Groth16

Saravanan Vijayakumaran

Department of Electrical Engineering Indian Institute of Technology Bombay

December 19, 2023

Groth16

- In 2016, Jens Groth published a paper titled
 On the Size of Pairing-based Non-interactive Arguments
- He described a pairing-based zkSNARK which was more efficient than previous proposals
 - Proof consisted of 3 elliptic curve group elements
 - Verification involved checking a single pairing product equation
- Real-world usage
 - Tornado Cash
 - Filecoin
 - Dark Forest
- To use Groth16
 - Statement has to expressed as a quadratic arithmetic program
 - A trusted setup has to be performed to generate a structured reference string (SRS)

Group Theory Recap

Groups

Definition

A set G with a binary operation \star defined on it is called a group if

- the operation ★ is closed,
- the operation ★ is associative,
- there exists an identity element $e \in G$ such that for any $a \in G$

$$a \star e = e \star a = a$$
,

• for every $a \in G$, there exists an element $b \in G$ such that

$$a \star b = b \star a = e$$
.

Example

• Modulo *n* addition on $\mathbb{Z}_n = \{0, 1, 2, ..., n-1\}$

Definition

A group *G* is said to be abelian if $a \star b = b \star a$ for all $a, b \in G$

Cyclic Groups

Definition

A finite group is a group with a finite number of elements. The order of a finite group *G* is its cardinality.

Definition

A cyclic group is a finite group G such that each element in G appears in the sequence

$$\{g, g \star g, g \star g \star g, \ldots\}$$

for some particular element $g \in G$, which is called a generator of G. We write $G = \langle g \rangle$

Example

- For an integer $n \ge 1$, $\mathbb{Z}_n = \{0, 1, 2, ..., n-1\}$
 - Operation is addition modulo n
 - \mathbb{Z}_n is cyclic with generator 1

Elliptic Curves Over Real Numbers

Elliptic Curves over Reals

The set E of real solutions (x, y) of

$$y^2 = x^3 + ax + b$$

along with a "point of infinity" \mathcal{O} . Here $4a^3 + 27b^2 \neq 0$.

Point Addition (1/3)

Point Addition (2/3)

$$P = (x_1, y_1), Q = (x_2, y_2)$$

 $x_1 = x_2, y_1 = -y_2$
 $P + Q = \mathcal{O}$

Point Addition (3/3)

Elliptic Curves Over Finite Fields

Fields

Definition

A set F together with two binary operations + and * is a field if

- F is an abelian group under + whose identity is called 0
- $F^* = F \setminus \{0\}$ is an abelian group under * whose identity is called 1
- For any $a, b, c \in F$

$$a*(b+c)=a*b+a*c$$

Definition

A finite field is a field with a finite cardinality.

Prime Fields

- $\mathbb{F}_p = \{0, 1, 2, ..., p-1\}$ where p is prime
- + and * defined on \mathbb{F}_p as

$$x + y = x + y \mod p$$
,
 $x * y = xy \mod p$.

F₅

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

*	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

• In fields, division is multiplication by multiplicative inverse

$$\frac{x}{y} = x * y^{-1}$$

Elliptic Curves over Finite Fields

For char(F) \neq 2, 3, the set E of solutions (x, y) in F² of

$$y^2 = x^3 + ax + b$$

along with a "point of infinity" \mathcal{O} . Here $4a^3 + 27b^2 \neq 0$.

$$y^2 = x^3 + 10x + 2$$
 over \mathbb{F}_{11}

$$y^2 = x^3 + 9x$$
 over \mathbb{F}_{11}

Point Addition for Finite Field Curves

- Point addition formulas derived for reals are used
- Example: $y^2 = x^3 + 10x + 2$ over \mathbb{F}_{11}

+	0	(3,2)	(3,9)	(5,1)	(5, 10)	(6,5)	(6,6)	(8,0)
0	0	(3, 2)	(3,9)	(5,1)	(5, 10)	(6,5)	(6,6)	(8,0)
(3, 2)	(3, 2)	(6, 6)	\mathcal{O}	(6,5)	(8,0)	(3, 9)	(5, 10)	(5,1)
(3,9)	(3,9)	O	(6, 5)	(8,0)	(6,6)	(5,1)	(3, 2)	(5, 10)
(5, 1)	(5, 1)	(6,5)	(8,0)	(6,6)	0	(5, 10)	(3,9)	(3,2)
(5, 10)	(5, 10)	(8,0)	(6,6)	0	(6,5)	(3, 2)	(5,1)	(3,9)
(6,5)	(6,5)	(3,9)	(5,1)	(5, 10)	(3, 2)	(8,0)	O	(6,6)
(6,6)	(6,6)	(5, 10)	(3, 2)	(3,9)	(5,1)	0	(8,0)	(6,5)
(8,0)	(8,0)	(5,1)	(5, 10)	(3, 2)	(3,9)	(6, 6)	(6,5)	O

- The set $E \cup \mathcal{O}$ is closed under addition
- In fact, its a group

Bilinear Pairings

- Let G₁, G₂ and G_T be three cyclic groups of prime order p
- G_1 , G_2 are elliptic curve groups and G_T is subgroup of $\mathbb{F}_{r^n}^*$ where r is a prime
- Let $G_1 = \langle g \rangle$ and $G_2 = \langle h \rangle$
- A **pairing** is a efficient map $e: G_1 \times G_2 \mapsto G_T$ satisfying
 - 1. Bilinearity: $\forall \alpha, \beta \in \mathbb{Z}_p$, we have $e(g^{\alpha}, h^{\beta}) = e(g, h)^{\alpha\beta}$
 - 2. Non-degeneracy: e(g, h) is not the identity in G_T
- Finding discrete logs is assumed to be difficult in all 3 groups
- Pairings enable multiplication of secrets

Non-interactive Linear Proofs for QAPs

Quadratic Arithmetic Programs

Recall that a quadratic arithmetic program is given by

$$R = (\mathbb{F}, I, \{u_i(X), v_i(X), w_i(X)\}_{i=0}^m, t(X))$$

where

- F is a finite field
- I is the number of variables expressing the statement, 1 < I < m

•
$$t(X) = \prod_{q=1}^{n} (X - r_q)$$
 for $r_1, r_2, ..., r_n$ in \mathbb{F}

- Such a QAP defines a language L with $a_0 = 1$ where
 - L is the set of $\phi = (a_1, a_2, \dots, a_l) \in \mathbb{F}^l$ such that
 - there exists a $\psi = (a_{l+1}, a_{l+2}, \dots, a_m) \in \mathbb{F}^{m-l}$ satisfying

$$\left(\sum_{i=0}^m a_i u_i(X)\right) \left(\sum_{i=0}^m a_i v_i(X)\right) = \left(\sum_{i=0}^m a_i w_i(X)\right) \bmod t(X)$$

• The last equation can be rewritten as

$$\left(\sum_{i=0}^m a_i u_i(X)\right) \left(\sum_{i=0}^m a_i v_i(X)\right) = \left(\sum_{i=0}^m a_i w_i(X)\right) + h(X)t(X)$$

for some degree n-2 quotient polynomial h(X)

Non-interactive Linear Proofs for QAPs

•
$$(\sigma, \tau) \leftarrow \text{Setup}(R)$$

Pick $\alpha, \beta, \gamma, \delta, x \leftarrow \mathbb{F}^*$. Set
$$\tau = (\alpha, \beta, \gamma, \delta, x)$$

$$\sigma = \left(\alpha, \beta, \gamma, \delta, \left\{x^i\right\}_{i=0}^{n-1}, \left\{\frac{\beta u_i(x) + \alpha v_i(x) + w_i(x)}{\gamma}\right\}_{i=0}^{l}, \left\{\frac{\beta u_i(x) + \alpha v_i(x) + w_i(x)}{\delta}\right\}_{i=l+1}^{m}, \left\{\frac{x^i t(x)}{\delta}\right\}_{i=0}^{n-2}$$

• $\pi \leftarrow \text{Prove}(R, \sigma, a_1, \dots, a_M)$ Pick $r, s \leftarrow \mathbb{F}$ and compute a $3 \times (m+2n+4)$ matrix Π such that $\pi = \Pi \sigma = (A, B, C)$ where

$$A = \alpha + \sum_{i=0}^{m} a_i u_i(x) + r\delta, \qquad B = \beta + \sum_{i=0}^{m} a_i v_i(x) + s\delta$$

$$C = \frac{\sum_{i=l+1}^{m} a_i \left(\beta u_i(x) + \alpha v_i(x) + w_i(x)\right) + h(x)t(x)}{\delta} + As + Br - rs\delta$$

• $0/1 \leftarrow \text{Verify}(R, \sigma, a_1, \dots, a_l, \pi)$: Check if

$$A \cdot B = \alpha \cdot \beta + \frac{\sum_{i=0}^{l} a_i \left(\beta u_i(x) + \alpha v_i(x) + w_i(x)\right)}{\gamma} \cdot \gamma + C \cdot \delta$$

Schwartz-Zippel Lemma

Lemma

Let $\mathbb F$ be a finite field. For any nonzero polynomial $f\in\mathbb F[x]$ of degree d

$$\Pr[f(s) = 0] \leq \frac{d}{|\mathbb{F}|}$$

when s is chosen uniformly from \mathbb{F} .

Corollary

For two distinct polynomials $f, g \in \mathbb{F}[x]$

$$\mathsf{Pr}\left[f(s) = g(s)
ight] \leq rac{d}{|\mathbb{F}|}$$

when s is chosen uniformly from \mathbb{F} .

• Suppose the prover generated (A, B, C) as $\Pi \sigma$ which satisfies

$$A \cdot B = \alpha \cdot \beta + \frac{\sum_{i=0}^{I} a_i \left(\beta u_i(x) + \alpha v_i(x) + w_i(x)\right)}{\gamma} \cdot \gamma + C \cdot \delta$$

- We want to show that the prover knows a QAP witness (a_{l+1},..., a_m) for the statement (a₁,..., a_l)
- · Recall that

$$\sigma = \left(\alpha, \beta, \gamma, \delta, \left\{x^{i}\right\}_{i=0}^{n-1}, \left\{\frac{\beta u_{i}(x) + \alpha v_{i}(x) + w_{i}(x)}{\gamma}\right\}_{i=0}^{l}, \left\{\frac{\beta u_{i}(x) + \alpha v_{i}(x) + w_{i}(x)}{\delta}\right\}_{i=l+1}^{m}, \left\{\frac{x^{i}t(x)}{\delta}\right\}_{i=0}^{n-2}\right\}$$

So A is of the form

$$A = A_{\alpha}\alpha + A_{\beta}\beta + A_{\gamma}\gamma + A_{\delta}\delta + A(x) + \sum_{i=0}^{l} A_{i} \frac{\beta u_{i}(x) + \alpha v_{i}(x) + w_{i}(x)}{\gamma}$$
$$\sum_{i=l+1}^{m} A_{i} \frac{\beta u_{i}(x) + \alpha v_{i}(x) + w_{i}(x)}{\delta} + A_{h}(x) \frac{t(x)}{\delta}$$

B and C have similar forms

We have

$$A = A_{\alpha}\alpha + A_{\beta}\beta + A_{\gamma}\gamma + A_{\delta}\delta + A(x) + \sum_{i=0}^{I} A_{i} \frac{\beta u_{i}(x) + \alpha v_{i}(x) + w_{i}(x)}{\gamma}$$

$$\sum_{i=I+1}^{m} A_{i} \frac{\beta u_{i}(x) + \alpha v_{i}(x) + w_{i}(x)}{\delta} + A_{h}(x) \frac{t(x)}{\delta}$$

$$B = B_{\alpha}\alpha + B_{\beta}\beta + B_{\gamma}\gamma + B_{\delta}\delta + B(x) + \sum_{i=0}^{I} B_{i} \frac{\beta u_{i}(x) + \alpha v_{i}(x) + w_{i}(x)}{\gamma}$$

$$\sum_{i=I+1}^{m} B_{i} \frac{\beta u_{i}(x) + \alpha v_{i}(x) + w_{i}(x)}{\delta} + B_{h}(x) \frac{t(x)}{\delta}$$

 By the Schwartz-Zippel lemma, the coefficients on either side of below equation should match

$$A \cdot B = \alpha \cdot \beta + \frac{\sum_{i=0}^{l} a_i \left(\beta u_i(x) + \alpha v_i(x) + w_i(x)\right)}{\gamma} \cdot \gamma + C \cdot \delta$$

- Since there is no α^2 on the right, $A_{\alpha}B_{\alpha}=0$
 - WLOG, let $B_{\alpha} = 0$

We have

$$A = A_{\alpha}\alpha + A_{\beta}\beta + A_{\gamma}\gamma + A_{\delta}\delta + \dots$$

$$B = B_{\beta}\beta + B_{\gamma}\gamma + B_{\delta}\delta + \dots$$

$$A \cdot B = \alpha \cdot \beta + \frac{\sum_{i=0}^{l} a_{i} (\beta u_{i}(x) + \alpha v_{i}(x) + w_{i}(x))}{\gamma} \cdot \gamma + C \cdot \delta$$

- Since the coefficient of $\alpha\beta$ is 1 on the right, $A_{\alpha}B_{\beta}=1$
- Since AB can be written as $(AA_{\alpha}) \cdot (BB_{\beta})$, assume $A_{\alpha} = B_{\beta} = 1$
- Since there is no β^2 term on the right of AB, we get $A_{\beta}B_{\beta}=A_{\beta}=0$
- A and B can be simplified to

$$A = \alpha + A_{\gamma}\gamma + A_{\delta}\delta + A(x) + \sum_{i=0}^{I} A_{i} \frac{\beta u_{i}(x) + \alpha v_{i}(x) + w_{i}(x)}{\gamma}$$

$$\sum_{i=I+1}^{m} A_{i} \frac{\beta u_{i}(x) + \alpha v_{i}(x) + w_{i}(x)}{\delta} + A_{h}(x) \frac{t(x)}{\delta}$$

$$B = \beta + B_{\gamma}\gamma + B_{\delta}\delta + B(x) + \sum_{i=0}^{I} B_{i} \frac{\beta u_{i}(x) + \alpha v_{i}(x) + w_{i}(x)}{\gamma}$$

$$\sum_{i=I+1}^{m} B_{i} \frac{\beta u_{i}(x) + \alpha v_{i}(x) + w_{i}(x)}{\delta} + B_{h}(x) \frac{t(x)}{\delta}$$

We have

$$A = \alpha + A_{\gamma}\gamma + A_{\delta}\delta + A(x) + \sum_{i=0}^{l} A_{i} \frac{\beta u_{i}(x) + \alpha v_{i}(x) + w_{i}(x)}{\gamma}$$

$$\sum_{i=l+1}^{m} A_{i} \frac{\beta u_{i}(x) + \alpha v_{i}(x) + w_{i}(x)}{\delta} + A_{h}(x) \frac{t(x)}{\delta}$$

$$B = \beta + B_{\gamma}\gamma + B_{\delta}\delta + B(x) + \sum_{i=0}^{l} B_{i} \frac{\beta u_{i}(x) + \alpha v_{i}(x) + w_{i}(x)}{\gamma}$$

$$\sum_{i=l+1}^{m} B_{i} \frac{\beta u_{i}(x) + \alpha v_{i}(x) + w_{i}(x)}{\delta} + B_{h}(x) \frac{t(x)}{\delta}$$

$$A \cdot B = \alpha \cdot \beta + \frac{\sum_{i=0}^{l} a_{i} (\beta u_{i}(x) + \alpha v_{i}(x) + w_{i}(x))}{\delta} \cdot \gamma + C \cdot \delta$$

• Since there is no term involving $\frac{1}{\delta^2}$ on the right of AB, we have

$$\left(\sum_{i=l+1}^{m} A_i(\beta u_i(x) + \alpha v_i(x) + w_i(x)) + A_h(x)t(x)\right)$$

$$\cdot \left(\sum_{i=l+1}^{m} B_i(\beta u_i(x) + \alpha v_i(x) + w_i(x)) + B_h(x)t(x)\right) = 0$$

We have

$$A = \alpha + A_{\gamma}\gamma + A_{\delta}\delta + A(x) + \sum_{i=0}^{l} A_{i} \frac{\beta u_{i}(x) + \alpha v_{i}(x) + w_{i}(x)}{\gamma}$$

$$B = \beta + B_{\gamma}\gamma + B_{\delta}\delta + B(x) + \sum_{i=0}^{l} B_{i} \frac{\beta u_{i}(x) + \alpha v_{i}(x) + w_{i}(x)}{\gamma}$$

$$\sum_{i=l+1}^{m} B_{i} \frac{\beta u_{i}(x) + \alpha v_{i}(x) + w_{i}(x)}{\delta} + B_{h}(x) \frac{t(x)}{\delta}$$

$$A \cdot B = \alpha \cdot \beta + \frac{\sum_{i=0}^{l} a_{i} (\beta u_{i}(x) + \alpha v_{i}(x) + w_{i}(x))}{\gamma} \cdot \gamma + C \cdot \delta$$

• Since there is no term involving $\frac{\alpha}{\delta}$ on the right of AB, we have

$$\sum_{i=l+1}^{m} B_{i}(\beta u_{i}(x) + \alpha v_{i}(x) + w_{i}(x)) + B_{h}(x)t(x) = 0$$

We have

$$A = \alpha + A_{\gamma}\gamma + A_{\delta}\delta + A(x) + \sum_{i=0}^{I} A_{i} \frac{\beta u_{i}(x) + \alpha v_{i}(x) + w_{i}(x)}{\gamma}$$

$$B = \beta + B_{\gamma}\gamma + B_{\delta}\delta + B(x) + \sum_{i=0}^{I} B_{i} \frac{\beta u_{i}(x) + \alpha v_{i}(x) + w_{i}(x)}{\gamma}$$

$$A \cdot B = \alpha \cdot \beta + \frac{\sum_{i=0}^{I} a_{i} (\beta u_{i}(x) + \alpha v_{i}(x) + w_{i}(x))}{\gamma} \cdot \gamma + C \cdot \delta$$

• Since there is no term involving $\frac{1}{\gamma^2}$ on the right of AB, we have

$$\left(\sum_{i=0}^{I} A_i(\beta u_i(x) + \alpha v_i(x) + w_i(x))\right) \cdot \left(\sum_{i=0}^{I} B_i(\beta u_i(x) + \alpha v_i(x) + w_i(x))\right) = 0$$

• WLOG, assume that $\sum_{i=0}^{l} A_i(\beta u_i(x) + \alpha v_i(x) + w_i(x)) = 0$

We have

$$A = \alpha + A_{\gamma}\gamma + A_{\delta}\delta + A(x)$$

$$B = \beta + B_{\gamma}\gamma + B_{\delta}\delta + B(x) + \sum_{i=0}^{l} B_{i} \frac{\beta u_{i}(x) + \alpha v_{i}(x) + w_{i}(x)}{\gamma}$$

$$A \cdot B = \alpha \cdot \beta + \frac{\sum_{i=0}^{l} a_{i} (\beta u_{i}(x) + \alpha v_{i}(x) + w_{i}(x))}{\gamma} \cdot \gamma + C \cdot \delta$$

• Since there is no term involving $\frac{\alpha}{\gamma}$ on the right of AB, we have

$$\sum_{i=0}^{l} B_i(\beta u_i(x) + \alpha v_i(x) + w_i(x)) = 0$$

- Since there is no term involving $\beta\gamma$ or $\alpha\gamma$ on the right of AB, we have ${\it A}_{\gamma}=0$ and ${\it B}_{\gamma}=0$
- A and B can be simplified to

$$A = \alpha + A_{\delta}\delta + A(x)$$

$$B = \beta + B_{\delta}\delta + B(x)$$

We have

$$A = \alpha + A_{\delta}\delta + A(x)$$

$$B = \beta + B_{\delta}\delta + B(x)$$

$$A \cdot B = \alpha \cdot \beta + \frac{\sum_{i=0}^{l} a_{i} (\beta u_{i}(x) + \alpha v_{i}(x) + w_{i}(x))}{\gamma} \cdot \gamma + C \cdot \delta$$

Recall that

$$C = C_{\alpha}\alpha + C_{\beta}\beta + C_{\gamma}\gamma + C_{\delta}\delta + C(x) + \sum_{i=0}^{l} C_{i} \frac{\beta u_{i}(x) + \alpha v_{i}(x) + w_{i}(x)}{\gamma}$$
$$\sum_{i=l+1}^{m} C_{i} \frac{\beta u_{i}(x) + \alpha v_{i}(x) + w_{i}(x)}{\delta} + C_{h}(x) \frac{t(x)}{\delta}$$

• Equating the terms involving α and β in the verification equation, we get

$$\alpha B(x) = \sum_{i=0}^{l} a_i \alpha v_i(x) + \sum_{i=l+1}^{m} C_i \alpha v_i(x)$$
$$\beta A(x) = \sum_{i=0}^{l} a_i \beta u_i(x) + \sum_{i=l+1}^{m} C_i \beta u_i(x)$$

We have

$$B(x) = \sum_{i=0}^{l} a_i v_i(x) + \sum_{i=l+1}^{m} C_i v_i(x)$$
$$A(x) = \sum_{i=0}^{l} a_i u_i(x) + \sum_{i=l+1}^{m} C_i u_i(x)$$

• Defining $a_i = C_i$ for i = l + 1, ..., m we have

$$A(x) = \sum_{i=0}^{m} a_i u_i(x), \qquad B(x) = \sum_{i=0}^{m} a_i v_i(x)$$

We have

$$A = \alpha + A_{\delta}\delta + \sum_{i=0}^{m} a_{i}u_{i}(x)$$

$$B = \beta + B_{\delta}\delta + \sum_{i=0}^{m} a_{i}v_{i}(x)$$

$$A \cdot B = \alpha \cdot \beta + \frac{\sum_{i=0}^{l} a_{i} (\beta u_{i}(x) + \alpha v_{i}(x) + w_{i}(x))}{\gamma} \cdot \gamma + C \cdot \delta$$

Recall that

$$C = C_{\alpha}\alpha + C_{\beta}\beta + C_{\gamma}\gamma + C_{\delta}\delta + C(x) + \sum_{i=0}^{l} C_{i} \frac{\beta u_{i}(x) + \alpha v_{i}(x) + w_{i}(x)}{\gamma}$$
$$\sum_{i=l+1}^{m} C_{i} \frac{\beta u_{i}(x) + \alpha v_{i}(x) + w_{i}(x)}{\delta} + C_{h}(x) \frac{t(x)}{\delta}$$

• Equating the terms in the verification equation involving only powers of x in

$$\left(\sum_{i=0}^m a_i u_i(x)\right) \left(\sum_{i=0}^m a_i v_i(x)\right) = \sum_{i=0}^m a_i w_i(x) + C_h(x)t(x)$$

• This shows that (a_{l+1}, \ldots, a_m) is a witness for the statement (a_1, \ldots, a_l)

Enforcing a Linear Prover

- Suppose we have an elliptic curve pairing $e:G_1\times G_2\to G_T$
- Let $G_1 = \langle g \rangle$ and $G_2 = \langle h \rangle$ both having order p
- For $\alpha \in \mathbb{Z}_p$, let $[\alpha]_1 = g^{\alpha}$ and $[\alpha]_2 = h^{\alpha}$
- $(\sigma, \tau) \leftarrow \text{Setup}(R)$ Pick $\alpha, \beta, \gamma, \delta, x \leftarrow \mathbb{Z}_p^*$. Set

$$\boldsymbol{\tau} = (\alpha, \beta, \gamma, \delta, \mathbf{x})$$

$$\boldsymbol{\sigma} = ([\boldsymbol{\sigma}_1]_1, [\boldsymbol{\sigma}_2]_2)$$

where

$$\sigma_{1} = \left(\alpha, \beta, \gamma, \delta, \left\{x^{i}\right\}_{i=0}^{n-1}, \left\{\frac{\beta u_{i}(x) + \alpha v_{i}(x) + w_{i}(x)}{\gamma}\right\}_{i=0}^{l}, \\ \left\{\frac{\beta u_{i}(x) + \alpha v_{i}(x) + w_{i}(x)}{\delta}\right\}_{i=l+1}^{m}, \left\{\frac{x^{i}t(x)}{\delta}\right\}_{i=0}^{n-2}\right)$$

$$\sigma_{2} = \left(\beta, \gamma, \delta, \left\{x^{i}\right\}_{i=0}^{n-1}\right)$$

- The prover is given only σ
 - He can only compute linear combinations of the exponents

Proof Generation and Verification

• $\pi \leftarrow \text{Prove}(R, \sigma, a_1, \dots, a_M)$ Pick $r, s \leftarrow \mathbb{Z}_p$ and compute $([A]_1, [B]_2, [C]_1)$ where

$$A = \alpha + \sum_{i=0}^{m} a_i u_i(x) + r\delta, \qquad B = \beta + \sum_{i=0}^{m} a_i v_i(x) + s\delta$$

$$C = \frac{\sum_{i=l+1}^{m} a_i \left(\beta u_i(x) + \alpha v_i(x) + w_i(x)\right) + h(x)t(x)}{\delta} + As + Br - rs\delta$$

• $0/1 \leftarrow \text{Verify}(R, \sigma, a_1, \dots, a_l, \pi)$: Check if Use the pairing $e: G_1 \times G_2 \rightarrow G_7$ to check that

$$\begin{split} e([A]_1,[B]_2) = & e([\alpha]_1,[\beta]_2) \cdot e\left(\left[\frac{\sum_{i=0}^l a_i \left(\beta u_i(x) + \alpha v_i(x) + w_i(x)\right)}{\gamma}\right]_1,[\gamma]_2\right) \\ & \cdot e([C]_1,[\delta]_2) \end{split}$$

Zero-Knowledge

• Recall that the setup involved picking $\alpha, \beta, \gamma, \delta, x \leftarrow \mathbb{Z}_p^*$ and setting

$$\tau = (\alpha, \beta, \gamma, \delta, x)$$

- This τ is the simulation trapdoor
- The simulator does the following
 - Pick $A, B \leftarrow \mathbb{Z}_p$
 - Compute

$$C = \frac{AB - \alpha\beta - \sum_{i=0}^{l} a_i \left(\beta u_i(x) + \alpha v_i(x) + w_i(x)\right)}{\delta}$$

- Compute the simulated proof as ([A]₁, [B]₂, [C]₁)
- τ is generated using a trusted setup which discards it after generating $\sigma = ([\sigma_1]_1, [\sigma_2]_2)$

$$\sigma_{1} = \left(\alpha, \beta, \gamma, \delta, \left\{x^{i}\right\}_{i=0}^{n-1}, \left\{\frac{\beta u_{i}(x) + \alpha v_{i}(x) + w_{i}(x)}{\gamma}\right\}_{i=0}^{l},$$

$$\left\{\frac{\beta u_{i}(x) + \alpha v_{i}(x) + w_{i}(x)}{\delta}\right\}_{i=l+1}^{m}, \left\{\frac{x^{i}t(x)}{\delta}\right\}_{i=0}^{n-2}\right)$$

$$\sigma_{2} = \left(\beta, \gamma, \delta, \left\{x^{i}\right\}_{i=0}^{n-1}\right)$$

References

- Chapter 2 of My Bitcoin notes
 https://www.ee.iitb.ac.in/~sarva/bitcoin.html
- Groth16 paper https://eprint.iacr.org/2016/260
- Articles about Groth16
 - Rareskills https://www.rareskills.io/post/groth16
 - LambdaClass https://blog.lambdaclass.com/groth16/