulting from L1 de-
posits and L2 transactions received at their RPC endpoint.

5 The sequencer sends the state roots resulting from the execution of the L2 blocks
to the bridge contract. The L2 blocks themselves are sent to the bridge contract as
calldata, sometimes after compression.

6 The correctness of the state roots are verified in the bridge contract using either
fault proofs or validity proofs.

7 Once a state root has been verified to be correct, the corresponding L2 state is
considered to be finalized. The consequences of this finalized L2 state are exposed
by the sequencer via the RPC endpoint.

3 Layer 2 State

Before considering the mechanisms used to verify the correctness of L2 state roots, let
us consider the structure of the L2 state present in various rollups. The complexity
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Figure 3: Illustration of the L2 State in zkSync 1.0

of the L2 state depends (not surprisingly) on whether the rollup is general-purpose or
application-specific.

Recall that the sequencer maintains a blockchain on L2. In general-purpose rollups,
the L2 state includes

• the set of all L2 accounts and their token balances,

• the set of all contracts installed on L2, their code and storage.

The L2 state root is a hash of the entire L2 state. For example, in Optimism the L2 state
is maintained by a modified version of geth [5]. In this case, the L2 state root is the root
hash of the world state trie.

In application-specific rollups, the L2 state needs to only express the application
state. For example, consider a rollup application that supports only token transfers.

• If application is UTXO-based, the application state is the set of all UTXOs. The
set of all L2 blocks is needed to determine the state. In this case, the L2 state
root is the hash of latest L2 block header. Fuel v1 is an example of such a rollup
application [6].

• If application is account-based, a Merkle tree of account balances is sufficient to
express the L2 application state. In this case, the L2 state root is the root hash
of the Merkle tree. Examples of such rollup applications are zkSync 1.0 [7] and
Polygon Hermez 1.0 [8].

The L2 state in zkSync 1.0 is illustrated in Figure 3. The state is stored in a sparse
Merkle tree (SMT) with account state hashes as leaves. The actual SMT in zkSync 1.0
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has height 32; we use an SMT of height 3 for the purpose of illustration. Each account’s
state consists of four fields:

1. A root hash of an SMT holding token balances in its leaves. This SMT is called the
balance tree and its root hash is called the balance root.

2. A 32-bit nonce

3. An Ethereum address associated with the account

4. The Rescue hash of an L2 public key, which is a point on the BN256 curve.

In the figure, we only show the balance tree of the account with index 0. Each account
will have a balance tree is associated with it. zksync 1.0 also supports NFTs. For the
sake of brevity, we do not describe how they are represented in the balance tree.

4 Verifying L2 State Roots

As rollups store user state on L2, it is important to ensure that invalid state transitions
are not allowed. For example, an invalid state transition can involve a sequencer trans-
ferring a user’s funds to themselves.

Optimistic rollups use fault proofs and validity rollups use validity proofs to prove
correctness of the sequence of state roots uploaded to the bridge contract. Fault proofs
are also called fraud proofs in the rollup ecosystem. The latter terminology has begun
to fall out of favor3 due to its implication of malicious intent by the parties submitting
incorrect state roots, when it is possible that incorrect submissions were due to software
bugs.

4.1 Validity Rollups

Validity rollups use validity proofs to prove the correctness of L2 state roots. These
proofs are zero-knowledge proofs (ZKPs) of the correctness of a L2 state root transition
from a current value of Rcurrent to a new value Rnew when an L2 block is executed. This
is illustrated in Figure 4 for the case of the zkSync 1.0 account state tree.

Ethereum currently supports validity proofs that are based on either succinct non-
interactive arguments of knowledge (SNARKs) or succinct transparent arguments of knowledge
(STARKs). In both cases, the validity proof is generated off-chain and submitted to the
bridge contract for verification.

Validity rollups increase transaction throughput because the gas cost of validity
proof verification (and calldata) is less than the gas cost of storing and updating ap-
plication state on-chain.

3The term “fault proof” was coined in the discussion at https://github.com/
ethereum-optimism/optimistic-specs/discussions/53
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4.2 Optimistic Rollups

Optimistic rollups use fault proofs to verify the correctness of L2 state roots. Once a
state root is proved to be incorrect, it is marked as invalid along with all the other state
roots which have it as a predecessor.

Each state root which is submitted to the bridge contract needs to be accompanied
by an Ethereum deposit, called the bond or stake. For example, in Arbitrum the base
stake is 5 ETH. If the state root is proved to be incorrect, the submitter loses their stake.
A successful fault prover gets half the stake and the other half is burnt. Burning half
the stake ensures that malicious parties do not delay L2 chain progress at no cost (by
submitting faulty roots and proving the faults themselves).

Fault proofs work differently in application-specific and general-purpose optimistic
rollups. Application-specific rollups are built to serve a narrow use case like payments.
For example, Fuel v1 [6] is an application-specific optimistic rollup focused on ETH
and ERC-20 token transfers. General-purpose rollups support the deployment of arbi-
trary contracts on L2. Arbitrum [9] and Optimism [5] are examples of general-purpose
optimistic rollups.

4.2.1 Application-Specific Optimistic Rollups

In application-specific optimistic rollups, a state root can be incorrect in a small number
of ways which can be exhaustively enumerated. The incorrectness of a state root can be
proved using a small (and fixed) number of L1 transactions.

For example, Fuel v1 requires two L1 transactions to prove faults, irrespective of
the type of fault. The first L1 transaction posts a hash of the actual fault proof to the
bridge contract. This is to prevent front-running of fault proofs by miners. Once the first
transaction has received enough confirmations, the second L1 transaction submits the
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Figure 5: Illustration of the disagreement between the asserter and challenger

actual fault proof to the bridge contract. If the fault proof is correct, the bridge contract
rewards the address that submitted the fault proof. Only fault proofs with previously
submitted hashes are considered eligible for rewards.

A state root is considered finalized if it is not challenged for a duration which is
typically one week from the time it was posted to the bridge contract.

4.2.2 General-Purpose Optimistic Rollups

General-purpose optimistic rollups allow the deployment of arbitrary smart contracts
on L2. In this case, the state roots submitted to the bridge contract include a hash of
the states of all the smart contracts deployed on L2. Consequently, it is not feasible to
exhaustively enumerate all the ways in which a state root may be incorrect.

Fault proofs in general-purpose optimistic rollups involve an interactive game be-
tween two parties who both disagree on the value of the state root at a particular L2
block height. When a new state root Rnew is posted to the bridge contract, its cor-
rectness can be challenged by any entity (called a challenger) who is willing to place a
deposit to defend their claim. The entity which originally posted the state root is called
the asserter.

The asserter and challenger agree on the value Rprev of the predecessor of the state
root under dispute. Otherwise, they would be running the fault proof protocol on this
predecessor. The asserter claims that the new state root resulting from the execution of
a block of L2 transactions is Rnew, while the challenger claims that the new state root is
Rch

new 6= Rnew. This is illustrated in Figure 5.
Since they disagree on the state root which results from executing the same sequence

of transactions,4 there exists a transaction in which their post-execution states diverge.
And in that transaction, there exists an opcode where the outputs diverge for the first
time. As illustrated in Figure 5, this opcode is some Opk where 1 ≤ k ≤ N .

The two parties resolve their disagreement in two stages. First, they participate in
an n-ary search to identify the first opcode whose output they disagree on. Second, one

4The sequence of L2 transactions is the same because it is also posted to the bridge contract as calldata.
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Figure 6: n-ary search in the block of L2 opcodes

of them submits a check one-step execution transaction to an L1 contract which is capable
of verifying the correct execution of any single opcode identified in the previous stage.

The main insight is that it is possible to enumerate all the L2 opcodes in an L1 con-
tract and check that any one was executed correctly for a given set of inputs. On the
other hand, it is not possible to enumerate all possible ways in which an L2 state root,
resulting from arbitrary contracts, may be incorrect.

The n-ary search stage involves a sequence of L1 transactions alternately posted by
the challenger and asserter, where each transaction in the sequence publishes a set of
n−1 intermediate state roots corresponding to increasingly smaller blocks of L2 opcode
executions.

In the first L1 transaction of the search stage, the challenger will publish interme-
diate state roots R1, R2, . . . , Rn−1 such that the amount of computation between con-
secutive state roots in the sequence Rprev, R1, R2, . . . , Rn−1, R

ch
new is approximately the

same. Since Rnew 6= Rch
new, the asserter disagrees with the challenger in at least one of

the intermediate state roots of this sequence. The asserter then chooses the first inter-
mediate state root Ri where it disagrees and publishes n − 1 state roots between Ri−1

and Ri. This is illustrated in Figure 6.
For the sake of illustration, suppose R2 is the first intermediate state root where the

asserter disagrees with the challenger, i.e. it agrees with the challenger on the values of
Rprev andR1. Then the asserter publishes n−1 state rootsQ1, Q2, . . . , Qn−1 such that the
amount of computation between consecutive state roots in the sequenceR1, Q1, Q2, . . . ,
Qn−1, R2 is approximately the same.

This process continues until the two parties arrive at a single opcode where their
post-execution state roots are different. Since both parties agree on the inputs to the
opcode, they can only have different claims about its output. The party who has the
correct claim will send the check one-step execution transaction to the bridge contract.
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The sequence of L1 transactions involved in the interactive game is illustrated in Figure
7.

The correct output for the inputs is calculated in the bridge contract and compared
with the claimed output to identify the winner of the game. The loser’s stake is confis-
cated and half of it is given to the winner.

If a state root is unchallenged for one week after its posting to the bridge contract, it
is considered finalized. Once a state root is challenged, the fault proof protocol involves
multiple L1 transactions which could be potentially censored by malicious miners. So
the asserter and challenger are each given one week of time in a chess-style clock. This
means that the entire fault proof protocol can take upto two weeks.

5 Rollup User Experience

In this section, we describe various aspects of the rollup user experience (UX). Rollups
offer lower transaction fees if users and application developers are willing to accept
a degraded UX, mainly higher transaction finalization latency and extra steps in user
on-boarding/deboarding.

As the sequencer is a single point-of-failure, rollups have to guarantee the safety
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Figure 8: Workflow of users depositing their L1 assets to L2

of user assets in case the sequencer goes offline or turns malicious. We describe the
mechanisms by which users can safely withdraw their assets from L2 if such an adverse
situation arises. These mechanisms involve an even worse UX compared to regular
rollup operation.

5.1 Moving L1 Assets to L2

To use a rollup, users need to first move their L1 assets to L2. While this workflow was
mostly described in Section 2, we repeat it here (with minor differences) to keep this
section self-contained. The workflow is illustrated in Figure 8 and has the following
event sequence.

1 Users first deposit their L1 ether or ERC20 tokens to the bridge contract.

2 The sequencer monitors the bridge contract for deposit transactions.

3 The sequencer creates an L2 transaction that mints the corresponding amount of
tokens on L2. This transaction is included in an L2 block.

4 The sequencer periodically sends L2 state roots resulting from the execution of L2
blocks to the bridge contract. The data required to recover the L2 state is also sent
to the bridge contract as calldata.

5 The L2 state roots are verified using fault or validity proofs.

6 Once an L2 root has been verified to be correct, the corresponding L2 state is
considered to be final. The sequencer then exposes the consequences of this L2
state via its RPC endpoint.
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Figure 9: Workflow of a user setting their L2 public key in validity rollups

7 The user L2 wallet can then read this updated user balance via the sequencer’s
RPC endpoint.

The latency of this entire workflow is typically less than an hour, and is even minutes
in some rollups. While optimistic rollups have a 7-day window during which a state
root can be challenged, this does not apply to L1 deposits. This is because the bridge
contract can observe L1 deposits, unlike L2 state changes. Once an L1 deposit has
enough confirmations, it can be considered final.

5.2 Setting the L2 Public Key in Validity Rollups

For efficiency reasons, some validity rollups require their users to set an L2 public key
before they can initiate the full range of L2 transactions. For example, zkSync 1.0 and
Polygon Hermez 1.0 require an L2 public key. None of the optimistic rollups require
such a step.

Setting the L2 public key is an extra step in the user on-boarding process, that
slightly degrades the rollup user’s experience. The workflow is illustrated in Figure
9 and has the following event sequence.

1 The user uses their L2 wallet to send an L2 transaction that sets their L2 public
key to the sequencer’s RPC endpoint. This L2 transaction is a special transaction
that is allowed even before L2 public key is set. The user is charged L2 transaction
fees to send this transaction.

2 — 7 The set L2 public key transaction is added to an L2 block by the sequencer. The
state root corresponding to this block is eventually verified on-chain.
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Figure 10: Workflow of a token transfer L2 transaction

8 The user gets confirmation that their L2 public key has been set via the sequencer’s
RPC endpoint.

5.3 Transacting on L2

The workflow of token transfer L2 transaction is illustrated in Figure 10 and has the
following event sequence.

1 The user sends the token transfer L2 transaction to the sequencer’s RPC endpoint
through their L2 wallet.

2 — 4 This L2 transaction is added to an L2 block by the sequencer. The state root cor-
responding to this block is eventually verified on-chain.

5 The sequencer reads the finalized L2 state and exposes it via its RPC endpoint.

6 The user’s L2 wallet displays the updated balance by querying the sequencer’s
RPC endpoit.

The workflow for other L2 transactions is similar.
L2 users experience a higher delay between transaction submission and finalization,

than L1 transactions. However, they pay a lower transaction fees on L2. This is the
fundamental tradeoff of rollups: lower cost for higher latency. The L2 transaction finalization
latency varies with the rollup type.

• Validity Rollups: In validity rollups, L2 transactions are finalized once proofs are
verified on-chain. To amortize on-chain verification fees, several L2 state roots are
verified together. Here are some representative latency values:
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– zkSync 1.0 latency = 1 hour

– StarkEx latency = 7 to 10 hours

– Hermez 1.0 latency = 6 hours

• Optimistic Rollups In optimistic rollups, the transaction finalization latency de-
pends on the user’s trust model.

– 1-of-N trust model: In this trust model, the user assumes that there exists
at least one honest party that can submit a fault proof. L2 transactions are
considered final if there are no challenges to their state roots for 7 days after
submission. Thus the worst case latency is 7 days.

– 1-of-1 trust model: In this trust model, the user trusts a party that is capable
of calculating the L2 state by reading the sequence of L2 blocks submitted to
bridge contract. An example of such a trusted party is an L2 wallet provider.
The sequence of L2 blocks is frozen once the submitting transactions have
enough confirmations on L1. If the trusted party confirms correctness of
submitted state roots, the user will accept them as final. In this case, the
L2 transaction finalization latency is only a few minutes (equal to the L1
confirmation latency of the transactions submitting L2 state roots).

– Trusted sequencer model: In this trust model, the user trusts the sequencer
to not censor their transactions and to submit only correct state roots. This
trust model is applicable when the sequencer is the only party that is allowed
to add L2 blocks.
The latency in this case is the sequencer’s response time after the user sub-
mits an L2 transaction to its RPC endpoint. This latency can be only a few
seconds, even smaller than the L1 block time. This is because the user does
not need to wait for the L2 state root to appear in an L1 block. She believes
that the sequencer will eventually include her L2 transaction in an L2 block.

5.4 Withdrawals from L2 to L1 in Validity Rollups

The workflow for withdrawals of assets from L2 to L1 in validity rollups is illustrated
in Figure 11 and has the following event sequence.

1 The user sends the withdrawal transaction to the sequencer’s RPC endpoint through
their L2 wallet.

2 — 6 This L2 transaction is added to an L2 block by the sequencer. The state root cor-
responding to this block is eventually verified on-chain.

7 The user sends an L1 transaction to withdraw her assets.

8 The user’s L1 wallet receives the assets from the bridge contract.
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L1 User
Wallet

Bridge
Contract

Sequencer
L2 User
Wallet

1 Send withdrawal tx

2 Create L2 blocks
3 Send L2 state roots

with L2 blocks as calldata

4 Generate
validity proofs5 Send transition proofs

6 Verify proofs

7 Send withdrawal tx

8 Tokens transferred

Figure 11: Workflow for withdrawals from L2 to L1 in validity rollups

5.5 Withdrawals from L2 to L1 in Optimistic Rollups

In optimistic rollups, the workflow for withdrawal from L2 to L1 depends on whether
liquidity providers are present. Liquidity providers enable optimistic rollups users to
reduce the withdrawal latency from 7 days to few minutes, for a fee.

Let us first consider the withdrawal workflow when no liquidity providers are
present. This is illustrated in Figure 12 and has the following event sequence.

1 The user sends the withdrawal transaction to the sequencer’s RPC endpoint through
their L2 wallet.

2 — 3 This L2 transaction is added to an L2 block by the sequencer. The state root cor-
responding to this block is added to the bridge contract.

4 If the state root remains unchallenged for 7 days, it is considered finalized. The
sequencer sends an L1 transaction to effect this finalization.

5 The user sends an L1 transaction to withdraw her assets.

6 The user’s L1 wallet receives the assets from the bridge contract.

Now, let us consider the withdrawal workflow for fungible assets when liquidity
providers are present. The workflow is illustrated in Figure 13 and has the following
event sequence.

1 Instead of a withdrawal transaction, the user sends an L2 transaction that trans-
fers the amount of assets they wish to withdraw to the liquidity provider’s ad-
dresss on L2.
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L1 User
Wallet

Bridge
Contract

Sequencer
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Wallet

1 Send L2 withdrawal tx

2 Create L2 blocks
3 Send L2 state roots

with L2 blocks as calldata

4 Confirm L2 state root
containing L2 withdrawal tx

Time ≥ 7 days

5 Send L1 withdrawal tx

6 Tokens transferred

Figure 12: Workflow for withdrawals from L2 to L1 in optimistic rollups without using
liquidity providers

LP L1
Wallet

L1 User
Wallet

Bridge
Contract

Sequencer
L2 User
Wallet

1 Send tx transferring
funds to LP’s L2 address

2 Create L2 blocks3 Send L2 state roots
with L2 blocks as calldata

Time ≥ L1 conf. time

4 Send amount equal to
funds received on L2

minus fee

Figure 13: Workflow for withdrawals from L2 to L1 in optimistic rollups using liquidity
providers
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3 Read slow path txs

4 Create L2 blocks
that include slow
path transactions5 Send L2 state roots

with L2 blocks as calldata

6 Verify roots
using fault or

validity proofs

Figure 14: Workflow for sending an L2 transaction via the slow path

2 — 3 This L2 transaction is added to an L2 block by the sequencer. The state root cor-
responding to this block is added to the bridge contract.

4 The liquidity provider waits for the transaction that submitted the state root to
get enough confirmations. Then it transfers the amount it received on L2 minus a
fee to the user’s L1 address.

By using a liquidity provider, the user’s latency for withdrawals to L1 is reduced from
7 days to a few minutes. This is possible for the same reason that we described in the
1-of-1 trust model scenario. Once the sequence of L2 blocks are frozen, the liquidity
provider can calculate the L2 state and confirm that it will receive a certain amount of
funds from the user on L2.

5.6 Dealing with Censorship by the Sequencer on L2

It is possible that the sequencer censors a user’s L2 transactions at the RPC endpoint.
All rollups offer a slow path that can be used to force the sequencer to include an L2
transaction. The slow path to include an L2 transaction involves sending an L1 transac-
tion to the bridge contract. This is illustrated in Figure 14 and has the following event
sequence.

1 A user experiences censorship by the sequencer, who does not include the user’s
L2 transactions in L2 blocks.

2 The bridge contract has the ability to accept L2 transactions packaged in an L1
transaction. Using this functionality, the censored user sends their L2 transaction
to the bridge contract, which is then added to the slow path queue.
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3 The sequencer monitors the bridge contract for slow path transactions.

4 — 5 The sequencer is forced by the bridge contract logic to include L2 transactions
from the slow path queue in L2 blocks within a deadline.5 L2 blocks which do
not adhere to this requirement are rejected by the bridge contract.

5 Once the L2 state root containing the slow path transaction is verified, the L2
transaction is successful.

Some rollups allow only certain types of L2 transactions in the slow path. For ex-
ample, zkSync 1.0 only allows asset withdrawals. Arbitrum, on the other hand, allows
arbitrary L2 transactions on the slow path. As step 2 requires the user to pay L1 trans-
action fees, the slow path is unviable as a regular mode of creating L2 transactions.

5.7 Dealing with an Offline Sequencer

If the sequencer goes offline and stops producing blocks, users can still withdraw their
assets via the bridge contract. In this section, we describe the withdrawal mechanism
using specific rollups as examples.

For validity rollups, we use zkSync 1.0 as an example to describe the asset with-
drawal mechanism. The workflow is illustrated in Figure 15 and has the following
event sequence.

1 The sequencer stops posting new state roots to the bridge contract.

2 A user requests a full exit of their assets by sending an L1 transaction to the bridge
contract.

3 If exit tx has not been processed in 14 days, anyone can activate exodus mode
by sending an L1 transaction to the bridge contract. In exodus mode, normal
rollup operations are not allowed. Thus the transition to exodus mode is irre-
versible. This restriction makes it easier for the bridge contract to process with-
drawal claims from users.

4 — 5 Users can withdraw their funds (perform exodus) by generating individual va-
lidity proofs of asset ownership and submitting them to the bridge contract via
an L1 transaction.

6 — 7 If the user’s proof is verified to be correct, their assets are transferred back to
them.

For validity rollups, we use Arbitrum as an example to describe the asset with-
drawal mechanism. The workflow is illustrated in Figure 16 and has the following
event sequence.

5For example, in Arbitrum the sequencer has to include a slow path transaction within 24 hours of its
addition to the queue.
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Figure 15: Workflow for asset withdrawal in zkSync 1.0 if the sequencer goes offline
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5 Request withdrawal
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Figure 16: Workflow for asset withdrawal in Arbitrum if the sequencer goes offline
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1 The sequencer stops posting new state roots to the bridge contract.

2 A user requests a full withdrawal of their assets by sending an L1 transaction that
contains a slow path L2-to-L1 withdrawal transaction.

3 After a one day delay, the withdrawal transaction can be forced to be included in
a the L2 transaction sequence by sending an L1 transaction to the bridge contract.

4 If the withdrawal transaction does not face a challenge for seven days, it can be
confirmed by sending an L1 transaction. This confirmation can be done by the
user or anyone else.

5 — 6 The user can then request withdrawal of their assets from the bridge contract and
receive them.

The above workflow requires four L1 transactions to be sent to the bridge contract.

6 Infrastructure Required for Rollups in an Application-Specific
Blockchain

The success of rollups on Ethereum shows that users are willing to accept a slightly de-
graded experience in return for cheaper transaction fees. While cheap fees can help
with user adoption, rollups can also help mitigate the problem of blockchain state
growth without sacrificing security.

When a blockchain with support for smart contracts becomes popular, the amount
of state stored in its contracts increases. This state cannot be pruned as it is necessary to
validate transactions. By moving data from contract storage to calldata, rollups reduce
the rate at which the overall blockchain state grows. Calldata resides in the transac-
tion logs which can be safely pruned by blockchain nodes after the transactions are
validated.

Developers of sovereign application-specific blockchains might be interested in de-
ploying rollups as a layer 2 solution for scalability. In the remainder of this section, we
address the following question: What infrastructure is needed to deploy rollups in a
sovereign application-specific blockchain?

6.1 Common Infrastructure

In this subsection, we describe the common infrastructure needed to deploy both opti-
mistic and validity rollups. In the subsequent subsections, we describe infrastructure
specific to each of them.

6.1.1 L2 Wallet

Any blockchain provides its users with wallet software, which can be used to store
assets and sign transactions. To deploy a rollup, users need an additional layer 2 wallet.
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This wallet will display the users’ L2 assets and allow them to transact on L2. Optimistic
rollups can support L2 addresses which have the same format as L1 addresses without
any loss in efficiency.

On the other hand, some validity rollups use a different address structure for in-
creased efficiency. For example, SNARK-based validity proofs are easier to generate if
the public keys are points on a pairing-friendly elliptic curve and if the address deriva-
tion hash function can be efficiently represented as an arithmetic circuit. Sovereign
blockchain developers planning to deploy validity rollups need to implement an L2
wallet that can handle SNARK-friendly addresses.

6.1.2 RPC Endpoints

L2 blocks are created by sequencers who receive transactions from users via RPC end-
points. For example, the JSON RPC endpoint for the zkSync 1.0 validity rollup is at
https://api.zksync.io/jsrpc.

All rollup projects host a public (and free) RPC endpoint themselves. For some
rollups, L2 application developers can avail private RPC endpoints from blockchain
infrastucture providers like Alchemy, Infura, and QuickNode. In fact, the Optimism
documentation recommends using private RPC endpoints for production usage [10].

In traditional blockchains, the large number of potential block producers means that
at least some of them will be always available to accept user transactions for inclusion
in blocks. In rollups, if the handful of RPC endpoints go offline then L2 transactions
will not be included in L2 blocks.

If a sovereign blockchain wants to support rollups, then it has to ensure close to
100% uptime for its RPC endpoints. Doing this in-house will require devops expertise.
Depending on infrastructure providers will involve coordinating with them to aggre-
gate the transactions submitted by L2 users.

6.1.3 L1 Contracts

Every rollup implements several L1 contracts. Here is a (non-exhaustive) list of re-
quired contracts:

• A bridge contract that enables movement of assets between L1 and L2.

• A contract to receive to the L2 transactions as calldata.

• A contract to store the sequence of state roots.

• A contract that implements the slow path queue for censorship resistance.

6.1.4 L2 Block Producer

The L2 block producer is responsible for creating L2 blocks and sending them to the
bridge contract as calldata. The transactions in these blocks are the aggregrate of
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• L2 transactions resulting from L1 asset deposits to the bridge contract,

• L2 transactions sent to RPC endpoints, and

• L2 transactions submitted to directly to the bridge contract (slow path) for forced
inclusion in L2 blocks.

6.1.5 L2 Node

The L2 node executes the transactions in the L2 blocks created by the sequencer.

• In Optimism and Arbitrum, the L2 node is a modified version of Geth (the most
popular Ethereum node implementation).

• In zkSync 1.0, the L2 node is a program that updates a sparse Merkle tree which
stores user balances and NFTs in its leaves.

The transaction execution by the L2 node will result in a new state root, that will be used
to generate validity proofs in validity rollups and fault proofs in optimistic rollups.

6.1.6 Glue Software

As the block availability and transaction execution is spread across L1 and L2, some
glue software may be required by sequencers to move information between the layers.

For example, Optimism uses a component called the data transport layer (DTL) that
downloads the L2 blocks posted to an L1 contract. Optimism’s L2 node reads tran-
sactions from an index created by the DTL and executes them. Additional software
may be required which collects the post-execution state roots and submits them to an
L1 contract.

6.2 Infrastructure Specific to Optimistic Rollups

6.2.1 Token for Staking

Fault proofs are the distinguishing feature of optimistic rollups. Each state root submit-
ted to the bridge contract has a stake associated with it. If the state root is proved to be
incorrect later, this stake is confiscated. To enable fault proofs, the sovereign blockchain
needs to have a token that can be used for staking.

If the value of the token falls, the stake amount needs to be increased to deter bad
actors from submitting incorrect state roots to delay chain progress. But if the token
value experiences a sharp drop, bad actors could submit incorrect state roots before the
stake amount is increased.

While the fault proof mechanism will eventually reject the incorrect state roots, the
L2 users will experience delays in transaction finalization. The bad actors may be de-
riving a benefit from this delay that is more than the value of the stake they are losing.
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6.2.2 Infrastructure for Application-Specific Optimistic Rollups

As discussed in Section 4.2.2, fault proofs for application-specific optimistic rollups are
easier to implement. This is because it is possible to exhaustively enumerate the num-
ber of ways a state root can be incorrect. A single L1 transaction is sufficient to prove
the incorrectness of a state root (an additional transaction may be required to avoid
frontrunning). Two main components are required:

• An L1 smart contract which allows anyone to prove that a submitted state root is
incorrect.

• A tool which constructs fault proving L1 transactions. Making such a tool user-
friendly will lower the bar for someone to become a challenger.

6.2.3 Infrastructure for General-Purpose Optimistic Rollups

The fault prover for general-purpose optimistic rollups is a complex piece of software
(as evidenced by the current/upcoming implementations in Arbitrum and Optimism).
As discussed in Section 4.2.2, the following components are required:

• An n-ary search L1 contract which can host the interactive game between the
asserter and the challenger to identify the first L2 node opcode where they agree
on the inputs but disagree on the outputs.

• A fault prover L1 contract which can compute the correct output of an L2 node
opcode for some given inputs. This contract has to exhaustively cover all L2 node
opcodes.

• Software for compiling L2 node software into a form which is more amenable for
fault proving. The fault prover L1 contract computes outputs for the opcodes that
appear in the compiled form of the L2 node.

An example of such software is Optimism’s upcoming implementation called
Cannon [11]. It has a stripped-down version of their L2 node called minigeth,
that is itself compiled to a binary that can run on a MIPS architecture [12]. Their
fault prover L1 contract can compute outputs for all instructions of this MIPS ma-
chine.

6.3 Infrastructure Specific to Validity Rollups

6.3.1 Arithmetic Circuit of State Transition Function

Validity proofs prove the correctness of state roots using proof systems called SNARKs
or STARKs. These primitives require the statement being proved to be representable as
an arithmetic circuit.6

6An arithmetic circuit is a circuit where the inputs and outputs are finite field elements and the gates
can only perform addition, subtraction, or multiplication.
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In validity rollups, the statement being proved is of the following form: the execution
of a given sequence of transactions T1, T2, . . . , Tn beginning at the current state root Rcurr
results in a new state rootRnew. Such a statement needs to be represented as an arithmetic
circuit before it can be proved using validity proofs.

Circom [13], bellman [14, 15], and halo2 [16, 17] are popular frameworks for con-
verting arbitrary statements to arithmetic circuits.

6.3.2 Trusted Setup

Before deploying a SNARK-based validity rollup, the rollup developers have to run a
trusted setup ceremony or use the output of a previously run ceremony. STARK-based
validity rollups don’t need a trusted setup. However, STARK-based proofs are larger.

The output of the trusted setup ceremony is called the common reference string. It
is used by the prover to generate the proof and by the verifier to verify it. The cere-
mony involves a set of participants who each run a computation one after the other. It
proceeds as follows:

1. A participant begins by downloading the output of the previous participant (ex-
cept if the participant is the first one in the sequence).

2. Each participant generates a secret key which they use in their portion of the
computation. They are expected to delete this key after their computation ends.

3. They upload their computation output for the next participant.

As long as at least one of the participants destroys their secret key, the resulting common
reference string is secure. This means that computationally bounded adversaries can-
not create valid proofs of incorrect statements.

6.3.3 Prover Infrastructure

The frameworks for writing arithmetic circuits also include prover implementations. So
teams deploying new validity rollups do not need to write their own prover software.

However, the proof generation step is computationally intensive requiring server-
grade computers with large amounts of RAM. The validity rollup sequencer has to
bear the cost of operating these servers (either on-site or on the cloud). Additionally,
distribution of the proof generation workloads onto multiple servers may be required
via custom software.

6.3.4 On-Chain Proof Verifier

New state roots Rnew are sent to the bridge contract along with proofs of their cor-
rectness. The bridge contract needs to be able to perform on-chain verification of the
proofs. If the proof is verified to be correct, thenRnew is accepted by the bridge contract.
Otherwise, it is rejected.
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In SNARK-based systems on Ethereum, proof verification involves calling a pre-
compiled contract that calculates a elliptic curve pairing operation. In STARK-based
systems, it involves hash function computations. In general, proof verification in valid-
ity rollups is easier to implement than proof generation.

Sovereign blockchains wanting to deploy SNARK-based validity rollups need their
L1 to have the ability to compute elliptic curve pairings. While this functionality is
available in EVM-based blockchains, it may not be available in blockchains based on
other virtual machines.

7 Conclusion

Rollups make sense for application-specific blockchains if the application can tolerate
latency in transaction finalization. Even if this is the case, operating a rollup requires
extra infrastructure and manpower. While some software components may be avail-
able under a permissive license, many components are not. An application-specific
blockchain planning to use rollups for scaling would need to implement the missing
components from scratch.

The scale of Ethereum has allowed several rollups to be viable. The operating
costs of these rollups is not publicly available. It is not clear if an application-specific
blockchain with a smaller (than Ethereum) user base can sustain a rollup.
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