Rank-1 Constraint Systems

Saravanan Vijayakumaran

Department of Electrical Engineering
Indian Institute of Technology Bombay

December 19, 2023

1/14



Proving Statements using SNARKs

SNARK = Succinct Non-interactive Arguments of Knowledge

Protocols that enable verifiable computation

Succinct = Proofs are smaller than size of statement
Non-interactive = A single message from prover to verifier
Argument = Soundness only guaranteed for PPT provers
Knowledge = Prover knows a witness (secret information)

zkSNARK = Zero-Knowledge SNARK

To prove statements using SNARKSs, they have to be expressed
as arithmetic circuits

e Circuit variables are prime field elements
® Only addition and multiplication are allowed

Prime fields
® F,={0,1,...,p— 1} where pis a prime
® Arithmetic modulo p
R1CS is one method for arithmetizing statements

2/14



Rank-1 Constraint Systems

Statement is represented using quadratic constraints of the form

n n n
(uo + Z a,-u,-) : (vo + Z a,-v,-) — (Wo + Z a,-w,-)
pe P i

* The u;, v;, w; values are determined by the statement
® The ag;’s are withess values specific to the instance

e Why rank 17
<U0+zn:afuf> : <V0+Zalvl> =(u,(1,a)) - (v,(1,a))
i=1
Uo
= [1 a] Uy [VO vy Vn] [;T]
Un

e The matrix M has rank one

3/14



R1CS for SHA256

e Suppose we wanted to prove that we know the preimage of a
SHA256 hash

* Given a public y € {0,1}%®, we know x such that y = SHA256(x)

e How can this statement be represented in a R1CS?
e SHA-256 Hash Computation

1. Padded input is split into N 512-bit blocks M), M@ ... M)
2. Given HU=", the next H) is calculated using a function f

HO = f(MD HI=DY 1 < i< N.

H@)—i»III—AD»HU)——D>”‘—4> HU*')—%»III-AP»HU)—¢>"'—*»}%NA)—4>III—4>>HW)

M M) M)

3. fis called a compression function
4. H™N) is the output of SHA-256 for input M

4/14



SHA-256 Compression Function Building Blocks

° U, V, W are 32-bit words

e UAV,UV V,U®& V denote bitwise AND, OR, XOR

e U+ V denotes integer sum modulo 232

® U denotes bitwise complement

® For 1 < n < 32, the shift right and rotate right operations

SHR"(U) = 000 - -000 uUpuy - - - Uzg_nlsq_p,
7 2605
ROTR"(U) = Us1—_n41Us1—ny2 - - - UsoUs1 ol - - - Uso—nlU31—n,
® Bitwise choice and majority functions
Ch(U, V, W) = (UA V)& (~UA W),
Maj(U, V, W) = (UA V) ® (UA W)@ (VA W),
® |et
(U) = ROTR?(U) @ ROTR'™3(U) & ROTR?3(U)
¥4 (U) = ROTR®(U) @ ROTR'"(U) @ ROTR? (V)
(U) = ROTR’(U) ® ROTR'8(U) @ SHR3(U)
(U) = ROTR'(U) & ROTR'®(U) @ SHR'(U)

5/14



SHA-256 Compression Function Calculation

® Maintains internal state of 64 32-bit words {W; | j=0,1,...,63}

® Also uses 64 constant 32-bit words Ky, K, . . . , Kg3 derived from the first 64 prime

numbers 2,3,5,...,307,311
o (M), Hi=1) proceeds as follows
1. Internal state initialization
‘{M}“ 0<j<15,
T o1(Wjm2) + Wiz + 00(Wj—15) + Wj—16 16 <j < 63.
2. Initialize eight 32-bit words
(A.B,C,D,E,F,G H) = (H™" H{™D, . ™D HID)
3. Forj=0,1,...,63, iteratively update A, B, ..., H
Ty = H+%((E)+Ch(E,F,G) + K + W,
T, = Xo(A) + Maj(A, B, C)
(A,B,C,D,E,F,G,H)=(T1 + T2,A,B,C,D+ T4,E,F,G)

4. Calculate H®) from H(=1)

(H HO o HDY = (A HD B HED L H A HED)).

® How to represent this calculation using an arithmetic circuit?

6/14



Boolean Gates in R1CS

e AND and OR Gates

° lfacF,={0,1,...,p— 1} satisfies a(1 — a) =0, thenac {0,1}
® Given 81(1 —31) = 0,32(1 —32) =0
® a3 = a; A a» is expressed as

ajap = a3
® a3 = ay V ap is expressed as
(1-a)-(1-a)=1-a
* XOR Gate
® Given a;(1 —ar1) =0,a(1 — a) =0, we can express a; = a; ® a
as

(a1 +a1) aa=a+a—as.

® |fa, =0, then a3 = a4
® [fa, =1,thenas =1 — ay

e NOT Gate
® Given a((1 — a;) = 0, we can express a = —aj as

(1781)'1182.

7/14



Operations on 32-bit Words

A 32-bit word = Vector of 32 booleans
o U= [Uo,U1,...,U31]
® Costs 32 constraints of the form x(1 —x) =0
Assume field size p >> 232
To calculate W = U + V mod 232
Calculate field element u = % U; - 2/
Calculate field element v = 32 V- 2/
Allocate 33 bits W = [Wo, Wi,..., W32] _
Calculate field element w = S-3 W - 2/
Checkthatw=u+v
Truncate W to 32 bits
The above calculation is an example of non-deterministic
computation
Same as the N in NP
The circuit does not calculate W
It only checks that a given W satisfies the required constraints
Ubiquitous technique in arithmetization

8/14



Operations on 32-bit Words

Suppose U, V, W are 32-bit words
A 32-bit word = Vector of 32 booleans
e U=[Up,Us,..., Us]
Calculating UA V, UV V, U V involves applying bitwise R1CS
constraints

Similar strategy is used for bitwise choice and majority functions

Ch(U,V,W)=(UA V)& (-UAW),
Maj(U,V,W)=(UA V) (UNW)a (VA W),
Consider shift right and rotate right operations

SHR"(U) = 000 - - 000 UpUj - - - Uso—_nUs1_n,
n zeros

ROTR"(U) = Us1_ns1Us1—_nso -+ UsoUs1 UpUs - - - Uso—_nUs1_p,

¢ These only require equality constraints of the form V; -1 = U; or
Vi-1=0

9/14



Collection of R1CS Constraints

* The statement to be proved will involve n constraints of the form

m m m
datig | [ D avig) = (D awig
i=0 i=0 i=0

forg=1,2,...,nwhere
® ao=1and ay, a, ..., am are variables taking values in F
® Uu;q, Vig, Wi,q are constants in F specifying the gth equation
® For example, consider the AND gate a3 = a; A a»
® Three variables and three constraints =— m=n=3
L 31(1 — a1) =0
® uy 1 = 1and other u; 1 are zero
® v,1 =1,vy 1 = —1and other v, y are zero
® All w; ¢ are zero
L4 32(1 — az) =0
® up» = 1and other u; » are zero
® v =1,v o = —1and other v, » are zero
® All w; » are zero

® g1a = a3
® uy3=Vp3 = ws3 = 1and all others are zero

10/14



R1CS Constraints to a Polynomial Constraint

® Proposed in Gennaro, Gentry, Parno, Raykova (GGPR13)
® Suppose we have n constraints of the form

m m m
<Z a,-u,-,q> <Z a,-v,-7q> = <Z a,-w,-,q>
i=0 i=0 i=0

® Pick distinct ry, ro, .. ., rn from F and define t(X) = Hg:1 (X —rq)
® Find degree n — 1 polynomials u;(X), vj(X), w;(X) such that
ui(rg) = Uj,q,  Vi(rq) = Vi,gs» Wi(rg) = Wiq
fori=0,1,...,mandg=1,2,...,n
® Variables ay, a1, . . . , am satisfy the n constraints <= for each rq

(Z a/u/(rq)> (Z a,-v/(rq)> = <Z a,-W/(rq)>
i=0 i=0 i=0

® Recall that a polynomial f(X) has a factor X — o <= f(a) =0
® Variables ap, ay, . .. , am satisfy the n constraints < t(X) divides

<Zm: aiUi(X)> <2m: aiVi(X)> - (i aiWi(X)>
i=0 i—0 i—0

11/14



Quadratic Arithmetic Programs
® A quadratic arithmetic program is given by
(F’ l, {U,'(X), V,‘(X), W/(X)}IN:IO ’ t(X))

where

® [Fis afinite field
® /is the number of variables expressing the statement, 1 </ <m

® The variables are rearranged to ensure that ay, ao, . . ., @ represent
the statement

* t(X)=[lges(X —rg)forri, ..., rminF
e Such a QAP defines a language L with ay = 1 where

o [isthe setof ¢ = (ay,a,...,a) € F such that
* there exists a ) = (a1,a2,...,am) € F™ satisfying

<§: a;u,-(X)) (zm: a,-v,-(X)) = <zm: a,-w;(X)) mod t(X)
i=0 i=0 i=0

® For example, (a1, a, ..., a/) could represent a SHA256 hash and
(a1, a2, - - -, am) represent the other circuit variables

12/14



Remarks

* R1CS is a method for arithmetizing statements
® Other methods include AIR and Plonkish
¢ Pairing-based SNARKSs can prove R1CS instances resulting in
constant proof sizes

® For example, Groth16
® But such SNARKSs involve a trusted setup

e Spartan is a SNARK without trusted setup that can prove R1CS
instances

® But proofs sizes are O(v/n) for a statement of size n

13/14



References

Why and How zk-SNARK Works, Maksym Petkus,
https://arxiv.org/abs/1906.07221

GGPR13 https://eprint.iacr.org/2012/215
Groth16 https://eprint.iacr.org/2016/260
Spartan https://eprint.iacr.org/2019/550

14/14


https://arxiv.org/abs/1906.07221
https://eprint.iacr.org/2012/215
https://eprint.iacr.org/2016/260
https://eprint.iacr.org/2019/550

