
Tornado Cash
Using SNARKs for Privacy and Scalability

Saravanan Vijayakumaran

Department of Electrical Engineering
Indian Institute of Technology Bombay

December 18, 2023

1 / 27



Motivation
• Consider the following scenario

• You have 100 ETH stored in a self-custodial wallet
• You take your family on a vacation to an exotic country
• The hotel accepts ETH as a mode of payment
• You pay the room rent of 1 ETH while checking in
• The front desk clerk notices that you love your family and that your

ETH address has 99 ETH
• He has friends in the kidnapping industry

• How can you prevent leaking the total amount of ETH you hold?
• Option A: You could store your ETH on an exchange and pay

using their interface.
• You risk losing funds due to exchange hacks
• Hackers can steal customer data and sell it to their kidnapper friends

• Option B: You could send 1 ETH to a fresh address from your 100
ETH address and use that to pay the room rent

• Now suppose you decide to extend your stay
• You make another 1 ETH transfer from your main ETH address
• The clerk can now infer that you control a large amount of ETH

• Tornado Cash is a better Option B
• It is a smart contract on Ethereum which implements a mixer

2 / 27



Tornado Cash Overview
Pre-Nova Version

Tornado Cash
Smart Contract

Alice’s address
100 ETH

Bob’s address
5 ETH

Carol’s address
3 ETH

New address 1
1 ETH

New address 2
1 ETH

Deposit 1 ETH

Deposit 1 ETH

Deposit 1 ETH

Withdraw 1 ETH

Withdraw 1 ETH

• Desired functionality
• Soundness

• Only past depositors should be able to withdraw
• No double withdrawal (only one withdrawal per deposit)

• Privacy: A withdrawal should not be linkable to a particular past
deposit

3 / 27



Deposit Workflow (1/2)
Choose amount and chain

4 / 27



Deposit Workflow (2/2)
Connect wallet, save note, and deposit

5 / 27



Deposit Steps (1/2)
• Anatomy of a Tornado Cash private note

tornado-eth-0.1-5-0x︸ ︷︷ ︸
Header

2ae9829348329423842394823eabc37dedec78f904bb799d73e30159614bfb︸ ︷︷ ︸
31-byte Nullifier

eff45678284749dcbbabce18ecea65351366aec97fd064ec630361fb01db28︸ ︷︷ ︸
31-byte Secret

• The 62 bytes in the nullifier and secret are randomly generated
on the user’s computer

• A commitment (Pedersen hash of the 62 bytes) is calculated
and submitted to the contract

Pedersen hash of bitstring b1b2 . . . bn = gb1
1 gb2

2 . . . gbn
n .

• Contract checks that _commitment has not been seen before
mapping(bytes32 => bool) public commitments;
// <snip>
require(!commitments[_commitment], "The commitment has been submitted");

6 / 27



Deposit Steps (2/2)
• Contract inserts _commitment into a Merkle tree

uint32 insertedIndex = _insert(_commitment);

• Tree has 20 levels
• insertedIndex is the index of new leaf

root

0 1 2 3

• No leaf deletions allowed =⇒ Maximum of 220 deposits
• Stores the fact that _commitment has been seen

commitments[_commitment] = true;

• Checks that ETH being sent equals contract denomination
require(msg.value == denomination, "Please send 1 ETH with transaction");

• Emits an event
emit Deposit(_commitment, insertedIndex, block.timestamp);

7 / 27



Withdrawal Workflow (1/3)
Enter note string and recipient address

8 / 27



Withdrawal Workflow (2/3)
Choose relayer

9 / 27



Withdrawal Workflow (2/3)
Choose relayer

10 / 27



Withdrawal Workflow (2/3)
Choose wallet if you have an unlinkable address with ETH

11 / 27



Withdrawal Workflow (3/3)
Generate proof and confirm withdrawal

12 / 27



Withdrawal Steps (1/2)
• Recall our requirements

• Soundness
• Only past depositors should be able to withdraw
• No double withdrawal (only one withdrawal per deposit)

• Privacy: A withdrawal should not be linkable to a particular past
deposit

• The withdraw method is executed
function withdraw(
bytes calldata _proof,
bytes32 _root,
bytes32 _nullifierHash,
address payable _recipient,
address payable _relayer,
uint256 _fee
// <snip>

)

• _proof is a SNARK proof for the following statement:
I know the secret and nullifier for a commitment which is included
in the Merkle tree with root _root.
Furthermore, _nullifierHash is the Pedersen hash of the
commitment’s nullifier.

13 / 27



Withdrawal Steps (2/2)
• Contract checks that _nullifierHash has not been seen

before.
mapping(bytes32 => bool) public nullifierHashes;
// <snip>
require(!nullifierHashes[_nullifierHash], "Note already spent");

This prevents double withdrawal
• Checks that _root is any of the last 100 Merkle roots

require(isKnownRoot(_root), "Cannot find your merkle root");

• It then verifies the SNARK proof on-chain
require(
verifier.verifyProof(_proof,
[uint256(_root), uint256(_nullifierHash), ...]

),
"Invalid withdraw proof"

);

• Stores the fact that _nullifierHash has been seen
nullifierHashes[_nullifierHash] = true;

• Sends relevant amounts to _recipient and _relayer
_recipient.call.value(denomination - _fee)("");
_relayer.call.value(_fee)("");

• The SNARK proof also “signs” the _recipient, _relayer,
_fee fields to prevent tampering

• The verifier contract is generated using the circom compiler.
14 / 27



withdraw.circom

15 / 27



Contract Liquidity Increases Privacy

Tornado Cash
Smart Contract

Alice’s address

Bob’s address

Carol’s address

Dave’s address

New address 1

New address 2

Deposit 1 ETH

Deposit 1 ETH

Deposit 1 ETH

Deposit 1 ETH

Withdraw 1 ETH

Withdraw 1 ETH

• The first withdrawal has an anonymity set size of 2 while the
second one has an anonymity set size of 4

• To increase liquidity, Tornado Cash developers introduced
anonymity mining

16 / 27



Anonymity Mining
• Depositors get rewarded in proportion to the amount and

duration of liquidity they provide
• They earn anonymity points (AP) which can be swapped for

TORN tokens
Pool AP per block

100 ETH 400
10 ETH 50

1 ETH 20
0.1 ETH 4

Pool Contract

Alice’s address

New address 1

Deposit 1 ETH

Withdraw 1 ETH

23 blocks =⇒ 460 AP

What about privacy?

17 / 27



Anonymity Mining Contract Call Flow
Pool ContractProxy Contract

Trees Contract

Alice’s address
Deposit 1 ETH Deposit 1 ETH

Register deposit

Pool ContractProxy Contract

Trees Contract

Relayer’s address New address 1
Withdrawal call Withdrawal call

Register withdrawal

Withdraw 1 ETH

18 / 27



Register Deposit Steps
Pool ContractProxy Contract

Trees Contract

Alice’s address
Deposit 1 ETH Deposit 1 ETH

Register deposit

• Trees contract stores hashes of deposit data in a mapping
mapping(uint256 => bytes32) public deposits;

• Current length of deposits is read
uint256 _depositsLength = depositsLength;

• Hash of deposit data is stored in the mapping
deposits[_depositsLength] =

keccak256(abi.encode(_instance, _commitment, blockNumber()));

• Emit event with hash pre-image
emit
DepositData(_instance, _commitment, blockNumber(), _depositsLength);

• Increment number of deposits
depositsLength = _depositsLength + 1;

19 / 27



Register Withdrawal Steps
Pool ContractProxy Contract

Trees Contract

Relayer’s address New address 1
Withdrawal call Withdrawal call

Register withdrawal

Withdraw 1 ETH

• Trees contract stores hashes of withdrawal data in a mapping
mapping(uint256 => bytes32) public withdrawals;

• Current length of withdrawals is read
uint256 _withdrawalsLength = withdrawalsLength;

• Hash of withdrawal data is stored in the mapping
withdrawals[_withdrawalsLength] =

keccak256(abi.encode(_instance, _nullifierHash, blockNumber()));

• Emit event with hash pre-image
emit WithdrawalData(_instance, _nullifierHash,

blockNumber(), _withdrawalsLength);

• Increment number of withdrawals
withdrawalsLength = _withdrawalsLength + 1;

20 / 27



Why Trees contract?
• Contract has two Merkle trees, one each for deposit and

withdrawal hashes
OwnableMerkleTree public immutable depositTree;
OwnableMerkleTree public immutable withdrawalTree;

• To collect AP privately, a miner gives a SNARK proof proving the
following statements

• I performed a deposit which is included in the Merkle tree with root
depositRoot and a withdrawal which is included in the Merkle
tree with root withdrawalRoot.

• I am withdrawing an AP amount which equals
rate × (withdrawalBlockHeight−depositBlockHeight)−fee .

• Furthermore, rewardNullifier is the Poseidon hash of the
commitment’s nullifier.

• For cost reasons, each deposit and withdrawal does not update
the tree roots
depositTree.bulkInsert(leaves);
withdrawalTree.bulkInsert(leaves);

• From time to time, the roots had to be updated by an altruistic
party

21 / 27



Tree updates became expensive in 2021

Screenshot from https://tornado-cash.medium.com/

gas-price-claimed-anonymity-mining-a-victim-but-now-everyone-can-claim-ap-5441aaa32a1a

22 / 27

https://tornado-cash.medium.com/gas-price-claimed-anonymity-mining-a-victim-but-now-everyone-can-claim-ap-5441aaa32a1a
https://tornado-cash.medium.com/gas-price-claimed-anonymity-mining-a-victim-but-now-everyone-can-claim-ap-5441aaa32a1a


Workaround (circa March 2021)

Image credits: https://tornado-cash.medium.com/

gas-price-claimed-anonymity-mining-a-victim-but-now-everyone-can-claim-ap-5441aaa32a1a

23 / 27

https://tornado-cash.medium.com/gas-price-claimed-anonymity-mining-a-victim-but-now-everyone-can-claim-ap-5441aaa32a1a
https://tornado-cash.medium.com/gas-price-claimed-anonymity-mining-a-victim-but-now-everyone-can-claim-ap-5441aaa32a1a


SNARKs for Cheaper Tree Updates
• Batches of 256 deposits or withdrawals are used to update the

trees

Image credit: Tornado Cash Medium post

• Root updater gives a SNARK proof proving the following
statement:
When the 256 leaves I am showing you are added to the Merkle
tree, its root changes from _currentRoot to _newRoot.

24 / 27

https://tornado-cash.medium.com/gas-price-claimed-anonymity-mining-a-victim-but-now-everyone-can-claim-ap-5441aaa32a1a


Tree Updater is a Validity Rollup
• Off-chain SNARK proof generation reduces on-chain

computation
• All data needed by prover is present in event logs

emit DepositData(_instance, _commitment,
blockNumber(), _depositsLength);

emit WithdrawalData(_instance, _nullifierHash,
blockNumber(), _withdrawalsLength);

• Prover role is decentralized but without proper incentives

25 / 27



OFAC Sanctions
• On Aug 8, 2022, the US Office of Foreign Assets Control placed

Tornado Cash addresses on a sanction list
• US residents/businesses cannot interact with entities on the list
• Allegations include facilitating money laundering by ransomware

operators and smart contract attackers
• Github removed source repos and three contributors had Github

accounts suspended
• Due to the efforts of Prof. Matthew Green and EFF, OFAC

allowed use of code for educational purposes
• Github repositories and accounts restored in 2023
• Developer Alexey Pertsev arrested in Netherlands in Aug 2022;

released on bail in April 2023
• Developer Roman Storm arrested in US on Aug 23, 2023
• Court hearings still pending

26 / 27



References
• Tornado Cash App https://tornado.ws/
• Tornado Cash Docs https://docs.tornado.ws/
• Circom https://docs.circom.io/
• Medium post introducing anonymity mining
• Medium post on how SNARKs make anonymity mining cheaper
• https://github.com/tornadocash/tornado-core
• https://github.com/tornadocash/
tornado-anonymity-mining

• https://github.com/tornadocash/tornado-trees
• EFF article on OFAC sanctions
• EFF update in April 2023
• DAO to fund court case against TC developers
https://wewantjusticedao.org/

Thanks for your attention
27 / 27

https://tornado.ws/
https://docs.tornado.ws/
https://docs.circom.io/
https://tornado-cash.medium.com/tornado-cash-governance-proposal-a55c5c7d0703
https://tornado-cash.medium.com/gas-price-claimed-anonymity-mining-a-victim-but-now-everyone-can-claim-ap-5441aaa32a1a
https://github.com/tornadocash/tornado-core
https://github.com/tornadocash/tornado-anonymity-mining
https://github.com/tornadocash/tornado-anonymity-mining
https://github.com/tornadocash/tornado-trees
https://www.eff.org/deeplinks/2022/08/code-speech-and-tornado-cash-mixer
https://www.eff.org/deeplinks/2023/04/update-tornado-cash
https://wewantjusticedao.org/

