
Nova Aadhaar: Privacy-Preserving Aadhaar-based Age Proofs
Suitable for Resource-Constrained Environments

Saravanan Vijayakumaran
Department of Electrical Engineering

IIT Bombay
Mumbai, India

sarva@ee.iitb.ac.in

ABSTRACT
An age proof is a cryptographic proof that a government-issued
digital ID contains a birth date of someone who is above a certain
age. Such a proof is said to be privacy-preserving if it hides the
other contents of the document. All Indian citizens are eligible to
acquire an identity document called Aadhaar. Every physical and
digital version of an Aadhaar document has a QR code containing
digitally signed personal details of the holder including their birth
date.

We present the design and implementation of Nova Aadhaar, a
privacy-preserving age proof scheme based on Aadhaar QR codes
which has lower resource (memory/download) requirements than
the state-of-the-art.We have implemented and deployed our scheme
in two ways: as a web application that can be accessed by a browser
and as a mobile application that can be installed on an Android-
based phone. Proof generation takes about a minute on a mid-range
phone and a couple of minutes in a laptop browser. Proof sizes are
about 16 kB.

KEYWORDS
Zero-knowledge proofs, age proofs, folding schemes, Aadhaar

1 INTRODUCTION
Age verification on the Internet is a challenging problem. But it is
a problem in need of practical solutions because age-based Internet
restrictions have become a reality in some countries [29].

One approach is to verify that a user is in possession of an authen-
ticated digital document attesting to their age. There is currently
no way to check that the document actually belongs to the user.
Even if users have the necessary documents, they will be reluctant
to share them with third-parties since the documents may contain
other private information apart from their age (like gender and
address).

If the document has a digital signature, zero-knowledge (ZK)
proofs can be used to prove that the age mentioned in it is above
a certain threshold. To preserve privacy, the ZK proofs need to
be generated on the client (the user’s computer or mobile phone).
For this solution to be available to a large section of users, the
computational resources required to generate such proofs should
be as low as possible. A solution which works only on high-end
phones will exclude users who cannot afford such phones.

Aadhaar is an identity document issued by the Indian govern-
ment to all its citizens [46]. It contains a QR code which encodes
the holder’s personal details including their date of birth. The QR

Proceedings of XXXX YYYY(X), 1–15
2025. https://doi.org/XXXXXXX.XXXXXXX

code also contains a digital signature attesting to this data, which
was created by a government-owned private key. There already
exists implementations of age proofs based on Aaadhaar QR codes.

In this paper, we present the design and implementation of Nova
Aadhaar, a privacy-preserving Aadhaar-based age proof that has
lower resource requirements than the state-of-the-art schemes. Its
name reflects the fact that it is based on the Nova folding scheme
[32].

Paper Organization. In Section 2, we describe related work. Our
contributions are summarized in Section 3. The Aadhaar QR code
format is described in Section 4. In Section 5, we discuss desirable
features of Aadhaar-based age proofs. In Section 6, we discuss the
challenges in uniquely identifying an Aadhaar holder purely based
on their Aadhaar QR code data and conclude with an assumption. In
Section 7, wemotivate the features of our design by first considering
two simpler strawman designs and their flaws. The key notion of a
nullifier is introduced here. In Section 8, we give a brief overview of
the Nova proof system.We describe our proposed scheme in Section
9. We describe its implementation and performance in Section 10,
followed by a few concluding remarks in Section 11.

2 RELATEDWORK
The Anon Aadhaar project [6] by the Privacy and Scaling Explo-
rations team at Ethereum Foundation is the pioneer in Aadhaar-
based zero-knowledge proofs. They first developed a system to
check the validity of an Aadhaar PDF file [38, 39] without revealing
the file itself.

Later, they developed an age proof scheme which uses the Aad-
haar QR code [15, 17, 18]. They use the Groth16 [21] proof sys-
tem because it enables the proofs to be verified on the Ethereum
blockchain. The proofs are only a few hundred bytes long.

But theGroth16 proof system requires a statement-specific trusted
setup to generate a large structured reference string (SRS). The
Anon Aadhaar v2 trusted setup involved 105 participants [40].
Provers and verifiers need to download the SRS before they can
generate or verify proofs. The size of this string is approximately
300 MB, which makes it inconvenient for people with restricted
internet access. Furthermore, the Anon Aadhaar web application
[18] has high memory requirements [16] which can cause the proof
generation to fail in some mobile browsers.

3 OUR CONTRIBUTIONS
We present a design and implementation of an Aadhaar-based age
proof scheme based on the Nova folding scheme [32]. Since Nova
has a transparent setup, there is no SRS download needed. All the

1

https://doi.org/XXXXXXX.XXXXXXX

Proceedings of XXXX YYYY(X) S. Vijayakumaran

public parameters can be generated on-demand by the prover and
verifier.

We have deployed our scheme in two ways: as a web application
that can be accessed by a browser (https://age-proof.vercel.app/)
and as a mobile application that can be installed on an Android-
based phone [41–43]. Proof generation takes about a minute on
a mid-range phone and a couple of minutes in a laptop browser.
Proof sizes are about 16 kB. Our experiments show that our imple-
mentations have a lower memory footprint than Anon Aadhaar.
This makes them usable on a wider range of user devices.

4 AADHAAR QR CODE DATA FORMAT
The Aadhaar QR code data consists of the following fields in se-
quence. The fields are separated by a delimiter byte which has the
value 0xFF [11], except that there is no delimiter byte before the
masked email address and RSA signature fields (see Sections 4.10
and 4.11). The sequence of fields and the RSA signature generation
procedure are illustrated in Figure 1.

4.1 Version
The version field is a two-byte ASCII encoding [9] of the string
“Vn” where n can be either 2, 3, or 4. So the first two bytes can be
0x5632, 0x5633, or 0x5634.

4.2 Mobile Number and Email Indicator
This one-byte field is the ASCII encoding of an integer in the range
0 to 3. Version V1 of the Aadhaar QR code had the facility to store
SHA256 hashes of the holder’s mobile phone number and/or email
address if they were registered by the holder at the time of QR
code creation [45]. From version V2 onwards, instead of SHA256
hashes the QR code stores partially masked versions of the mobile
number and email address (see Sections 4.8 and 4.10). The value of
the mobile number and email indicator byte indicates the following.

0 No mobile number or email information present in QR code
1 Only email information present in QR code
2 Only mobile number information present in QR code
3 Both mobile number and email information present in QR

code

4.3 Reference ID
This 21-byte field is the ASCII encoding of the following data.
• The first 4 bytes contain the last four digits of the holder’s
Aadhaar number. Note that the remaining digits of the holder’s
Aadhaar number do not appear in the Aadhaar QR code.
• The remaining 17 bytes contain the QR code creation times-
tamp in the ddMMyyyyHHmmssSSS format [13].

AnAadhar holderwith a registeredmobile number can download
a new QR code using the mAadhaar mobile app [36] or a new
Aadhaar pdf from the UIDAI website [37]. For every download, the
timestamp in the QR code is updated to the current date and time.

4.4 Name
This is a variable-length field encoding the name of the Aadhaar
holder. Since the length of this field varies across Aadhaar holders,
the byte location of the birth date (the next field) in the QR code

Version
Mob. and Email Indicator
Reference ID
Name
Date of birth
Gender
Address
Last 4 digits of mob. number
Photo
Masked email address
RSA signature

2 bytes
1 byte

21 bytes
VarLen
10 bytes
1 byte
VarLen
10 bytes
VarLen
VarLen

256 bytes

SHA256

Prefix 224 bytes

(·)𝑑 mod 𝑁

Figure 1: The fields in the Aadhaar QR code data and their
lengths. VarLen indicates that the corresponding field is
variable-length. The RSA signature is generated by raising
the EMSA-PKCS1-v1_5 encoding of the other fields to the
RSA decryption exponent 𝑑 modulo the RSA modulus 𝑁 .

data is not fixed. This variation necessitates additional logic in the
arithmetization of the age proof.

4.5 Date of Birth
This 10-byte field is the ASCII encoding of the Aadhaar holder’s
date of birth in the DD-MM-YYYY format.

4.6 Gender
This is a one byte field which contains the ASCII encoding of one
of the characters M, F, or T. It specifies that holder’s gender as male,
female, or transgender.

4.7 Address
The address of the Aadhaar holder is specified using 11 consecutive
fields (separated by delimiter bytes) in the following order. All
of them except the pin code are variable-length fields. The fields
are ordered in alphabetical order of their names (except for the
landmark field appearing before the house number field).

(1) Care of: This field specifies the name of the Aadhaar holder’s
head of family. It is an optional field and can be empty.

(2) District: The district the address is located in.
(3) Landmark: A landmark (if any) associated with the address.
(4) House No.: The house number.
(5) Location: The name of the area in the village/town/city the

address is located in.
(6) PIN code: The six digit PIN code of the address.
(7) Post office: The post office nearest to the address.
(8) State: The state the address is located in.
(9) Street: The street name.
(10) Sub-district: The sub-district the address is located in.
(11) VTC: The village/town/city the address is located in.

4.8 Last Four Digits of Mobile Number
If the value of the mobile number and email indicator byte is 0 or
1 (see Section 4.2), this field is empty. Otherwise, it contains the
10-byte ASCII encoding of the string XXXXXXABCD where ABCD are
the last four digits of the holder’s mobile number. For example, if

2

https://age-proof.vercel.app/

Nova Aadhaar Proceedings of XXXX YYYY(X)

the mobile number is 9123456789, then this field will be the ASCII
encoding of the string XXXXXX6789.

4.9 Photo
This is a variable-length field containing a photo of the Aadhaar
holder in JPEG2000 format [28]. The end of this field is indicated
by a 0xD9 byte that corresponds to the End of Image (EOI) marker
in the JPEG2000 format.

4.10 Masked Email Address
If the value of the mobile number and email indicator byte is 0
or 2 (see Section 4.2), this field is empty. Otherwise, it contains a
variable-length ASCII encoding of a masked version of the holder’s
email address. We could not find an exact specification for the mask-
ing algorithm. From examples, we conjecture that if the holder’s
email address is michael@gmail.com, then this field is the ASCII
encoding of the string mxcxxxl@gxxxxxxxx.

4.11 RSA Signature
The last 256 bytes of the Aadhaar QR code data contain an RSA
signature on all the previous QR code data generated using the
Aadhaar private key. The data is encoded for signing using the
EMSA-PKCS1-v1_5 scheme [27] with SHA256 as the hash function.
This is illustrated in Figure 1.

Let qr denote an array of 𝑛 bytes containing the QR code data.
We will use Python array notation to denote slices (subarrays) of
qr. The notation qr[start:stop] for integers start, stop in the
range {0, 1, . . . , 𝑛} with start < stop will denote the bytes in qr
with indices start, start + 1, . . . , stop − 1.

The RSA signature is contained in the slice qr[𝑛 − 256 : 𝑛]. The
data protected by the signature is in the slice qr[0 : 𝑛 − 256]. Let H
denote the 32-byte SHA256 hash of the bytes in qr[0 : 𝑛 − 256].

Let ∥ denote the byte array concatenation operator. Then the
EMSA-PKCS1-v1_5 encoding of the message qr[0 : 𝑛−256] is given
by the 256-byte array

EM = 0x00 ∥ 0x01 ∥ PS ∥ 0x00 ∥ T ∥ H, (1)
where PS is a 202-byte padding sequence of 0xFF bytes and T is a
19-byte array indicating that the hash function used to compute
the message digest H is SHA256. The value of T is given by

0x3031300d060960864801650304020105000420.

The Aadhaar public key consists of a 2048-bit modulus Nrsa and
an encryption exponent 𝑒 = 65537 = 216 + 1. The value of Nrsa
is given in Appendix A. Let 𝑑 be the corresponding decryption
exponent. The RSA signature on the message qr[0 : 𝑛 − 256] is
given by the following 256-byte value

sig = EM𝑑 mod Nrsa . (2)

5 AGE PROOF DESIDERATA
We discuss some desirable properties for Aadhaar-based age proofs
to motivate our proposed design. By an adult Aadhaar holder, we
mean that the birth date in the holder’s QR code is 18 or more years
in the past from the current date.

We envision that age proofs will be used in the following manner.
An adult Aadhaar holder will generate and submit an age proof to

an application. The application could be a social media website
which wants to restrict access to users under the age of 18. Or it
could be a website that collects and stores personal data about its
visitors. Consequently, it requires consent from a visitor allowing
it collect their data and an age proof proving that the visitor is an
adult making them eligible to give consent.

We will assume that an application has a unique 128-bit applica-
tion identifier (AppID).1 An Aadhaar holder can use the AppID as
input while generating an age proof, making it application-specific.

We would like Aadhaar-based age proofs to satisfy the following
properties.
• Soundness: Only adult Aadhaar holders should be able to
generate a valid age proof.
• Privacy: The age proof should not reveal any information
about the fields in the Aadhaar QR code, apart from the fact
that the holder is an adult. For example, it should not reveal
the exact birth date or even birth year of the holder.
• Intra-application linkability: An application should be
able to link multiple age proofs created by the same Aadhaar
holder.
While an application cannot prevent an adult Aadhaar holder
from generating multiple age proofs and sharing them with
others who are not adults, if it can identify that thesemultiple
proofs are from the same holder then it can take appropriate
action (like banning all requests from the holder or allowing
only the first request).
• Inter-application unlinkability: Age proofs generated by
the same holder for different applications (having distinct
AppIDs) should not be linkable.
This is to prevent cross-application tracking of holders by
applications. For example, if the age proofs submitted by a
holder to a news website and an ecommerce website can be
linked, then the news website could display targeted ads to
the holder based on their purchase history in the ecommerce
website.
• Low computational requirements: Due to privacy con-
cerns, an Aadhaar holder may not want to outsource the
age proof generation to a third party. Hence Aadhaar hold-
ers should be able to generate the age proof of their own
devices which could have limited computational resources
(CPU, memory, storage). Specifically, it should be possible to
generate the age proof on mobile phones.

6 UNIQUELY IDENTIFYING AN AADHAAR
HOLDER

Note that the holder’s QR code does not contain their 12-digit Aad-
haar number in its entirety. Only its last four digits of appear in the
reference ID field (see Section 4.3). This raises the following ques-
tion:When can we say that two QR codes belong to the same holder
without using their unique 12-digit Aadhaar number? This question
is relevant for evaluating whether an age proof design satisfies

1Our scheme encodes the AppID as an element in the scalar field of an elliptic curve.
The elliptic curves used by Nova so far can accommodate at least 253 bits in their
scalar fields. For simplicity, we chose the largest power of 2 less than 253 for the bit
length of the AppID. The same design choice was made by Anon Aadhaar, which uses
the name nullifier seed for the AppID.

3

Proceedings of XXXX YYYY(X) S. Vijayakumaran

the intra-application linkability and inter-application unlinkability
properties.

The only field in the QR code data that can be changed without
much effort from the holder is the 17-byte QR code creation times-
tamp in the reference ID field. Every new download of the QR code
will contain a new timestamp.

Changing the name, gender, date of birth, mobile number, email
address, or photo requires the Aadhaar holder to visit an Aadhaar
enrolment centre with supporting documentation [47]. Changing
the address field can be done online by holders with a registered
mobile number, if they can upload a valid proof of address.

One possibility is to identify an Aadhaar holder based on the
triple of name, date of birth, and last four digits of Aadhaar number.
In a country as populous as India, there is a small chance of two
holders having the same values in these three fields. If the age proof
scheme satisfies the intra-application linkability property based of
this triple, then an honest Aadhaar holder may be unfairly denied
access to the application due to having the same values in this triple
as another holder.

Suppose we define uniqueness based on the address field in
addition to the name, date of birth, and last four digits of Aadhaar
number. Then an Aadhaar holder who changes their address will
be able to generate two age proofs which will be considered as
belonging to distinct holders by an application, even if the age
proof scheme satisfies intra-application linkability. They will use
the QR code with the old address to generate the first proof and the
QR code with the new address to generate the second proof. This
is possible because the Aadhaar system does not currently have a
mechanism to revoke stale data about an Aadhaar holder.

We could enforce revocation of stale data by requiring the age
proof to additionally prove that the timestamp in the reference ID
field is in the recent past, for example, one month or less from the
current date. With this constraint in place, when an Aadhaar holder
changes their address they will not be able to generate a valid age
proof using the old QR code one month after the address change
has been accepted by the Aadhaar system. This design has two
issues:

• Aadhaar holders who do not have their mobile number reg-
istered cannot download a fresh QR code. They only have
access to the QR code on the physical copy of their Aadhaar
card, which could be several years old. Mandating that the
timestamp in the QR code must be in the recent past will
prevent such holders from generating age proofs.
• Even if an Aadhaar holder has their mobile number regis-
tered, they will have to download a fresh QR code every
month to be able to generate a valid age proof. This is even if
none of their Aadhaar details have changed. While this is not
an insurmountable obstacle, it degrades the user experience
of the Aadhaar holders.

Since our goal is to demonstrate the feasibility of generating
Aadhaar-based age proofs in resource-constrained environments,
we defer a more careful design of the uniqueness criteria to fu-
ture work. We make the following assumption for demonstration
purposes.

Assumption 1. Two QR codes belong to different Aadhaar holders
if they differ in any of the fields except the timestamp in the reference
ID field.

7 DESIGN CONSIDERATIONS
In this section, we motivate the design of the statement which is
proved by Nova Aadhaar. It is identical to the statement proved
by the Anon Aadhaar scheme [6, 17], except for some minor dif-
ferences which are listed at the end. We are essentially motivating
the statement chosen by Anon Aadhaar, by first presenting two
strawman designs that do not meet our requirements.

A major difference between Nova Aadhaar and Anon Aadhaar
is the choice of ZK proof system used to prove the statement. Anon
Aadhaar uses the Groth16 proof system [21], while we use Nova
[32] to lower the computational requirements for generating age
proofs. Switching the proof system to Nova is not straightforward,
as demonstrated in Section 9. The main challenge is to translate a
regular statement, which does not naturally have the structure of
an incremental verifiable computation (IVC), into an IVC form.

7.1 Strawman Design 1
An adult Aadhaar holder can use their Aadhaar QR code data itself
as the age proof. To verify the age proof, the verifier will first check
that the RSA signature is valid using the Aadhaar public key. Then
the verifier will check that the date of birth is 18 or more years in
the past.

This design satisfies the soundness requirement since valid age
proofs can only be obtained by adult Aadhaar holders. It also has
low computational requirements as the holder does not need to
perform any extra computation. They only need to download the
QR code and share it with the verifier.

But this design is bad for privacy as the verifier sees the entire
QR code data. Also, while it does satisfy the intra-application linka-
bility property, it fails to satisfy the inter-application unlinkability
property.

7.2 Strawman Design 2
Let H be the SHA256 hash of the QR code data except for the last
256 bytes (as defined in Section 4.11). Let sig be the RSA signature
defined in equation (2).

An adult Aadhaar holder could generate an age proof as the
triple (H, sig, 𝜋) where 𝜋 is a zero-knowledge (ZK) proof that H is
the SHA256 hash of some Aadhaar QR code data (excluding RSA
signature) containing a date of birth which is 18 or more years in
the past.

The age proof verifier performs the following checks.
(1) It first verifies that sig is a valid RSA signature on H using

the Aadhaar RSA public key ⟨Nrsa, 𝑒⟩. This involves checking
that the following equation holds where EM is calculated
from H using equation (1).

sig𝑒 = EM mod Nrsa

(2) It then verifies that the ZK proof 𝜋 is valid for the instance
H.

The RSA signature verification ensures that H is the SHA256 hash
of valid Aadhaar QR code data (excluding signature). Consequently,

4

Nova Aadhaar Proceedings of XXXX YYYY(X)

this design satisfies the soundness property as long as the ZK proof
scheme satisfies its corresponding soundness property, i.e. it should
be computationally infeasible to generate a valid proof 𝜋 using QR
code data whose SHA256 hash is H but it contains a date of birth
which less than 18 years in the past.

This design preserves privacy as only the SHA256 hash H of the
QR code data is revealed. Since the photo field (which is more than
1000 bytes long) is also hashed to generate H, it is infeasible for an
observer to recover the values in the QR code fields from H using a
brute-force search.

This design does not satisfy the intra-application linkability
property since the SHA256 hash changes with every new download
of the QR code data. An adult Aadhaar holder can use two of his QR
codes with different timestamps to generate two age proofs having
different values for H. To address this issue, we need to modify the
design to reveal a hash H′ of the data excluding the timestamp bytes.

This design also does not satisfy the inter-application unlink-
ability property since the age proof is independent of the AppID.
Either the hash H or the RSA signature sig can be used to link the
age proofs submitted by the same Aadhaar holder to different appli-
cations. To address this issue, we need to consider designs that do
not reveal the values of H and sig. Additionally, the hash H′ needed
to solve the intra-application linkability issue must be calculated
with AppID as part of the input.

7.3 Nova Aadhaar Statement
Let qr be an 𝑛-byte array representing the data in an Aadhaar QR
code. Let qrd be the byte array of length 𝑛− 256 which corresponds
to the bytes in qr[0 : 𝑛 − 256], the QR code data excluding the
RSA signature. Let qrm be the byte array corresponding to the
bytes in qrd with the 17 timestamp bytes replaced with zero bytes
(the subscript m indicates that the data is masked). So for 𝑖 =

0, 1, 2, . . . , 𝑛 − 256, we have

qrm [𝑖] =
{
qrd [𝑖] if 𝑖 ∉ {7, 8, . . . , 23},
0 if 𝑖 ∈ {7, 8, . . . , 23}. (3)

Let Aid be the AppID of the target application for the age proof.
We will assume that Aid is a 128-bit integer. Let Hpos denote the
Poseidon hash function [20].

In Nova Aadhaar, an adult Aadhaar holder will generate an age
proof as the tuple (Aid, 𝜎, 𝜋) where 𝜋 is a ZK proof attesting to the
following claims:
• 𝜎 = Hpos (Aid, qrm) for some byte array qrm.
• There exists a byte array qrd having the same length as qrm
that satisfies the constraint in equation (3).
• The SHA256 hash of the byte array qrd is H.
• The prover knows a signature sig such that the value EM
obtained by substituting 𝐻 into equation (1) satisfies the
equation

sig𝑒 = EM mod Nrsa . (4)

• The date of birth in qrm is 18 or more years in the past.
This design satisfies the soundness property as long as the ZK

proof scheme satisfies its corresponding soundness property. The
proof 𝜋 does not reveal any information beyond the validity of the
claims. If we model the Poseidon hash function as a random oracle

[7], the value of 𝜎 = Hpos (Aid, qrm) is uniformly distributed in a
large field and does not reveal information about qrm. Hence this
age proof design satisfies the privacy property.

The value 𝜎 will act as a nullifier of the Aadhaar holder’s age
proof. Age proofs generated for the same AppID using two QR
codes which differ only in their timestamp bytes will result in
the same nullifier value 𝜎 . This enables this design to satisfy the
intra-application linkability property.

If we model the Poseidon hash function as a random oracle,
the values of Hpos (Aid, qrm) and Hpos (A′id, qrm) will be uniformly
distributed and independent for Aid ≠ A′id. This will ensure that
this design satisfies the inter-application unlinkability property. We
make the following assumption.

Assumption 2. The Poseidon hash function can be modeled as a
random oracle.

The above design is identical to the Anon Aadhaar scheme [3]
except for a few minor differences.

• The Anon Aadhaar scheme calculates the nullifier as the
Poseidon hash of a nullifier seed (which could be the appli-
cation ID) and the photo bytes of the user [1]. In our design,
we hash all the non-timestamp bytes in the QR code data
(excluding RSA signature).
• The Anon Aadhaar scheme reveals the date and hour of the
timestamp in the QR code data. The minutes, seconds, and
milliseconds fields are excluded to avoid identifying the user
[2].
• If requested by the user, the Anon Aadhaar scheme reveals
the gender, state, and PIN code fields in the QR code.

8 NOVA
In this section, we cover aspects of the Nova proof system [32, 35]
needed to describe our proposed age proof scheme. Nova is a recur-
sive zero-knowledge succinct non-interactive argument of knowledge
(zkSNARK) for statements that can be expressed as incrementally
verifiable computation (IVC) instances [48].

8.1 Incrementally Verifiable Computation
Let F be a finite field. An IVC instance is given by (𝐹, 𝑛, 𝑧0, 𝑧𝑛) where
𝑛 ∈ N, 𝑧0, 𝑧𝑛 ∈ F𝑙 for some 𝑙 ∈ N, and 𝐹 : F𝑘 → F𝑘 for 𝑘 ≥ 𝑙 is a
function called the step function.

An IVC scheme allows a prover to prove that for some public step
function 𝐹 , public initial input 𝑧0, public final output 𝑧𝑛 , it knows
auxiliary input values𝑤0,𝑤1, . . . ,𝑤𝑛−1 ∈ F𝑘−𝑙 such that

𝑧𝑛 = 𝐹 (𝐹 (. . . 𝐹 (𝐹 (𝐹 (𝑧0,𝑤0) ,𝑤1) ,𝑤2) , . . .) ,𝑤𝑛−1) . (5)

Such a proof is generated by proving the execution of a series of
incremental computations of the form 𝑧𝑖+1 = 𝐹 (𝑧𝑖 ,𝑤𝑖), for each
𝑖 ∈ {0, 1, . . . , 𝑛 − 1}, where 𝑧𝑖 and 𝑧𝑖+1 are the public input and
output in the 𝑖th step, respectively. A sequence of incremental
computations is illustrated in Figure 2.

The values inw = [𝑤0,𝑤1, . . . ,𝑤𝑛−1] constitute awitness for the
IVC instance (𝐹, 𝑛, 𝑧0, 𝑧𝑛). The Nova proof system does not reveal
the values in the witness.

5

Proceedings of XXXX YYYY(X) S. Vijayakumaran

𝐹 𝐹 𝐹

𝑤0 𝑤𝑖 𝑤𝑛−1

𝑧0 𝑧𝑛· · · · · ·𝑧1 𝑧𝑖 𝑧𝑖+1 𝑧𝑛−1

Figure 2: A sequence of incremental computations

8.2 Rank-1 Constraint Systems
To use the Nova proof system to prove an IVC instance, the step
function 𝐹 needs to be expressed as an instance of a rank-1 constraint
system (R1CS) [44], [8, Appendix E]. For completeness, we give a
definition of R1CS instances.

Definition 8.1. Let F be a finite field. A rank-1 constraint system
(R1CS) instance is a tuple (F, 𝐴, 𝐵,𝐶, 𝑖𝑜,𝑚, 𝑛) where
• 𝐴, 𝐵,𝐶 are𝑚 ×𝑚 matrices with entries from the field F with
at most 𝑛 = Ω(𝑚) non-zero entries.
• 𝑖𝑜 is a vector with entries from F representing the public
input and output of the instance, whose length satisfies |𝑖𝑜 | +
1 ≤ 𝑚.

Definition 8.2. An R1CS instance (F, 𝐴, 𝐵,𝐶, 𝑖𝑜,𝑚, 𝑛) is said to be
satisfiable if there exists a witness𝑤 ∈ F𝑚−|𝑖𝑜 |−1 such that

𝐴𝑢 ◦ 𝐵𝑢 = 𝐶𝑢,

where 𝑢 =
[
𝑖𝑜 1 𝑤

]𝑇 and ◦ is the Hadamard vector product
operation.

To express the computation 𝑧𝑖+1 = 𝐹 (𝑧𝑖 ,𝑤𝑖) as an R1CS instance,
we need to find matrices𝐴, 𝐵,𝐶 such that the equation𝐴𝑢◦𝐵𝑢 = 𝐶𝑢

is satisfied for 𝑖𝑜 =
[
𝑧𝑖 , 𝑧𝑖+1

]
and some𝑤 ∈ F𝑚−|𝑖𝑜 |−1 if and only

if there exists a witness𝑤𝑖 such that 𝑧𝑖+1 = 𝐹 (𝑧𝑖 ,𝑤𝑖).
The equation in Definition 8.2 encodes𝑚 R1CS constraints in

the field F. Each constraint is a quadratic expression in the entries
of 𝑢. Let 𝑎𝑖, 𝑗 , 𝑏𝑖, 𝑗 , 𝑐𝑖, 𝑗 denote the entries of the 𝐴, 𝐵,𝐶 matrices,
respectively. Let𝑢 𝑗 denote the 𝑗 th entry of𝑢. Then for 𝑖 = 1, 2, . . . ,𝑚,
the 𝑖th R1CS constraint is given by

©«
𝑚∑︁
𝑗=1

𝑎𝑖, 𝑗𝑢 𝑗
ª®¬ ©«

𝑚∑︁
𝑗=1

𝑏𝑖, 𝑗𝑢 𝑗
ª®¬ =

𝑚∑︁
𝑗=1

𝑐𝑖, 𝑗𝑢 𝑗 .

8.3 Nova Proof Costs
Let |𝐹 | denote the number of R1CS constraints needed to express
the computation of the step function 𝐹 .

Prior to proof generation and verification, Nova requires a one-
time generation of public parameters. These parameters are points
from an elliptic curve group that are used to generate commitments
to vectors of length 𝑂 (|𝐹 |). For the Pedersen commitment scheme
(which is whatwe use in our implementation), the public parameters
generation involves 𝑂 (|𝐹 |) steps. The generated parameters have
a total size which is 𝑂 (|𝐹 |).

For 𝑛 steps, the Nova proof generation time is 𝑂 (𝑛 |𝐹 |). At each
step, the prover’s computation is dominated by two multi-scalar
multiplications (MSMs) of size 𝑂 (|𝐹 |) in the elliptic curve group.
The memory required for these MSMs is 𝑂 (|𝐹 |).

The generated proof has size𝑂 (log |𝐹 |). If the Pedersen commit-
ment scheme is used in Nova, the proof verification time is 𝑂 (|𝐹 |).

Note that the proof size and verification time are independent of
the number of steps 𝑛.

8.4 Nova Security Guarantees
TheNova proof system satisfies completeness, knowledge-soundness
and zero-knowledge properties. The definitions of these properties
are presented in Appendix B.

Informally speaking, the completeness property states that a
proverwho knows a validwitnessw for an IVC instance (𝐹, 𝑛, 𝑧0, 𝑧𝑛)
can always generate a valid proof. The knowledge-soundness prop-
erty states that if a polynomial-time prover can generate a valid
proof for an IVC instance (𝐹, 𝑛, 𝑧0, 𝑧𝑛) then it knows a valid witness
w except with a negligible probability.

The zero-knowledge property states that a Nova proof 𝜋 for
an IVC instance (𝐹, 𝑛, 𝑧0, 𝑧𝑛) does not leak any information about
the witness value w. However, the instance contains the number
of steps 𝑛 which is revealed to the verifier. If the values in w are
obtained by breaking a larger witness into fixed-size pieces, then 𝑛
can reveal the size of the larger witness.

9 NOVA-BASED AGE PROOF
Recall the Nova Aadhaar statement presented in Section 7.3. The
claims to be proved involve calculating the SHA256 hash of a byte
array and performing amodular exponentiation. The AnonAadhaar
implementation [4] requires 1,115,080 R1CS constraints to express
the age proof circuit (statement). Such a large number of constraints
translates to high memory requirements for the prover device.

Our motivation for using Nova is to reduce the memory footprint
of the prover, so that the age proof can be generated on a wider
range of devices (specifically low-end mobile phones).

To represent the age proof as an IVC instance, we have to specify
the tuple (𝐹, 𝑛, 𝑧0, 𝑧𝑛) where 𝐹 is the step function, 𝑛 is the number
of IVC steps, and 𝑧0, 𝑧𝑛 are the initial input and final output of 𝐹
respectively.

9.1 Key Insights
The first insight is that the SHA256 hash function [34] already has
an incremental structure. At a high level, the SHA256 hash of a
bitstring𝑀 ∈ {0, 1}∗ having length less than 264 bits is calculated
as follows.

(1) The bitstring𝑀 is padded to a multiple of 512 bits to obtain
𝑀padded.

(2) A 256-bit state variable𝐻 (0) is initialized using bits from the
square roots of the first eight primes.

(3) 𝑀padded is split into 𝑁 blocks 𝑀 (1) , 𝑀 (2) , . . . , 𝑀 (𝑁) each
having 512 bits (64 bytes).

(4) Using a compression function 𝑓 : {0, 1}512 × {0, 1}256 →
{0, 1}256, the values of 𝐻 (𝑖) are calculated as

𝐻 (𝑖) = 𝑓
(
𝑀 (𝑖) , 𝐻 (𝑖−1)

)
, (6)

for 𝑖 = 1, 2, . . . , 𝑁 . This step is illustrated in Figure 3a.
(5) The 256-bit string 𝐻 (𝑁) is the SHA256 hash of𝑀 .
So it is possible to spread the SHA256 hash computation of the

QR code data over multiple steps where each step invokes the
compression function 𝑓 .

6

Nova Aadhaar Proceedings of XXXX YYYY(X)

𝐻 (𝑖−1) 𝑓

𝑀 (𝑖)

𝐻 (𝑖)· · · · · ·𝐻 (1)𝑓𝐻 (0)

𝑀 (1)

𝐻 (𝑁−1) 𝑓 𝐻 (𝑁)

𝑀 (𝑁)

(a) Computation of the SHA256 hash of a paddded message from its 512-bit blocks.

2-to-1
mux

sig2

sig2

isLastStep

sig2

(·)2

×
sig

sig

Step 1

2-to-1
mux

sig2
2

sig3

isLastStep

sig2
2

(·)2

×

sig

· · ·

Step 2

2-to-1
mux

sig2
17

sig2
16+1

isLastStep

sig2
16+1

(·)2

×
sig2

16

sig

Step 17

(b) Computation of RSA signature exponentiation using 17 identical steps.

Figure 3: Expressing SHA256 hashing and RSA signature exponentiation as incremental computations.

The second insight stems from the observation that the RSA
exponent 𝑒 in the Aadhaar public key has the value 65537 = 216 + 1.
This means that the exponentiation sig𝑒 in equation (4) can be
spread over 17 steps where the first 16 steps perform a squaring
operation and the last step performs a multiplication. Since the
step function 𝐹 in Nova has to be the same in every step, we can
use a multiplexer to choose between the outputs of the squaring
operation and product operations. This is illustrated in Figure 3b
where isLastStep is a selector bit which selects the first or second
input of the multiplexer depending on whether it is 0 or 1. For an
example of a multiplexer implementation using R1CS constraints,
see the Mux1 circuit in circomlib [23].

The third insight is that the calculation of the SHA256 hash H and
the 𝑒th power of the signature sig𝑒 can proceed in parallel across
the Nova steps. Once both these values are available, the value of
H can be used to obtain the encoded message EM as in equation (1)
and the equality in equation (4) can be checked.

9.2 Splitting the QR Code Data
In Nova Aadhaar, the age proof IVC instance will have 𝑛 = 17 steps.
All 𝑛 steps involve the RSA signature modular exponentiation as
illustrated in Figure 3b.

We could have computed one instance of the SHA256 compres-
sion function 𝑓 as shown in equation (6) in each step, consuming
64 bytes of the QR code data per step. But then, depending on the
length of the name field, the date of birth field would lie either
in the first 64-byte block or the second 64-byte block, or span the
boundary between these two blocks (see Figure 1). This complicates
the logic needed to read the date of birth field.

While this is not an insurmountable obstacle, an additional dis-
advantage of processing 64 bytes per step is that the number of
steps needed to compute the SHA256 hash of the QR code data can
exceed 17. We empirically observed two instances of real-world

Aadhaar QR code data (excluding the 256-byte RSA signature) hav-
ing lengths 1064 and 1114 bytes. After the SHA256 padding, the
first one would require 17 steps while the second one would require
18 steps to compute the SHA256 hash (if each step consumed 64
bytes). Thus the number of steps would leak information about the
length of the QR code data.

Instead, we split the QR code data after SHA256 padding into
128-byte blocks and apply the SHA256 compression function 𝑓
twice in each step. If the number of 64-byte blocks in the data after
SHA256 padding is odd, we append a 64-byte block of zero bytes.
Now the date of birth field lies in the first 128-byte block as long
as the name field occupies 90 or fewer bytes (see Figure 1 with the
caveat that there is a 1-byte delimiter after each of the first four
fields). This approach does not leak the length of the QR code data
as long as it has 17 or fewer 128-byte blocks after padding (data
length after padding needs to be 2176 or fewer bytes). Empirically,
we observed the number of 128-byte blocks to be 9 (pre-padding
data length was between 1050 and 1150 bytes).

Thus, our proposed age proof scheme relies on the following
assumptions.

Assumption 3. The number of bytes in the QR code data after
SHA256 padding is at most 2176 bytes.

Assumption 4. The number of bytes in the name field of the QR
code data is at most 90.

We have not been able to validate these assumptions. We hope
to share our scheme with UIDAI authorities to get their feedback.

9.3 Opcodes
As the number of 128-byte blocks can be less than 17, SHA256
hashing need not be performed in all the 17 steps. We need to pass
a flag across the Nova steps that controls whether SHA256 hashing
needs to be performed at the current step. We define a 1-bit SHA256

7

Proceedings of XXXX YYYY(X) S. Vijayakumaran

2-to-1
mux

null1

null0

sha2_opcode

null1

Hpos (·)

𝑀
(1)
m , 𝑀 (2)

null0

Step 1

2-to-1
mux

null2

null1

sha2_opcode

null2

Hpos (·)

𝑀 (3) , 𝑀 (4)

Step 2

· · · 2-to-1
mux

null2

null𝑁 ′
2

sha2_opcode

null𝑁 ′
2

Hpos (·)

𝑀z, 𝑀z

null𝑁 ′
2

Step 17

Figure 4: Illustration of the incremental calculation of a nullifier of the QR code data.

opcode as follows.

sha2_opcode =

{
0 if SHA256 hash needed in current step,
1 if SHA256 hash not needed in current step.

Similarly, we need an opcode to control whether RSA signa-
ture verification needs to be performed in the current step. This
opcode will also be used to decide which input to the 2-to-1 mul-
tiplexer is sent to the output in Figure 3b. We defined a 5-bit RSA
opcode rsa_opcode which takes the value 𝑖 − 1 in step 𝑖 . Since
𝑖 ∈ {1, 2, . . . , 17}, rsa_opcode can take values 0, 1, . . . , 16.

For efficiency, we combine these two opcodes into a single op-
code as follows.

opcode = rsa_opcode + 25 × sha2_opcode. (7)

The constituent opcodes can be recovered from the combined op-
code via a bit decomposition R1CS gadget [24].

9.4 Public Inputs/Outputs
The public input/output values 𝑧𝑖 belong to F2 where F is a 255-bit
prime field. The initial input is given by

𝑧0 =
[
initial_opcode current_date

]
,

where initial_opcode has the value 0 corresponding to rsa_opcode =
sha2_opcode = 0 in equation (7) and current_date is a serialized
form of the date from which the age of the holder will be calculated.

In our scheme, if current_date is set to the present date, we
obtain a proof that the Aadhaar holder is 18 years or older. By
setting current_date to 𝑛 years in the future, we obtain a proof that
the Aadhaar holder is 18−𝑛 years or older. By setting current_date
to 𝑛 years in the past, we obtain a proof that the Aadhaar holder is
18 + 𝑛 years or older.

Let null0 be the initial value of the nullifier which is set to the
128-bit AppID. The AppID could occupy 254 bits (as F is a 255-bit
prime field) but we restrict it to 128 bits for simplicity.

Suppose the QR code data after padding has 𝑁 blocks of 64 bytes
each. If 𝑁 is odd, then a 64-byte block of zero bytes is appended
to this list. Let𝑀 (1) , 𝑀 (2) , . . . , 𝑀 (𝑁 ′) be the list of blocks after the
append step, where 𝑁 ′ = 𝑁 + 1 if 𝑁 is odd and 𝑁 ′ = 𝑁 if 𝑁 is
even. Let𝑀 (1)m be the first block with the timestamp bytes masked
(they are replaced with zero bytes). Recall that null0 is equal to the
AppID. For 𝑖 = 1, 2, . . . , 17, the nullifier value after the 𝑖th step is

given by

null𝑖 =

Hpos

(
null𝑖−1, 𝑀 (1)m , 𝑀 (2)

)
if 𝑖 = 1,

Hpos
(
null𝑖−1, 𝑀 (2𝑖−1) , 𝑀 (2𝑖)

)
if 1 < 𝑖 ≤ 𝑁 ′

2 ,

null𝑁 ′
2

otherwise.
(8)

In words, the nullifier calculation proceeds as follows. In the
first step, the nullifier value is the Poseidon hash of the AppID
and the first two 64-byte message blocks with timestamp bytes
masked. In the subsequent steps until step 𝑁 ′

2 , the nullifier value is
the Poseidon hash of the previous step’s nullifier value and a pair
of 64-byte message blocks. In step 𝑁 ′

2 , if 𝑁 is odd then the block
𝑀 (𝑁 ′) will contain all zero bytes. In the steps after step 𝑁 ′

2 , the
nullifier value from step 𝑁 ′

2 will be output. Thus null𝑁 ′
2

will be the
final nullifier of the QR code data. This illustrated in Figure 4 where
the𝑀z inputs to the Poseidon hash function in step 17 are 64-byte
blocks containing all zero bytes. These blocks represent dummy
inputs to the Poseidon hash function after the message blocks have
been exhausted.

Suppose that an honest prover is generating the proof. We will
consider malicious provers later. For 𝑖 = 1, 2, . . . , 16, the output of
the 𝑖th step will be given by

𝑧𝑖 =
[
opcode𝑖 io_hash𝑖

]
,

where opcode𝑖 = 𝑖 + 25 × sha2_opcode and the value of io_hash𝑖
is given by

io_hash𝑖 =

Hpos

(
𝐻 (2𝑖) , sig, sig2𝑖 , null𝑖

)
if 𝑖 < 𝑁 ′

2 ,

Hpos
(
𝐻 (𝑁) , sig, sig2𝑖 , null𝑖

)
if 𝑖 ≥ 𝑁 ′

2 ,

where 𝐻 (𝑗) is the output of the SHA256 compression function just
after block𝑀 (𝑗) has been processed in equation (6).

The role of io_hash𝑖 is to carry forward the values of 𝐻 (𝑗) , sig,
sig2

𝑖 , and null𝑖 from step 𝑖 to step 𝑖 + 1. These values are recovered
from io_hash𝑖 by the step function 𝐹 by providing them as auxiliary
inputs and checking that their hash matches io_hash𝑖 .

The values 𝐻 (𝑗) , sig, sig2𝑖 , null𝑖 themselves could have been
directly included in 𝑧𝑖 . Hashing them and including a hash instead
in 𝑧𝑖 reduced the number of R1CS constraints.2

2Nova constructs an augmented step function 𝐹 ′ from the step function 𝐹 [32]. The
number of constraints required to express 𝐹 ′ increases with the size of the public IO
vector 𝑧𝑖 .

8

Nova Aadhaar Proceedings of XXXX YYYY(X)

The final output, i.e. the output of the 17th step, is given by

𝑧17 =
[
final_opcode final_nullifier

]
, (9)

where final_nullifier equals the value null𝑁 ′
2
calculated in equation

(8) and final_opcode = 49. The opcode in the 17th step has the
value 48 corresponding to rsa_opcode = 16 and sha2_opcode = 1
in equation (7). The value of final_opcode is 1 more than the value
of the opcode in the last step.

9.5 Auxiliary Inputs
For 𝑖 = 1, 2, . . . , 17, the step function receives the following as
auxiliary inputs 𝑤𝑖−1 in step 𝑖 (see Figure 2). For each input, we
indicate their values when an honest prover generates them. In the
next subsection, we describe the step function 𝐹 which will force
malicious provers to set the same values as an honest prover.

(1) next_opcode: The value of the next step’s opcode, i.e. the
opcode in step 𝑖 + 1.

(2) num_msg_blocks_odd: A boolean value which is set to true
if the number of 64-byte blocks 𝑁 in the QR code data after
SHA256 padding is odd. Otherwise, it is set to false.

(3) dob_byte_index: An integer in the range {0, 1, 2, . . . , 127}
that is equal to the location of the first byte of the date of
birth field in the first 128-byte block of the QR code data.

(4) 𝑀1, 𝑀2 : A pair of 64-byte blocks.
Let 𝑀 (1) , 𝑀 (2) , . . . , 𝑀 (𝑁 ′) be the list of 64-byte blocks de-
scribed in Section 9.4. This list is obtained by splitting the
QR code data after SHA256 padding and appending a 64-byte
block𝑀z of all zero bytes if num_msg_blocks_odd is true. So
𝑁 ′ is always even and𝑀 (𝑁 ′) = 𝑀z if num_msg_blocks_odd
is true. The values of𝑀1, 𝑀2 are given by

(𝑀1, 𝑀2) =
{(

𝑀 (2𝑖−1) , 𝑀 (2𝑖)
)

if 𝑖 ≤ 𝑁 ′
2 ,

(𝑀z, 𝑀z) if 𝑁 ′
2 < 𝑖 ≤ 17.

(5) current_sha256_digest: A 256-bit value which represents
the SHA256 compression function output before the current
step. For 𝑗 = 1, 2, . . . , 𝑁 , let 𝐻 (𝑗) be the block𝑀 (𝑗) has been
processed in equation (6). Then we have

current_sha256_digest =

{
𝐻 (2𝑖−2) if 𝑖 ≤ 𝑁 ′

2 ,

𝐻 (𝑁) if 𝑁 ′
2 < 𝑖 ≤ 17.

(6) sig: A 256-byte value corresponding to the RSA signature in
the QR code data.

(7) sig_power: A 256-byte value corresponding to the current
power of the RSA signature sig. For an honest power, it will
have the value sig2𝑖−1 .

(8) current_nullifier: A field element corresponding to the cur-
rent value of the nullifier, i.e. the value of the nullifier after
step 𝑖 − 1 given by null𝑖−1.

Note that the values of num_msg_blocks_odd, dob_byte_index,
and sig do not vary with step index 𝑖 .

9.6 Step Function Specification
The Nova step function for age proof verification is described in Al-
gorithm 1. The description involves the following helper functions.

(1) range_check(𝑥,𝑚): Let F be a prime field whose cardinality
occupies 𝑙 bits. For 𝑥 ∈ F and 1 ≤ 𝑚 < 𝑙 , this function checks
that the binary representation of 𝑥 can fit in𝑚 bits. An R1CS
implementation of the range check gadget can be seen in
circomlib [24].

(2) decompose_opcode (opcode): This function takes a 6-bit op-
code as input and returns a pair

(
op1, op2

)
where op1 is a

boolean value and op2 is a 5-bit value.
(3) assert (predicate): This function adds an R1CS constraint

that is satisfied if the predicate is true. The predicate is either
an equality constraint or a boolean operation, both of can
be asserted to be true using R1CS constraints [10].

(4) create_flag (predicate): This function returns a boolean
variable whose value is true if and only if predicate is true.

(5) cond_select(flag, output1, output2): This function returns
output1 if flag is true. It returns output2 if flag is false. This
is nothing but a 2-to-1 multiplexer.

(6) Hpos is the Poseidon hash function [20].
(7) mask_timestamp_bytes(𝑀1): This function takes a 64-byte

block𝑀1 as input and outputs a 64-byte block𝑀1,m which
has the bytes in locations 8 to 24 zeroed out (like in equation
(3)). If𝑀1 is the first 64 bytes of the Aadhaar QR code data,
then the timestamp bytes are zeroed out.

(8) emsa_pkcs1_v1_5(H): This function takes a 256-bit value H
as input and returns a 2048-bit value EM calculated as per
equation (1).

(9) check_age (𝑀, dob_byte_index, current_date): This function
takes three inputs. The first input𝑀 is a 128-byte block. The
second input dob_byte_index is equal to the index of the
starting byte of the the date of birth field in the QR code data.
It is an integer in the range {0, 1, 2, . . . , 118} if Assumption
4 holds. The third input is the current date. This function
returns a boolean variable which is true if and only if the
following conditions hold.

(a) The number of delimiter bytes in𝑀 prior to dob_byte_index
is exactly equal to 4 (see Section 4). These delimiter bytes
are present after the version, mobile/email indicator, ref-
erence ID, and name fields.

(b) The number of delimiter bytes in𝑀 in the range of indices
from dob_byte_index to dob_byte_index + 9 is zero. Recall
that the date of birth field is in the DD-MM-YYYY format
(which occupies 10 bytes).

(c) The bytes in𝑀 in the range of indices from dob_byte_index
to dob_byte_index +9 correspond to a date in DD-MM-YYYY
format that is 18 or more years in the past from cur-
rent_date.

An implementation of the check_age function can be found
in our code repository.

9.7 Soundness of the Construction
A valid Nova proof for an IVC instance (𝐹, 𝑛, 𝑧0, 𝑧𝑛) only guarantees
that there exist there exist auxiliary variables𝑤0,𝑤1, . . . ,𝑤𝑛−1 such
that equation (5) is satisfied. Amalicious prover can supply arbitrary
values for these variables in an attempt to forge a proof without
having access to a valid Aadhaar QR code with an adult date of
birth.

9

Proceedings of XXXX YYYY(X) S. Vijayakumaran

Algorithm 1: Step function algorithm for 𝑧𝑖 = 𝐹 (𝑧𝑖−1,𝑤𝑖−1) in step 𝑖
Input : If 𝑖 > 1, public input 𝑧𝑖−1 = [opcode𝑖−1, io_hash𝑖−1]. If 𝑖 = 1, then 𝑧𝑖−1 = 𝑧0 = [initial_opcode, current_date].

Auxiliary input𝑤𝑖−1 =
[

next_opcode, num_msg_blocks_odd, dob_byte_index,
𝑀1, 𝑀2, current_sha256_digest, sig, sig_power, current_nullifier

]
Output : If 𝑖 < 17, public output 𝑧𝑖 = [next_opcode, next_io_hash]. If 𝑖 = 17, then 𝑧𝑖 = [next_opcode, next_nullifier].

1 // Check that current and next opcodes fit in 6 bits;
2 range_check(opcode𝑖−1, 6), range_check(next_opcode, 6)

3 // Decompose current and next opcodes into constituent SHA256 and RSA opcodes. Note that SHA256 opcodes take boolean values.;
4 (current_sha2_opcode, current_rsa_opcode) ← decompose_opcode(opcode𝑖−1)
5 (next_sha2_opcode, next_rsa_opcode) ← decompose_opcode(next_opcode)

6 // Next RSA opcode is always 1 more than current RSA opcode;
7 assert(next_rsa_opcode == current_rsa_opcode + 1)
8 // Either next_sha2_opcode == current_sha2_opcode OR next_sha2_opcode = current_sha2_opcode + 1;
9 assert(¬current_sha2_opcode ∨ next_sha2_opcode)

10 // Create flags;
11 is_first_step← create_flag(current_rsa_opcode == 0)
12 is_sha256_active← create_flag(¬current_sha2_opcode)
13 is_opcode_last_sha256← create_flag(¬current_sha2_opcode ∧ next_sha2_opcode)
14 is_opcode_last_rsa← create_flag(current_rsa_opcode == 16)

15 // Check that the non-deterministic inputs hash to the expected value;
16 calculated_io_hash← Hpos (current_sha256_digest, sig, sig_power, current_nullifier)
17 assert(is_first_step ∨ (calculated_io_hash == io_hash𝑖−1)) // Hash equality does not hold in first step;

18 // Compute the next SHA256 digest using the compression function 𝑓 ;
19 current_sha256_digest← cond_select(is_first_step, 𝐻 (0) , current_sha256_digest) // Overwrite SHA256 digest in first step with 𝐻 (0) ;
20 𝐻1 ← 𝑓 (𝑀1, current_sha256_digest)
21 𝐻2 ← 𝑓 (𝑀2, 𝐻1)
22 calculated_sha256_digest← cond_select (is_opcode_last_sha256 ∧ num_msg_blocks_odd, 𝐻1, 𝐻2)
23 next_sha256_digest← cond_select (is_sha256_active, calculated_sha256_digest, current_sha256_digest)
24 // Compute the next nullifier;
25 𝑀1,m ← mask_timestamp_bytes(𝑀1)
26 temp_nullifier1 ← Hpos (current_nullifier, 𝑀1,𝑚, 𝑀2)
27 temp_nullifier2 ← Hpos (current_nullifier, 𝑀1, 𝑀2)
28 calculated_nullifier← cond_select

(
is_first_step, temp_nullifier1, temp_nullifier2

)
29 next_nullifier← cond_select (is_sha256_active, calculated_nullifier, current_nullifier)
30 // Check validity of RSA signature if 𝑖 = 17;
31 sig_power← cond_select (is_first_step, sig, sig_power) // Overwrite sig_power in first step with sig;
32 sig_power_square← (sig_power)2 mod Nrsa
33 sig_power_times_sig← (sig_power × sig) mod Nrsa
34 next_sig_power← cond_select (is_opcode_last_rsa, sig_power_times_sig, sig_power_square)
35 EM← emsa_pkcs1_v1_5(next_sha256_digest)
36 assert(¬is_opcode_last_rsa ∨ (next_sig_power == EM)) // Signature power equals encoded message in last step;

37 // Check age in first step;
38 is_age_above_eighteen← check_age(𝑀1∥𝑀2, dob_byte_index, current_date)
39 assert(¬is_first_step ∨ is_age_above_eighteen) // In the first step, age check must pass;

40 // Calculate output 𝑧𝑖 ;
41 next_io_hash← Hpos (next_sha256_digest, sig, next_sig_power, next_nullifier)
42 temp_output← cond_select (is_opcode_last_rsa, next_nullifier, next_io_hash)
43 𝑧𝑖 ← [next_opcode, temp_output]

10

Nova Aadhaar Proceedings of XXXX YYYY(X)

We have to check that the constraints in the step function 𝐹
ensure that a valid Nova proof implies that the prover used a valid
Aadhaar QR code with an adult date of birth to generate it. In
other words, we have to check that the soundness of Nova for this
particular instance (𝐹, 𝑛, 𝑧0, 𝑧𝑛) implies the soundness of the age
proof. We show that this implication holds under the following
assumptions.

Assumption 5. The RSA signature scheme with SHA256 hashing
and EMSA-PKCS1-v1_5 encoding is unforgeable.

Assumption 6. The Poseidon hash function is collision-resistant.

We consider the evolution of the state variables in Algorithm 1
and argue the soundness of the construction as a consequence. Line
numbers in the following discussion refer to those in Algorithm 1.

9.7.1 RSA Opcode. First, let us consider the evolution of cur-
rent_rsa_opcode and next_rsa_opcode.
• As per line 4, in step 𝑖 the value of current_rsa_opcode is
derived from opcode𝑖−1 as

(current_sha2_opcode, current_rsa_opcode)
← decompose_opcode(opcode𝑖−1) .

From equation (7), it follows that current_rsa_opcode con-
sists of the 5 least significant bits of opcode𝑖−1.
• As discussed in Section 9.4, opcode0 = initial_opcode = 0.
This implies that the value of current_rsa_opcode in the first
step (𝑖 = 1) is zero.
• As per line 7, we have

next_rsa_opcode = current_rsa_opcode + 1,
in all the steps. Specifically, the value of next_rsa_opcode in
the first step is 1.
• As per line 5, in step 𝑖 the 5 least significant bits of next_opcode
are equal to next_rsa_opcode since

(next_sha2_opcode, next_rsa_opcode)
← decompose_opcode(next_opcode) .

• As per line 43, in every step the first coordinate of the public
output 𝑧𝑖 is set to next_opcode. Thus, as per line 4, the value
of current_rsa_opcode in step 𝑖 + 1 will equal the value of
next_rsa_opcode from step 𝑖 .
• In conclusion, the value of current_rsa_opcode in step 𝑖 is
equal to 𝑖 − 1 for 𝑖 = 1, 2, 3, . . . , 17.

Consequently, we have the following implications on the is_first_step
and is_opcode_last_rsa flags.
• As per line 11, the flag is_first_step is true only in the first
step.
• As per line 14, the flag is_opcode_last_rsa is true only in
step 17 (the last step).

9.7.2 Signature Powers. Let us consider the evolution of the values
of sig_power and next_sig_power.
• As per line 31, the value of sig_power is replaced with sig if
the flag is_first_step is true. The implication is that in the
first step the value of sig_power provided by the prover will
be replaced by the value it provided for sig.

• As per lines 32 and 34, the value of next_sig_power in the
first step will be sig2. This value is hashed in line 41 to get
next_io_hash. In the first step, in line 42 temp_output gets
this value of next_io_hash. By line 43, the second coordinate
of the output of the first step is
io_hash1

= Hpos (next_sha256_digest, sig, sig2, next_nullifier).
• In the second step (𝑖 = 2), on line 17 the hash calculated in
line 16 is checked for equality with io_hash1. By the collision-
resistance of the Poseidon hash function (Assumption 6),
these hashes will be equal only if the value sig_power in the
second step is sig2. Furthermore, the value of sig provided
by the prover must be equal to the value it provided in the
first step. The prover cannot use different values of sig as
inputs to the first and second steps.
• In the second step, on line 31 the value of sig_power is not
overwritten. It retains the value sig2. By lines 32 and 34, the
value of next_sig_power becomes sig4 = sig2

2 . This value
is hashed into next_io_hash = io_hash2 on line 41 and is
passed as output in temp_output in line 43.
• In the third step (𝑖 = 3), once again the hash calculated in
line 16 is check for equality with io_hash2. By the same
argument as above, the value of sig_power in the third step
must be sig22 and the value of sig is identical to its value in
step 2.
• Hence for 𝑖 = 1, 2, 3, . . . , 16, in step 𝑖 we have sig_power =
sig2

𝑖−1 and next_sig_power = sig2
𝑖 .

• In step 17, the value of sig_power = sig2
16 . But in line 34 the

flag is_opcode_last_rsa is true. This implies that the value
of next_sig_power is sig216+1 in step 17.

In step 17, the assertion in line 36 requires that sig216+1 = EM. By
line 35, EM is the EMSA-PKCS1-v1_5 encoding of next_sha256_digest.
If the RSA signature is unforgeable (Assumption 5), then a message
whose SHA256 hash is the value of next_sha256_digest in step 17
must have been signed by the Aadhaar private key.

9.7.3 SHA256 Opcode. Let us consider the evolution of the val-
ues of current_sha2_opcode and next_sha2_opcode. Recall that
decompose_opcode takes a 6-bit input and returns a pair of values,
the first of which is a 1-bit value.
• As per lines 4 and 5, the variables current_sha2_opcode and
next_sha2_opcode are boolean variables that can only take
values 0 or 1.
• As discussed in Section 9.4, opcode0 = initial_opcode = 0.
This implies that the value of current_sha2_opcode in the
first step (𝑖 = 1) is 0.
• As per line 12, the flag is_sha256_active is set to true if and
only if current_sha2_opcode is 0.
• As per line 9, if the value of current_sha2_opcode is 0, then
next_sha2_opcode can be 0 or 1. But if current_sha2_opcode
is 1, then the value of next_sha2_opcode must be 1.
The rationale behind this constraint is that the SHA256 op-
eration begins in an active state where the 64-byte blocks
need to be hashed. Once the message blocks are exhausted,
the SHA256 operation goes into an inactive state. Once it

11

Proceedings of XXXX YYYY(X) S. Vijayakumaran

has reached the inactive state (current_sha2_opcode = 1), it
cannot go back to an active state (next_sha2_opcode = 0).
• As per line 13, the flag is_opcode_last_sha256 is set to true if
and only if current_sha2_opcode is 0 and next_sha2_opcode
is 1.

9.7.4 SHA256 Digests. Now, let us consider the computation of the
intermediate and final SHA256 digests.

• In line 19, the value of current_sha256_digest is replaced
with 𝐻 (0) if the flag is_first_step is true, where 𝐻 (0) is the
initial state of the SHA256 hash function (see Section 9.1).
The implication is that in the first step the value of cur-
rent_sha256_digest provided by the prover will always be
replaced. This ensures that the SHA256 hash computation
always begins from the prescribed initial state.
• In the first step, in lines 20, 21 the compression function is
applied to the provided blocks𝑀1, 𝑀2. In line 22, the flag in
the cond_select will be false until the last 128-byte block is
reached. Assuming that the number of 128-byte blocks in the
QR code data is more than one, calculated_sha256_digest
is set to 𝐻2. In line 23, next_sha256_digest is set to calcu-
lated_sha256_digest.
In line 41, next_sha256_digest is hashed along with other
variables to get next_io_hash. In the first step, in line 42
temp_output gets this value of next_io_hash. Let us call this
value io_hash1 as before.
• In the second step, on line 18 the hash calculated in line
17 is checked for equality with io_hash1. By the collision-
resistance of the Poseidon hash function, these hashes will be
equal only if the value current_sha256_digest in the second
step is equal to the next_sha256_digest from the first step.
Thus the SHA256 digest computed in the first step is correctly
recovered as the current SHA256 digest prior to SHA256
hashing in the second step. In a similar manner, the digest
computed in the previous step is recovered in the current
step.
• Suppose the current step corresponds to the last 128-byte
block. There are two cases to consider. If the number of 64-
byte blocks in the QR code data was odd, then a dummy 64-
byte block of zero bytes would have been appended as the last
block. If this is the case, then the value of next_sha256_digest
should be 𝐻1. This is handled by the cond_select in line
22. If the number of 64-byte blocks is even, then the value of
next_sha256_digest is 𝐻2.
• If the number of 128-byte blocks is exhausted, i.e. the flag
is_sha256_active is equal to zero, then next_sha256_digest
is simply set to current_sha256_digest as per line 23.

If a malicious prover attempts to cheat by providing incorrect values
for𝑀1,𝑀2, or next_opcode, then the next_sha256_digest value in
step 17 will deviate from the value which was signed by the Aadhaar
private key. This will lead to an incorrect value of EM in line 35. As
a consequence, the signature verification in line 36 will fail in step
17.

9.7.5 Nullifier Values. Finally, let us consider the evolution of the
nullifier values current_nullifier and next_nullifier.

• In the first step, the value of current_nullifier is uncon-
strained. It can be set to any value by the prover. Hence
it can be used to accommodate the AppID.
• As in the SHA256 digest calculation, the calculated_nullifier
from a previous step is correctly recovered as the value of
current_nullifier in the current step using the assertion in
line 17.
• In line 25, the first 64-byte message block 𝑀1 is masked at
byte locations 8 to 24 to obtain𝑀1,𝑚 as in equation (3). While
this operation occurs in every step, in the first step the𝑀1,𝑚
block corresponds to first 64 bytes of the Aadhaar QR code
data with the timestamp bytes zeroed out.
• In lines 26, 27, two candidates for next_nullifier are calcu-
lated.
– temp_nullifier1 is the Poseidon hash of current_nullifier,
the masked 64-byte block𝑀1,𝑚 , and𝑀2.

– temp_nullifier2 is the Poseidon hash of current_nullifier,
the unmasked 64-byte block𝑀1, and𝑀2.

• As per line 28, in the first step, calculated_nullifier is set to
temp_output1. In subsequent steps, it is set to temp_output2.
• If the number of 128-byte blocks is exhausted, the value of
next_nullifier is simply set to current_nullifier in line 29.

If a malicious prover attempts to generate a different nullifier by
providing incorrect values for 𝑀1, 𝑀2, or next_opcode, then the
next_sha256_digest value in step 17 will again deviate and the
signature verification in line 36 will fail.

9.7.6 Age Proof. In line 38, the dob_byte_index and current_date
are used to check that the date of birth field in the concatenation
𝑀1∥𝑀2 of the blocks𝑀1, 𝑀2 is 18 or more years in the past. Since
these blocks will contain other data after the first step, the age is
asserted to be above 18 only in the first step as per line 39.

9.7.7 Final Output. In step 17 (last step), in line 42 the value of
temp_output is set to next_nullifier instead of next_io_hash. For
the signature verification to pass, the SHA256 hash of the QR code
must be complete. Hence the value of next_sha2_opcodemust be 1.
Since next_rsa_opcode has value 17, next_opcode = 32×1+17 = 49.
These values are consistent with the value of 𝑧17 in equation (9).

10 IMPLEMENTATION AND PERFORMANCE
We used the reference implementation of Nova [19] to implement
the Aadhaar-based age proof in about 2100 lines of Rust. Our code is
released on GitHub [42] under MIT/Apache licenses. The step func-
tion 𝐹 in our implementation requires about 104k R1CS constraints.
On a laptop with an Intel i5-11320H processor [12] and 16 GB RAM,
the public parameter generation (PPG), proof generation (PG), and
proof verification (PV) times were 2.2 seconds, 13.8 seconds, and
0.2 seconds, respectively. The peak memory usage was 360 MB.

We created a web application (code hosted at [41]) for generating
age proofs in the browser by compiling our Rust implementation to
WASM [22]. An anonymized version of the application is deployed
at https://age-proof.vercel.app/. In the Firefox browser on the test
laptop, the PPG, PG, and PV times were 12 seconds, 108 seconds, and
10 seconds respectively. The peakmemory usagewas approximately
600MB. In amobile browser of a mid-range phone (Samsung Galaxy
M31s), the times were 39 seconds, 585 seconds, and 42 seconds,

12

https://age-proof.vercel.app/

Nova Aadhaar Proceedings of XXXX YYYY(X)

Scheme (Environ.) PPG (s) PG (s) PV (s) MC (GB) ID (MB)
AA (iPhone 15) NA 7 NA 1.4 > 600
AA (Laptop, browser) NA 40 NA 9.6 307
PS (Laptop, shell) 2 14 3 0.36 NA
PS (Gal. M31s, browser) 39 585 42 - 1.5
PS (Gal. M31s, app) 8 50 9 0.58 12
PS (Pixel 8, browser) 11 118 13 - 1.5
PS (Pixel 8, app) 2 22 3 0.58 12

Table 1: Performance comparison of our proposed scheme
(PS) and Anon Aadhaar (AA). Here PPG = public parameter
generation, PG = proof generation, PV = proof verification,
MC = Peak memory consumption during PG, ID = initial
download. The NA indicates that either the functionality is
not implemented or not needed. The memory consumption
during PG in mobile browsers could not be measured.

respectively. On a high-end phone (Pixel 8), these times reduced to
11 seconds, 118 seconds, and 13 seconds, respectively. The initial
download of the application (including WASM file) is under 1.5 MB.
The proofs have a size of 15.3 KB and can be downloaded as a JSON
file.

In comparison, the Anon Aadhaar web application [18] requires
an initial download of about 307 MB, of which about 296 MB corre-
sponds to the gzipped Groth16 structured reference string (SRS) and
about 10.4 MB corresponds to the WASM file. On the same laptop,
proof generation takes about 40 seconds with a peak memory usage
of about 9.6 GB. Due to the high memory requirement, the Anon
Aadhaar web application was disabled on mobile browsers until
recently [16]. The proof can be downloaded as a JSON file with size
2.4 KB.

We have also created an Android app (code hosted at [43]) by
generating Kotlin bindings to our Rust implementation [33]. The
app can either scan a Aadhaar QR code using the camera or read a
QR code image file from storage. It is available for download from
the Google Play Store to a set of users whitelisted by us. The app
download size is about 12 MB. The peak memory usage was 586
MB. On a Samsung Galaxy M31s, the PPG, PG, and PV times were 8
seconds, 50 seconds, and 9 seconds, respectively. On a Pixel 8, these
times reduce to 2 seconds, 22 seconds, and 3 seconds, respectively.

The Anon Aadhaar team has created an iOS app (available only
for private testing) which has a peak memory usage of 1.4 GB. After
installation, it requires an initial download of 600 MB to retrieve
the uncompressed Groth16 SRS [14]. The wide gap in the peak
memory usage compared to the browser version could be because
the iOS version uses Rapidsnark [25] while the browser version
uses SnarkJS [26].

11 CONCLUSION
We described a design for an age proof scheme based on Aadhar QR
codes which has lower memory and initial download requirements
than Anon Aadhaar. Our experiments showcase the potential of
Nova (and similar folding schemes) for client-side proof generation.
On mobile phones, embedding the prover in a native application
results in faster proof generation when compared to a browser
(however the latter needs a smaller initial download). We expect

that new techniques for folding schemes like Nebula [5] will further
reduce proof generation times.

ACKNOWLEDGMENTS
We thank Ayush Modi for his work on the Rust-WASM-SvelteKit
workflow during his internship at IITB Trust Lab. We would also
like to thank Kumar Appaiah for sharing his Aadhaar QR code for
testing, Yanis Meziane for discussions about the Anon Aadhaar
performance, and Varun Thakore for discussions about Nova.

REFERENCES
[1] Anon Aadhaar. 2024. Nullifier Helper. https://github.com/anon-aadhaar/anon-

aadhaar/blob/main/packages/circuits/src/helpers/nullifier.circom. Accessed:
2024-11-23.

[2] Anon Aadhaar. 2024. Timestamp Extractor. https://github.com/anon-
aadhaar/anon-aadhaar/blob/8d6d38a52ee67e36286c1d1fa42a8952f8752fa7/
packages/circuits/src/helpers/extractor.circom#L106. Accessed: 2024-11-23.

[3] Anon Aadhaar Documentation Team. 2024. How Does It Work? https://
documentation.anon-aadhaar.pse.dev/docs/how-does-it-work Accessed: 2024-
11-23.

[4] Anon Aadhaar Team. 2024. Anon Aadhaar GitHub Repository. https://github.
com/anon-aadhaar/anon-aadhaar. Accessed: 2024-11-23.

[5] Arasu Arun and Srinath Setty. 2024. Nebula: Efficient read-write memory and
switchboard circuits for folding schemes. Cryptology ePrint Archive, Paper
2024/1605. https://eprint.iacr.org/2024/1605

[6] PSE Team at Ethereum Foundation. 2024. Anon Aadhaar Project. https://pse.
dev/en/projects/anon-aadhaar Accessed: 2024-11-23.

[7] Mihir Bellare and Phillip Rogaway. 1993. Random Oracles are Practical: A
Paradigm for Designing Efficient Protocols. In Proceedings of the 1st ACM
Conference on Computer and Communications Security. ACM, 62–73. https:
//doi.org/10.1145/168588.168596

[8] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars
Virza. 2013. SNARKs for C: Verifying Program Executions Succinctly and in Zero
Knowledge. Cryptology ePrint Archive, Paper 2013/507. https://eprint.iacr.org/
2013/507

[9] Vint Cerf. 1969. ASCII Format for Network Interchange. https://www.rfc-
editor.org/rfc/rfc20. Request for Comments 20.

[10] Argument Computer. 2024. Gadget for handling boolean constraints in
Bellpepper. https://github.com/argumentcomputer/bellpepper/blob/main/crates/
bellpepper-core/src/gadgets/boolean.rs. Accessed: 2024-11-23.

[11] Anon Aadhaar Project Contributors. 2024. Extractor Circom Code.
https://github.com/anon-aadhaar/anon-aadhaar/blob/main/packages/circuits/
src/helpers/extractor.circom. Accessed: 2024-11-23.

[12] Intel Corporation. 2024. Intel Core i5-11320H Processor (8M Cache, up to 4.50
GHz). https://www.intel.com/content/www/us/en/products/sku/217183/intel-
core-i511320h-processor-8m-cache-up-to-4-50-ghz-with-ipu/specifications.
html. Accessed: 2024-11-23.

[13] Oracle Corporation. 2023. SimpleDateFormat Class Documentation.
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/text/
SimpleDateFormat.html. Accessed: 2024-11-23.

[14] Anon Aadhaar Developers. 2024. personal communication.
[15] Anon Aadhaar Developers. 2024. Anon Aadhaar Github repository. https:

//github.com/anon-aadhaar/anon-aadhaar/. Accessed: 2024-11-23.
[16] Anon Aadhaar Developers. 2024. anon-aadhaar Issue #236. https://github.com/

anon-aadhaar/anon-aadhaar/issues/236. Accessed: 2024-11-23.
[17] Anon Aadhaar Developers. 2024. Anon Aadhaar Specs. https://github.com/

zkspecs/zkspecs/blob/main/specs/2/README.md. Accessed: 2025-02-05.
[18] Anon Aadhaar Developers. 2024. Anon Aadhaar web application. https://anon-

aadhaar-quick-setup.vercel.app/. Accessed: 2024-11-23.
[19] Nova Developers. 2024. Nova Github repository. https://github.com/microsoft/

Nova. Accessed: 2024-11-23.
[20] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and

Markus Schofnegger. 2021. Poseidon: A New Hash Function for Zero-Knowledge
Proof Systems. In 30th USENIX Security Symposium (USENIX Security 21). USENIX
Association, 519–535. https://www.usenix.org/conference/usenixsecurity21/
presentation/grassi

[21] Jens Groth. 2016. On the Size of Pairing-Based Non-Interactive Arguments. In
Advances in Cryptology – EUROCRYPT 2016 (Lecture Notes in Computer Science,
Vol. 9665). Springer, 305–326.

[22] WebAssembly Community Group. 2024. WebAssembly Documentation. https:
//webassembly.org/. Accessed: 2024-11-23.

[23] iden3. 2024. Circomlib - Mux1 Circuit Implementation. https://github.com/
iden3/circomlib/blob/master/circuits/mux1.circom Accessed: 2024-11-23.

13

https://github.com/anon-aadhaar/anon-aadhaar/blob/main/packages/circuits/src/helpers/nullifier.circom
https://github.com/anon-aadhaar/anon-aadhaar/blob/main/packages/circuits/src/helpers/nullifier.circom
https://github.com/anon-aadhaar/anon-aadhaar/blob/8d6d38a52ee67e36286c1d1fa42a8952f8752fa7/packages/circuits/src/helpers/extractor.circom#L106
https://github.com/anon-aadhaar/anon-aadhaar/blob/8d6d38a52ee67e36286c1d1fa42a8952f8752fa7/packages/circuits/src/helpers/extractor.circom#L106
https://github.com/anon-aadhaar/anon-aadhaar/blob/8d6d38a52ee67e36286c1d1fa42a8952f8752fa7/packages/circuits/src/helpers/extractor.circom#L106
https://documentation.anon-aadhaar.pse.dev/docs/how-does-it-work
https://documentation.anon-aadhaar.pse.dev/docs/how-does-it-work
https://github.com/anon-aadhaar/anon-aadhaar
https://github.com/anon-aadhaar/anon-aadhaar
https://eprint.iacr.org/2024/1605
https://pse.dev/en/projects/anon-aadhaar
https://pse.dev/en/projects/anon-aadhaar
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://eprint.iacr.org/2013/507
https://eprint.iacr.org/2013/507
https://www.rfc-editor.org/rfc/rfc20
https://www.rfc-editor.org/rfc/rfc20
https://github.com/argumentcomputer/bellpepper/blob/main/crates/bellpepper-core/src/gadgets/boolean.rs
https://github.com/argumentcomputer/bellpepper/blob/main/crates/bellpepper-core/src/gadgets/boolean.rs
https://github.com/anon-aadhaar/anon-aadhaar/blob/main/packages/circuits/src/helpers/extractor.circom
https://github.com/anon-aadhaar/anon-aadhaar/blob/main/packages/circuits/src/helpers/extractor.circom
https://www.intel.com/content/www/us/en/products/sku/217183/intel-core-i511320h-processor-8m-cache-up-to-4-50-ghz-with-ipu/specifications.html
https://www.intel.com/content/www/us/en/products/sku/217183/intel-core-i511320h-processor-8m-cache-up-to-4-50-ghz-with-ipu/specifications.html
https://www.intel.com/content/www/us/en/products/sku/217183/intel-core-i511320h-processor-8m-cache-up-to-4-50-ghz-with-ipu/specifications.html
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/text/SimpleDateFormat.html
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/text/SimpleDateFormat.html
https://github.com/anon-aadhaar/anon-aadhaar/
https://github.com/anon-aadhaar/anon-aadhaar/
https://github.com/anon-aadhaar/anon-aadhaar/issues/236
https://github.com/anon-aadhaar/anon-aadhaar/issues/236
https://github.com/zkspecs/zkspecs/blob/main/specs/2/README.md
https://github.com/zkspecs/zkspecs/blob/main/specs/2/README.md
https://anon-aadhaar-quick-setup.vercel.app/
https://anon-aadhaar-quick-setup.vercel.app/
https://github.com/microsoft/Nova
https://github.com/microsoft/Nova
https://www.usenix.org/conference/usenixsecurity21/presentation/grassi
https://www.usenix.org/conference/usenixsecurity21/presentation/grassi
https://webassembly.org/
https://webassembly.org/
https://github.com/iden3/circomlib/blob/master/circuits/mux1.circom
https://github.com/iden3/circomlib/blob/master/circuits/mux1.circom

Proceedings of XXXX YYYY(X) S. Vijayakumaran

[24] iden3. 2024. Circomlib - Num2Bits Circuit Implementation. https://github.com/
iden3/circomlib/blob/master/circuits/bitify.circom Accessed: 2024-11-23.

[25] Iden3. 2024. rapidsnark. https://github.com/iden3/rapidsnark. Accessed: 2024-
11-23.

[26] Iden3. 2024. SNARK.js. https://github.com/iden3/snarkjs. Accessed: 2024-11-23.
[27] J. Jonsson and B. Kaliski. 2016. PKCS #1: RSA Cryptography Specifications

Version 2.2, Section 9.2. Request for Comments (RFC) 8017. https://www.rfc-
editor.org/rfc/rfc8017.html#section-9.2 Accessed: 2024-11-23.

[28] Joint Photographic Experts Group (JPEG). 2024. JPEG 2000: Image Coding System.
https://jpeg.org/jpeg2000/. Accessed: 2024-11-23.

[29] Byron Kaye and Praveen Menon. 2024. Australia passes social media ban for
children under 16. https://www.reuters.com/technology/australia-passes-social-
media-ban-children-under-16-2024-11-28/. Accessed: 2024-11-29.

[30] Abhiram Kothapalli and Srinath Setty. 2023. HyperNova: Recursive arguments
for customizable constraint systems. Cryptology ePrint Archive, Paper 2023/573.
https://eprint.iacr.org/2023/573 https://eprint.iacr.org/2023/573.

[31] Abhiram Kothapalli and Srinath Setty. 2024. personal communication.
[32] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. 2022. Nova: Recursive

Zero-Knowledge Arguments from Folding Schemes. InCRYPTO 2022: 42nd Annual
International Cryptology Conference, Santa Barbara, CA, USA.

[33] Mozilla. 2024. UniFFI: Rust Library for Building Cross-Language Bindings. https:
//mozilla.github.io/uniffi-rs/latest/. Accessed: 2024-11-23.

[34] National Institute of Standards and Technology (NIST). 2015. FIPS PUB 180-4:
Secure Hash Standard (SHS). Technical Report FIPS PUB 180-4. U.S. Department
of Commerce, National Institute of Standards and Technology. Available at:
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf.

[35] Wilson Nguyen, Dan Boneh, and Srinath Setty. 2023. Revisiting the Nova Proof
System on a Cycle of Curves. Cryptology ePrint Archive, Paper 2023/969. https:
//eprint.iacr.org/2023/969

[36] Unique Identification Authority of India (UIDAI). 2024. mAadhaar
FAQs. https://uidai.gov.in/en/contact-support/have-any-question/285-english-
uk/faqs/your-aadhaar/maadhaar-faqs.html Accessed: 2024-11-23.

[37] Unique Identification Authority of India (UIDAI). 2024. Official Website of UIDAI.
https://uidai.gov.in/en/ Accessed: 2024-11-23.

[38] D. M. Pierre. 2023. Anonymous Adhaar PDF Validity. https://anon-adhaar.vercel.
app/. Accessed: 2024-11-23.

[39] D. M. Pierre. 2023. Anonymous Adhaar PDF Validity Github Repository. https:
//github.com/dmpierre/anon-adhaar. Accessed: 2024-11-23.

[40] Privacy & Scaling Explorations (PSE). 2024. Anon Aadhaar V2 Trusted Setup Cer-
emony. https://ceremony.pse.dev/projects/Anon%20Aadhaar%20V2%20Trusted%
20Setup%20Ceremony. Accessed: 2024-11-23.

[41] Saravanan Vijayakumaran. 2024. Aadhaar-based Age Proof. https://github.com/
avras/aadhaar-age-proof. Accessed: 2024-12-16.

[42] Saravanan Vijayakumaran. 2024. Age Proof from Aadhaar QR code. https:
//github.com/avras/nova-aadhaar-qr. Accessed: 2024-12-16.

[43] Saravanan Vijayakumaran. 2024. Android App for Aadhaar-based Age Proof.
https://github.com/avras/aadhaar-age-proof-android. Accessed: 2024-12-16.

[44] Srinath Setty, Benjamin Braun, Victor Vu, Andrew J. Blumberg, Bryan Parno, and
Michael Walfish. 2013. Resolving the conflict between generality and plausibility
in verified computation. In Proceedings of the 8th ACM European Conference
on Computer Systems (Prague, Czech Republic) (EuroSys ’13). Association for
Computing Machinery, New York, NY, USA, 71–84. https://doi.org/10.1145/
2465351.2465359

[45] Unique Identification Authority of India (UIDAI). 2019. Secure QR Code Specifica-
tion. https://uidai.gov.in/images/resource/User_manulal_QR_Code_15032019.
pdf Accessed: 2024-11-23.

[46] Unique Identification Authority of India (UIDAI). 2019. UIDAI website. https:
//uidai.gov.in Accessed: 2024-11-23.

[47] Unique Identification Authority of India (UIDAI). 2022. Document Update -
Aadhaar Online Services FAQs. https://uidai.gov.in/en/contact-support/have-
any-question/1061-english-uk/faqs/aadhaar-online-services/document-
update.html Accessed: 2024-11-23.

[48] Paul Valiant. 2008. Incrementally Verifiable Computation or Proofs of Knowledge
Imply Time/Space Efficiency. In Proceedings of the 5th Conference on Theory of
Cryptography (New York, USA) (TCC’08). 1–18.

A AADHAAR RSA PUBLIC KEY
The Aadhaar RSA public key consists of an encryption exponent
𝑒 = 65537 and a 2048-bit modulus Nrsa given by the following bytes

(in hexadecimal format).

Nrsa =

a272 2c0e 5f2d e5ba 707e d93f 036e c2b1
f0b9 5593 2390 facc 0f0b cbf2 0c80 a15c
088b 4886 866b 72eb 25ab 0bf5 5a2f e06b
69ed bd5c c83b 74c7 709d b214 1e6c 07c6
8bcd f859 d3da f7f3 fced 241d 0720 55dc
1548 8474 b45c 2c98 2fa9 54aa 52aa 6fff
b248 1861 c650 85d8 4b64 158e 9f43 d9f3
5ca6 9b48 ce93 0052 2102 a4ca e093 bffd
474b 08d3 2d1d 0406 f687 f7e5 5bd2 26a2
384b f58a 41c3 84c3 974f 1c7c 5115 819c
926d e3ad f3ec bb99 04c4 86f1 f5d5 3039
77be a635 8436 7329 b5c1 68af dc95 1217
31f7 f48d 43af 7cf3 1f69 b1e3 bbe7 949d
c7a8 b10c 0bdd ebab abde bea0 76a1 cf81
66ad f06a 8a41 dedf 143b ff83 5dbd 2bd5
bb0b 61d2 472c 234a 6d44 11bc 9b53 6095

B ZKSNARK DEFINITIONS
In this section, we present the definition of a zero-knowledge suc-
cinct non-interactive argument of knowledge (zkSNARK) using
notation from the Nova and HyperNova papers [30, 32]. Let 𝜆 ∈ N
denote a security parameter. Let PPT and EPT denote probabilistic
polynomial-time and expected polynomial-time, respectively.

Definition B.1 (Non-interactive Argument of Knowledge). Let R
be a relation over public parameters pp, structure s, instance u,
and witness 𝑤 tuples. A non-interactive argument of knowledge
for R consists of PPT algorithms (G,P,V) and deterministic K ,
denoting the generator, the prover, the verifier, and the encoder,
respectively, with the following interface:
• pp← G(1𝜆): On input 𝜆, G samples public parameters pp.
• (pk, vk) ← K(pp, s): On input s, representing common
structure among instances, K outputs prover key pk and
verifier key vk.
• 𝜋 ← P (pk, 𝑢,𝑤): On input instance 𝑢 and witness 𝑤 , P
outputs a proof 𝜋 proving that (pp, s, 𝑢,𝑤) ∈ R.
• 1/0 ← V (vk, 𝑢, 𝜋): On input instance 𝑢 and proof 𝜋 , V
verifies proof 𝜋 for instance 𝑢. It outputs 1 if the proof veri-
fication succeeds and 0 otherwise.

Definition B.2 (Perfect Completeness). A non-interactive argu-
ment of knowledge (G,P,V,K) for relation R satisfies perfect
completeness if for any PPT adversary A we have

Pr

V (

vk, 𝑢, 𝜋
)
= 1

pp← G(1𝜆),
(s, (𝑢,𝑤)) ← A(pp),
(pp, s, 𝑢,𝑤) ∈ R,
(pk, vk) ← K(pp, s),
𝜋 ← P (pk, 𝑢,𝑤)

= 1.

In other words, if a non-interactive argument of knowledge for
a relation R satisfies perfect completeness, then for every instance
𝑢 in R the prover P can use the witness 𝑤 to generate a proof 𝜋
that will always be accepted by the verifierV .

Definition B.3 (Knowledge-Soundness). A non-interactive argu-
ment of knowledge (G,P,V,K) for relationR satisfies knowledge-
soundness if for all EPT adversariesA there exists an EPT extractor

14

https://github.com/iden3/circomlib/blob/master/circuits/bitify.circom
https://github.com/iden3/circomlib/blob/master/circuits/bitify.circom
https://github.com/iden3/rapidsnark
https://github.com/iden3/snarkjs
https://www.rfc-editor.org/rfc/rfc8017.html#section-9.2
https://www.rfc-editor.org/rfc/rfc8017.html#section-9.2
https://jpeg.org/jpeg2000/
https://www.reuters.com/technology/australia-passes-social-media-ban-children-under-16-2024-11-28/
https://www.reuters.com/technology/australia-passes-social-media-ban-children-under-16-2024-11-28/
https://eprint.iacr.org/2023/573
https://eprint.iacr.org/2023/573
https://mozilla.github.io/uniffi-rs/latest/
https://mozilla.github.io/uniffi-rs/latest/
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://eprint.iacr.org/2023/969
https://eprint.iacr.org/2023/969
https://uidai.gov.in/en/contact-support/have-any-question/285-english-uk/faqs/your-aadhaar/maadhaar-faqs.html
https://uidai.gov.in/en/contact-support/have-any-question/285-english-uk/faqs/your-aadhaar/maadhaar-faqs.html
https://uidai.gov.in/en/
https://anon-adhaar.vercel.app/
https://anon-adhaar.vercel.app/
https://github.com/dmpierre/anon-adhaar
https://github.com/dmpierre/anon-adhaar
https://ceremony.pse.dev/projects/Anon%20Aadhaar%20V2%20Trusted%20Setup%20Ceremony
https://ceremony.pse.dev/projects/Anon%20Aadhaar%20V2%20Trusted%20Setup%20Ceremony
https://github.com/avras/aadhaar-age-proof
https://github.com/avras/aadhaar-age-proof
https://github.com/avras/nova-aadhaar-qr
https://github.com/avras/nova-aadhaar-qr
https://github.com/avras/aadhaar-age-proof-android
https://doi.org/10.1145/2465351.2465359
https://doi.org/10.1145/2465351.2465359
https://uidai.gov.in/images/resource/User_manulal_QR_Code_15032019.pdf
https://uidai.gov.in/images/resource/User_manulal_QR_Code_15032019.pdf
https://uidai.gov.in
https://uidai.gov.in
https://uidai.gov.in/en/contact-support/have-any-question/1061-english-uk/faqs/aadhaar-online-services/document-update.html
https://uidai.gov.in/en/contact-support/have-any-question/1061-english-uk/faqs/aadhaar-online-services/document-update.html
https://uidai.gov.in/en/contact-support/have-any-question/1061-english-uk/faqs/aadhaar-online-services/document-update.html

Nova Aadhaar Proceedings of XXXX YYYY(X)

E such that for all randomness 𝜌 we have

Pr

pp← G(1𝜆),

V (
vk, 𝑢, 𝜋

)
= 1, (s, 𝑢, 𝜋) ← A(pp; 𝜌),

(pp, s, 𝑢,𝑤) ∉ R (pk, vk) ← K(pp, s),
𝑤 ← E (pp, 𝜌)

 ≤ negl(𝜆) .

In other words, if a non-interactive argument of knowledge for
a relation R satisfies knowledge-soundness, then if an adversary
A can generate a valid proof 𝜋 for an instance 𝑢 then it must know
a witness𝑤 such that (𝑢,𝑤) is a valid instance-witness pair in R.

To define the notion of zero-knowledge, we need to first define
computational indistinguishability.

Definition B.4 (Computational Indistinguishability). Let 𝑋𝜆 and
𝑌𝜆 be two sequences of distributions ranging over {0, 1}𝑝 (𝜆) for a
polynomial 𝑝 . We say that 𝑋𝜆 and 𝑌𝜆 are computationally indis-
tinguishable, denoted by 𝑋𝜆 ≈ 𝑌𝜆 , if for any PPT adversary A we
have ���� Pr

𝑥←𝑋𝜆

[A(𝑥) = 1] − Pr
𝑦←𝑌𝜆

[A(𝑦) = 1]
���� ≤ negl(𝜆) .

We adapt the definition of zero-knowledge for an interactive ar-
gument of knowledge given in the HyperNova paper [30, Definition
26] to the non-interactive setting to obtain the following definition.
The Nova proof system satisfies this definition of zero-knowledge
[31].

Definition B.5 (Zero-Knowledge). A non-interactive argument of
knowledge (G,P,V,K) for relation R satisfies zero-knowledge if
there exists an EPT simulator S such that for any PPT adversary
A we have

(pp, s, 𝑢, 𝜋, st)

pp← G(1𝜆),
(s, (𝑢,𝑤), st) ← A(pp),
(pp, s, 𝑢,𝑤) ∈ R,
(pk, vk) ← K(pp, s),
𝜋 ← P (pk, 𝑢,𝑤)

≈
 (pp, s, 𝑢, 𝜋, st)

pp← G(1𝜆),
(s, (𝑢,𝑤), st) ← A(pp),
(pp, s, 𝑢,𝑤) ∈ R,
𝜋 ← S (pp, s, 𝑢, st)

 .

Here st is any auxiliary input available to the verifier.

In other words, if a non-interactive argument of knowledge for a
relation R satisfies zero-knowledge, then for any PPT adversaryA
that generates an instance-witness pair (𝑢,𝑤) in R and auxiliary
information st there exists an EPT simulator S that can generate a
simulated proof 𝜋sim using only the public parameters pp, struc-
ture s, instance 𝑢 and auxiliary information st such that the joint
distributions of (pp, s, 𝑢, 𝜋act, st) and (pp, s, 𝑢, 𝜋sim, st) are computa-
tionally indistinguishable, where 𝜋act is the actual proof generated
by an honest prover.

Definition B.6 (Succinctness). Anon-interactive argument of knowl-
edge (G,P,V,K) for relation R is succinct if the size of the proof
𝜋 and verifier running time are at most polylogarithmic in the size
of the structure s and witness𝑤 .

15

	Abstract
	1 Introduction
	2 Related Work
	3 Our Contributions
	4 Aadhaar QR Code Data Format
	4.1 Version
	4.2 Mobile Number and Email Indicator
	4.3 Reference ID
	4.4 Name
	4.5 Date of Birth
	4.6 Gender
	4.7 Address
	4.8 Last Four Digits of Mobile Number
	4.9 Photo
	4.10 Masked Email Address
	4.11 RSA Signature

	5 Age Proof Desiderata
	6 Uniquely Identifying an Aadhaar Holder
	7 Design Considerations
	7.1 Strawman Design 1
	7.2 Strawman Design 2
	7.3 Nova Aadhaar Statement

	8 Nova
	8.1 Incrementally Verifiable Computation
	8.2 Rank-1 Constraint Systems
	8.3 Nova Proof Costs
	8.4 Nova Security Guarantees

	9 Nova-based Age Proof
	9.1 Key Insights
	9.2 Splitting the QR Code Data
	9.3 Opcodes
	9.4 Public Inputs/Outputs
	9.5 Auxiliary Inputs
	9.6 Step Function Specification
	9.7 Soundness of the Construction

	10 Implementation and Performance
	11 Conclusion
	References
	A Aadhaar RSA Public Key
	B zkSNARK Definitions

