Introduction to Linear Block Codes Talk at B. K. Birla College, Kalyan

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

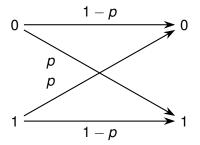
Department of Electrical Engineering Indian Institute of Technology Bombay

March 8, 2025

Error Correction

The Setting

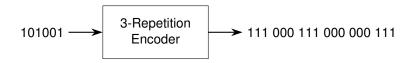
- A transmitter wishes to communicate a string of bits to a receiver
 - For example, a transmitter may wish to send the string 1010
- The transmission occurs over a noisy channel which flips each bit with a probability $p < \frac{1}{2}$



 The transmitter adds redundancy to the transmitted message to correct errors

3-Repetition Code

Each message bit is repeated 3 times



- How many errors can it correct?
- How many errors can the following code correct?

$$0\rightarrow101,1\rightarrow010$$

What about this code?

$$0\rightarrow 101, 1\rightarrow 110$$

 Takeaway: Error correcting capability depends on the distance between the codewords

Issues with Repetition Coding

- The 3-repetition code cannot correct more than one error
- To correct two errors, we can use a 5-repetition code
- To correct three errors, we can use a 7-repetition code
- But this increases the number of redundancy bits sent
- Can we do better?

Binary Block Codes

Binary Block Code

Let \mathbb{F}_2 be the set $\{0,1\}$.

Definition

An (n, k) binary block code is a subset of \mathbb{F}_2^n containing 2^k elements

Example

$$n = 3, k = 1, C = \{000, 111\}$$

Example

 $n \ge 2$, $C = \text{Set of vectors of even Hamming weight in } \mathbb{F}_2^n$

$$k = n - 1$$

$$n = 3, k = 2, C = \{000, 011, 101, 110\}$$

This code is called the single parity check code

Definition

The **rate** of an (n, k) binary block code is $\frac{k}{n}$

Encoding Binary Block Codes

The encoder maps *k*-bit information blocks to codewords.

Definition

An encoder for an (n, k) binary block code C is an injective function from \mathbb{F}_2^k to C

Example (3-Repetition Code) $0 \rightarrow 000, 1 \rightarrow 111$ or $1 \rightarrow 000, 0 \rightarrow 111$

Decoding Binary Block Codes

The decoder maps *n*-bit received blocks to codewords

Definition

A decoder for an (n, k) binary block code is a function from \mathbb{F}_2^n to C

```
Example (3-Repetition Code) n = 3, C = \{000, 111\} 000 \rightarrow 000 \quad 111 \rightarrow 111 001 \rightarrow 000 \quad 110 \rightarrow 111 010 \rightarrow 000 \quad 101 \rightarrow 111 100 \rightarrow 000 \quad 011 \rightarrow 111
```

Since encoding is injective, information bits can be recovered as $000 \rightarrow 0, 111 \rightarrow 1$

Optimal Decoder for Binary Block Codes

- Optimality criterion: Maximum probability of correct decision
- Let $\mathbf{x} \in C$ be the transmitted codeword
- Let $\mathbf{y} \in \mathbb{F}_2^n$ be the received vector
- Maximum a posteriori (MAP) decoder is optimal

$$\hat{\mathbf{x}}_{MAP} = \operatorname{argmax}_{\mathbf{x} \in C} \Pr(\mathbf{x}|\mathbf{y})$$

• Over a BSC with $p < \frac{1}{2}$, the minimum distance decoder is optimal if the codewords are equally likely

$$\hat{\mathbf{x}} = \operatorname{argmin}_{\mathbf{x} \in C} d(\mathbf{x}, \mathbf{y})$$

Error Correction Capability of Binary Block Codes

Definition

The **minimum distance** of a block code *C* is defined as

$$d_{min} = \min_{\mathbf{x}, \mathbf{y} \in C, \mathbf{x} \neq \mathbf{y}} d(\mathbf{x}, \mathbf{y})$$

Example (3-Repetition Code)

 $C = \{000, 111\}, d_{min} = 3$

Example (Single Parity Check Code)

C = Set of vectors of even weight in \mathbb{F}_2^n , $d_{min} = 2$

Theorem

For a binary block code with minimum distance d_{min} , the minimum distance decoder can correct upto $\lfloor \frac{d_{min}-1}{2} \rfloor$ errors.

Complexity of Encoding and Decoding

Encoder

- Map from \mathbb{F}_2^k to C
- Worst case storage requirement = O(n2^k)

Decoder

- Map from \mathbb{F}_2^n to C
- $\hat{\mathbf{x}}_{ML} = \operatorname{argmax}_{\mathbf{x} \in C} \Pr(\mathbf{y} | \mathbf{x})$
- Worst case storage requirement = O(k2ⁿ)
- Time complexity = O(n2^k)

Need more structure to reduce complexity

Binary Linear Block Codes

Vector Spaces

Let V be a set with a binary operation + (addition) defined on it. Let F be a field. Let a multiplication operation, denoted by \cdot , be defined between elements of F and V. The set V is called a **vector space** over F if

- *V* is a commutative group under addition
- For any $a \in F$ and $\mathbf{v} \in V$, $a \cdot \mathbf{v} \in V$
- For any $\mathbf{u}, \mathbf{v} \in V$ and $a, b \in F$

$$a \cdot (\mathbf{u} + \mathbf{v}) = a \cdot \mathbf{u} + b \cdot \mathbf{v}$$

 $(a+b) \cdot \mathbf{v} = a \cdot \mathbf{v} + b \cdot \mathbf{v}$

• For any $\mathbf{v} \in V$ and $\mathbf{a}, \mathbf{b} \in F$

$$(ab) \cdot \mathbf{v} = a \cdot (b \cdot \mathbf{v})$$

• Let 1 be the unit element of F. For any $\mathbf{v} \in V$, $1 \cdot \mathbf{v} = \mathbf{v}$

Vector Spaces over \mathbb{F}_2

- Define the following operations on F₂
- Addition +
 - 0 + 0 = 0
 - 0+1=1
 - 1 + 0 = 1
 - 1 + 1 = 0
- Multiplication ×
 - $0 \times 0 = 0$
 - $0 \times 1 = 0$
 - $1 \times 0 = 0$
 - 1 × 1 = 1
- F2 is a field

Fact

The set \mathbb{F}_2^n is a vector space over \mathbb{F}_2

Binary Linear Block Code

Definition

An (n, k) binary linear block code is a k-dimensional subspace of \mathbb{F}_2^n

Theorem

Let S be a nonempty subset of \mathbb{F}_2^n . Then S is a subspace of \mathbb{F}_2^n if $\mathbf{u} + \mathbf{v} \in S$ for any two \mathbf{u} and \mathbf{v} in S.

Example (3-Repetition Code)

$$C = \{000, 111\} \neq \phi$$

 $000 + 000 = 000, 000 + 111 = 111, 111 + 111 = 000$

Example (Single Parity Check Code)

C =Set of vectors of even weight in \mathbb{F}_2^n

$$\mathsf{wt}(\mathbf{u} + \mathbf{v}) = \mathsf{wt}(\mathbf{u}) + \mathsf{wt}(\mathbf{v}) - 2\,\mathsf{wt}(\mathbf{u} \cap \mathbf{v})$$

Encoding Binary Linear Block Codes

Definition

A generator matrix for a k-dimensional binary linear block code C is a $k \times n$ matrix G whose rows form a basis for C.

Linear Block Code Encoder

Let \mathbf{u} be a 1 \times k binary vector of information bits. The corresponding codeword is

$$\mathbf{v} = \mathbf{u}\mathbf{G}$$

$$\mathbf{G} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix} & = & \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \\ \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} & = & \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

Encoding Binary Linear Block Codes

Example (Single Parity Check Code) n = 3, k = 2, $C = \{000, 011, 101, 110\}$

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix} & = & \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 1 \end{bmatrix} & = & \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 1 \end{bmatrix} & = & \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \end{bmatrix} & = & \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

Encoding Complexity of Binary Linear Block Codes

- Need to store G
- Storage requirement = O(nk) ≪ O(n2^k)
- Time complexity = O(nk)
- Complexity can be reduced further by imposing more structure in addition to linearity
- Decoding complexity? What is the optimal decoder?

Decoding Binary Linear Block Codes

 Equally likely codewords and channel is BSC ⇒ Minimum distance decoder is optimal

$$\hat{\mathbf{x}}_{ML} = \operatorname{argmin}_{\mathbf{x} \in C} d(\mathbf{x}, \mathbf{y})$$

 To exploit linear structure to reduce decoding complexity, we need to study the dual code

Inner Product of Vectors in \mathbb{F}_2^n

Definition

Let $\mathbf{u} = (u_1, u_2, \dots, u_n)$ and $\mathbf{v} = (v_1, v_2, \dots, v_n)$ belong to \mathbb{F}_2^n . The inner product of \mathbf{u} and \mathbf{v} is given by

$$\mathbf{u}\cdot\mathbf{v}=\sum_{i=1}^n u_iv_i$$

 $\mathbf{u} \cdot \mathbf{v} = 0 \Rightarrow \mathbf{u}$ and \mathbf{v} are orthogonal.

Examples

•
$$(1 \ 0 \ 0) \cdot (0 \ 1 \ 1) = 1 \cdot 0 + 0 \cdot 1 + 0 \cdot 1 = 0$$

•
$$(1 \ 1 \ 0) \cdot (0 \ 1 \ 1) = 1 \cdot 0 + 1 \cdot 1 + 0 \cdot 1 = 1$$

•
$$(1 \ 1 \ 1) \cdot (0 \ 1 \ 1) = 1 \cdot 0 + 1 \cdot 1 + 1 \cdot 1 = 0$$

•
$$(0 \ 1 \ 1) \cdot (0 \ 1 \ 1) = 0 \cdot 0 + 1 \cdot 1 + 1 \cdot 1 = 0$$

Nonzero vectors can be self-orthogonal

Dual Code of a Linear Block Code

Definition

Let C be an (n, k) binary linear block code. Let C^{\perp} be the set of vectors in \mathbb{F}_2^n which are orthogonal to all the codewords in C.

$$C^{\perp} = \left\{ \mathbf{u} \in \mathbb{F}_2^n \middle| \mathbf{u} \cdot \mathbf{v} = 0 \ ext{ for all } \mathbf{v} \in C
ight\}$$

 C^{\perp} is a linear block code and is called the **dual code** of C.

Example (3-Repetition Code)
$$C = \{000, 111\}, C^{\perp} = ?$$

$$000 \cdot 111 = 0 \quad 111 \cdot 111 = 1$$

$$001 \cdot 111 = 1 \quad 110 \cdot 111 = 0$$

$$010 \cdot 111 = 1 \quad 101 \cdot 111 = 0$$

$$100 \cdot 111 = 1 \quad 011 \cdot 111 = 0$$

$$C^{\perp} = \{000, 011, 101, 110\}$$
 = Single Parity Check Code

Dimension of the Dual Code

Example (3-Repetition Code and SPC Code)

$$C=\{000,111\},\,\dim C=1$$
 $C^{\perp}=\{000,011,101,110\},\,\dim C^{\perp}=2$ $\dim C+\dim C^{\perp}=1+2=3$

Theorem

$$\dim C + \dim C^{\perp} = n$$

Corollary

C is an (n, k) binary linear block code \Rightarrow C^{\perp} is an (n, n - k) binary linear block code

Parity Check Matrix of a Code

Definition

Let C be an (n, k) binary linear block code and let C^{\perp} be its dual code. A generator matrix \mathbf{H} for C^{\perp} is called a parity check matrix for C.

Example (3-Repetition Code)
$$C = \{000, 111\}$$

$$C^{\perp} = \{000, 011, 101, 110\}$$
A generator matrix of C^{\perp} is $\mathbf{H} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$
H is a parity check matrix of C .

Parity Check Matrix Completely Describes a Code

Theorem

Let C be a linear block code with parity check matrix H. Then

$$\mathbf{v} \in C \iff \mathbf{v} \cdot \mathbf{H}^T = \mathbf{0}$$

$$C = \{000, 111\}, \mathbf{H} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

Forward direction: $\mathbf{v} \in C \Rightarrow \mathbf{v} \cdot \mathbf{H}^T = \mathbf{0}$

$$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix}$$

Parity Check Matrix Completely Describes a Code

Theorem

Let C be a linear block code with parity check matrix H. Then

$$\mathbf{v} \in C \iff \mathbf{v} \cdot \mathbf{H}^T = \mathbf{0}$$

Example (3-Repetition Code)
$$C = \{000, 111\}, \ \mathbf{H} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
Reverse direction: $\mathbf{v} \in C \Leftarrow \mathbf{v} \cdot \mathbf{H}^T = \mathbf{0}$

$$\mathbf{v} \cdot \mathbf{H}^T = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} v_1 + v_3 & v_2 + v_3 \end{bmatrix}$$

$$\mathbf{v} \cdot \mathbf{H}^T = \mathbf{0} \implies v_1 + v_3 = 0, v_2 + v_3 = 0$$

 $\Rightarrow v_1 = v_3, v_2 = v_3 \Rightarrow v_1 = v_2 = v_3$

Decoding Binary Linear Block Codes

Let a codeword x be sent through a BSC to get y,

$$\mathbf{y} = \mathbf{x} + \mathbf{e}$$

where e is the error vector

 The probability of observing y given x was transmitted is given by

$$Pr(\mathbf{y}|\mathbf{x}) = p^{d(\mathbf{x},\mathbf{y})} (1-p)^{n-d(\mathbf{x},\mathbf{y})}$$
$$= p^{\text{wt}(\mathbf{e})} (1-p)^{n-\text{wt}(\mathbf{e})}$$
$$= (1-p)^n \left(\frac{p}{1-p}\right)^{\text{wt}(\mathbf{e})}$$

• If $p < \frac{1}{2}$, lower weight error vectors are more likely

Decoding Binary Linear Block Codes

Optimal decoder is given by

$$\hat{\mathbf{x}}_{ML} = \operatorname{argmin}_{\mathbf{x} \in C} d(\mathbf{x}, \mathbf{y})$$

$$= \mathbf{y} + \hat{\mathbf{e}}_{ML}$$

where $\hat{\mathbf{e}}_{ML}$ = Most likely error vector such that $\mathbf{y} + \mathbf{e} \in C$.

- $\mathbf{y} + \mathbf{e} \in C \iff (\mathbf{y} + \mathbf{e}) \cdot \mathbf{H}^T = \mathbf{0} \iff \mathbf{e} \cdot \mathbf{H}^T = \mathbf{y} \cdot \mathbf{H}^T$
- If $\mathbf{s} = \mathbf{y} \cdot \mathbf{H}^T$, the most likely error vector is

$$\hat{\mathbf{e}}_{\mathit{ML}} = \mathop{\mathsf{argmin}}\limits_{\mathbf{e} \in \mathbb{F}_2^n, \mathbf{e} \cdot \mathbf{H}^T = \mathbf{s}} \mathsf{wt}(\mathbf{e})$$

- Time complexity = $O(n2^k)$
- For each s, the ê_{ML} can be precomputed and stored
- **s** is $1 \times n k$ binary vector \Rightarrow Storage required is $O(n2^{n-k})$

Summary

General Block Codes

- Encoding = $O(n2^k)$
- Decoding = $O(n2^k)$

Linear Block Codes

- Encoding = O(nk)
- Decoding = $O(n2^k)$

Observations

- Linear structure in codes reduces encoding complexity
- Decoding complexity is still exponential
- Need for codes with low complexity decoders

Thanks for your attention!

Saravanan Vijayakumaran sarva@ee.iitb.ac.in