Tornado Cash
Using SNARKSs for Privacy and Scalability

Saravanan Vijayakumaran

Department of Electrical Engineering
Indian Institute of Technology Bombay

December 18, 2023

1/27

Motivation

¢ Consider the following scenario

You have 100 ETH stored in a self-custodial wallet

You take your family on a vacation to an exotic country

The hotel accepts ETH as a mode of payment

You pay the room rent of 1 ETH while checking in

The front desk clerk notices that you love your family and that your
ETH address has 99 ETH

He has friends in the kidnapping industry

* How can you prevent leaking the total amount of ETH you hold?

Option A: You could store your ETH on an exchange and pay
using their interface.

® You risk losing funds due to exchange hacks

® Hackers can steal customer data and sell it to their kidnapper friends
Option B: You could send 1 ETH to a fresh address from your 100
ETH address and use that to pay the room rent

® Now suppose you decide to extend your stay

® You make another 1 ETH transfer from your main ETH address

® The clerk can now infer that you control a large amount of ETH

¢ Tornado Cash is a better Option B

It is a smart contract on Ethereum which implements a mixer

2/27

Tornado Cash Overview

Pre-Nova Version

Tornado Cash
Smart Contract

Deposit 1 ETH

Alice’s address
100 ETH
Bob’s address
5ETH
Carol’'s address
3ETH

Deposit 1 ETH

Deposit 1 ETH

Withdraw 1 ETH

New address 1
1ETH
New address 2
1ETH

Withdraw 1 ETH

¢ Desired functionality
® Soundness
® Only past depositors should be able to withdraw
® No double withdrawal (only one withdrawal per deposit)
® Privacy: A withdrawal should not be linkable to a particular past
deposit

3/27

Deposit Workflow (1/2)

Choose amount and chain

08 tornado.cash o

© tornado mmo Cominmee i M e

Deposit Withdraw

1Em 10 £ 100 ETH

08 tornado.cash 1A

Change network

4/27

Deposit Workflow (2/2)
Connect wallet, save note, and deposit

o8 tormado.cash o

© tornado i m

Withdraw

QO 8 he tornado.cash o

Your private note

Please b will need it later

share

5/27

Deposit Steps (1/2)

¢ Anatomy of a Tornado Cash private note

tornado—eth-0.1-5-0x 22e9829348329423842394823eabc37dedec78£904bb799d73e30159614bfb

Header 31-byte Nullifier

eff45678284749dcbbabcel8ecea65351366aec97£d064ec630361£fb01db28

31-byte Secret

® The 62 bytes in the nullifier and secret are randomly generated
on the user’s computer

* A commitment (Pedersen hash of the 62 bytes) is calculated
and submitted to the contract
Pedersen hash of bitstring by by ... b, = g? g2 ... g

~In

e Contract checks that _commitment has not been seen before

mapping (bytes32 => bool) public commitments;
// <sn >

p

require (!commitments[_commitment], "The commitment has been submitted");

6/27

Deposit Steps (2/2)

e Contract inserts _commitment into a Merkle tree

uint32 insertedIndex = _insert (_commitment);

® Tree has 20 levels
® insertedIndex is the index of new leaf
root

AN

® No leaf deletions allowed = Maximum of 22° deposits
e Stores the fact that _commitment has been seen

commitments [_commitment] = true;
e Checks that ETH being sent equals contract denomination
require (msg.value == denomination, "Please send 1 ETH with transaction");

* Emits an event

emit Deposit (_commitment, insertedIndex, block.timestamp) ;

7127

Withdrawal Workflow (1/3)

Enter note string and recipient address

tornado.cash

Goerli | i

Deposit \ Statistics

Note @ Anenymity set

4087 equal user deposits

Amount: Latest deposits

UL FLEE 4087. an hour ago 11 hours ago
Subsequent deposits
4086. an hour ago 21 hours ago

Recipient Address Donate 4885. an hour ago a

l 0x3081b6978£7374e6427Db8b78dA2985b6C5D6483 A2 2 I D a day

4083, 5 hours a

Total

Gas Price

Network fee ©.0022 gETH
©.000099 ETH
.002299 ETH

Tokens to receive 0.997701 ETH

Withdrawal Workflow (2/3)

Choose relayer

T 8 bty p tornado.cash had

Withdrawal settings

9/27

Withdrawal Workflow (2/3

Choose relayer

O & he p.tornado.cash 1Ad

Withdrawal settings

goerli-v2.tornado:

goerli-v2.poanet.eth

goerli.v2.odanrot

goerli-

goerli-

10/27

Withdrawal Workflow (2/3)

Choose wallet if you have an unlinkable address with ETH

O & he tornado.cash @

Withdrawal settings

11/27

Withdrawal Workflow (3/3)

Generate proof and confirm withdrawal

oa

12/27

Withdrawal Steps (1/2)

® Recall our requirements
® Soundness
® Only past depositors should be able to withdraw
® No double withdrawal (only one withdrawal per deposit)
® Privacy: A withdrawal should not be linkable to a particular past
deposit
® The withdraw method is executed
function withdraw (
bytes calldata _proof,
bytes32 _root,
bytes32 _nullifierHash,
address payable _recipient,
address payable _relayer,
uint256 _fee
// <snip>
)
e proof is a SNARK proof for the following statement:
| know the secret and nullifier for a commitment which is included
in the Merkle tree with root _root.
Furthermore, _nullifierHash is the Pedersen hash of the
commitment’s nullifier.

13/27

Withdrawal Steps (2/2)

Contract checks that _nullifierHash has not been seen

before.
mapping (bytes32 => bool) public nullifierHashes;
// <snip>

require (!nullifierHashes[_nullifierHash], "Note already spent");
This prevents double withdrawal
Checks that _root is any of the last 100 Merkle roots

require (isKnownRoot (_root), "Cannot find your merkle root");

It then verifies the SNARK proof on-chain
require (
verifier.verifyProof (_proof,
[uint256 (_root), uint256(_nullifierHash), ...]

),
"Invalid withdraw proof"

)i
Stores the fact that _nullifierHash has been seen

nullifierHashes[_nullifierHash] = true;
Sends relevant amounts to _recipient and _relayer
_recipient.call.value (denomination - _fee) ("");

_relayer.call.value (_fee) ("");
The SNARK proof also “signs” the _recipient, _relayer,
_fee fields to prevent tampering

The verifier contract is generated using the circom compiler.

14/27

withdraw.circom

ate Withdraw(levels) {
ignal input root;
i t nullifierHash;
t recipient;
relayer;
fee;
ate input nullifier;
t secret;
t pathElements[levels];
t pathIndices[levels];

ent hasher = CommitmentHasher();
hasher.nullifier <== nullifier;
hasher.secret <== secret;
hasher.nullifierHash === nullifierHash;

ent tree = MerkleTreeChecker(levels);
tree.leaf <== hasher.commitment;
tree.root root;
for (var i = 8; i < levels; i++) {
tree.pathElements[i] pathElements[i];
tree.pathIndices[i] < athIndices[i];

recipientSquare;
ignal feeSquare;
ignal relayerSquare;
recipientSquare <== recipient * recipient;
feeSquare <== fee * fee;
relayerSquare <== relayer * relayer;

ent main = Withdraw(20);

Contract Liquidity Increases Privacy

Tornado Cash
Smart Contract

Deposit 1 ETH

Alice’s address

Deposit 1 ETH

Bob’s address
Withdraw 1 ETH

New address 1

Deposit 1 ETH

Carol’s address

- Deposit 1 ETH

Withdraw 1 ETH

New address 2

* The first withdrawal has an anonymity set size of 2 while the
second one has an anonymity set size of 4

¢ To increase liquidity, Tornado Cash developers introduced
anonymity mining

16/27

Anonymity Mining
® Depositors get rewarded in proportion to the amount and

duration of liquidity they provide

e They earn anonymity points (AP) which can be swapped for
TORN tokens

Pool | AP per block

100 ETH 400

10 ETH 50

1ETH 20

0.1 ETH 4
Pool Contract

Deposit 1 ETH

Alice’s address

23 blocks = 460 AP

New address 1

Withdraw 1 ETH'

What about privacy?

17/27

Anonymity Mining Contract Call Flow

Proxy Contract Pool Contract

Deposit 1 ETH

Deposit 1 ETH

Alice’s address

\Trees Contract

Proxy Contract Pool Contract

Withdrawal call

Relayer’s address

Withdraw 1 ETH

Trees Contract

New address 1

18/27

Register Deposit Steps

Proxy Contract Pool Contract

Deposit 1 ETH Deposit 1 ETH

Alice’s address

Trees Contract

Trees contract stores hashes of deposit data in a mapping
mapping (uint256 => bytes32) public deposits;

Current length of deposits is read
uint256 _depositsLength = depositsLength;

Hash of deposit data is stored in the mapping
deposits[_depositsLength]

keccak256 (abi.encode (_instance, _commitment, blockNumber()));
Emit event with hash pre-image
emit

DepositData (_instance, _commitment, blockNumber (), _depositsLength);

Increment number of deposits
depositsLength = _depositsLength + 1;

19/27

Register Withdrawal Steps

Proxy Contract Pool Contract

Withdrawal call

Relayer’s address New address 1

Withdraw 1 ETH’

Trees Contract

Trees contract stores hashes of withdrawal data in a mapping
mapping (uint256 => bytes32) public withdrawals;

Current length of withdrawals is read
uint256 _withdrawalsLength = withdrawalsLength;

Hash of withdrawal data is stored in the mapping

withdrawals[_withdrawalsLength] =

keccak256 (abi.encode (_instance, _nullifierHash, blockNumber()));
Emit event with hash pre-image
emit WithdrawalData (_instance, _nullifierHash,

blockNumber (), _withdrawalsLength) ;

Increment number of withdrawals
withdrawalsLength = _withdrawalsLength + 1;

20/27

Why Trees contract?

¢ Contract has two Merkle trees, one each for deposit and
withdrawal hashes

OwnableMerkleTree public immutable depositTree;
OwnableMerkleTree public immutable withdrawalTree;

¢ To collect AP privately, a miner gives a SNARK proof proving the
following statements

® | performed a deposit which is included in the Merkle tree with root
depositRoot and a withdrawal which is included in the Merkle
tree with root withdrawalRoot.

® [am withdrawing an AP amount which equals
rate x (withdrawalBlockHeight—depositBlockHeight)—fee .

® Furthermore, rewardNullifier is the Poseidon hash of the
commitment’s nullifier.

® For cost reasons, each deposit and withdrawal does not update
the tree roots

depositTree.bulkInsert (leaves);
withdrawalTree.bulkInsert (leaves);

* From time to time, the roots had to be updated by an altruistic
party

21/27

Tree updates became expensive in 2021

Under the mad gas fee hike in the beginning of the year, it soon became too
expensive for the average crypto-Joe to altruistically update the data
structures for everyone’s benefit. By the end of March, it cost roughly $16 in
gas to register the deposit-withdrawal of a single note. With the backlog
growing slowly to over 40 days, and more than 25,000 deposits and
withdrawals pending, it would cost ~300 ETH to update the Merkle trees.

Anonymity mining was stuck for a good reason.
EVM

block# . [~}

+
$4% updateRoots() ;‘rz‘:s':ztd ated

Expensive operation = no execution = no AP claims

Screenshot from https://tornado-cash.medium.com/

gas-price-claimed-anonymity-mining-a-victim-but-now-everyone-can-claim-ap-544laaa32ala

22/27

https://tornado-cash.medium.com/gas-price-claimed-anonymity-mining-a-victim-but-now-everyone-can-claim-ap-5441aaa32a1a
https://tornado-cash.medium.com/gas-price-claimed-anonymity-mining-a-victim-but-now-everyone-can-claim-ap-5441aaa32a1a

Workaround (circa March 2021)

EVM

new root K L Y
hole) +Zkp -

—= updateTrees() trees updated
~ > N

aka ‘Believe e,
nd\dwlngm" :

Image credits: https://tornado-cash.medium.com/

gas-price-claimed-anonymity-mining-a-victim-but-now-everyone-can-claim-ap-544laaa32ala

23/27

https://tornado-cash.medium.com/gas-price-claimed-anonymity-mining-a-victim-but-now-everyone-can-claim-ap-5441aaa32a1a
https://tornado-cash.medium.com/gas-price-claimed-anonymity-mining-a-victim-but-now-everyone-can-claim-ap-5441aaa32a1a

SNARKSs for Cheaper Tree Updates

e Batches of 256 deposits or withdrawals are used to update the
trees

1, TX History

Anonymity mining info

On this page you can see the state of Tornado trees contracts.

Batch #111 Batch #112
Capacity Capacity

256 out of 256 99 out of 256
Block numbers [Block numbers ([
12571052 to 12577842 12577842 to latest

‘ Update tornado trees ‘

Image credit: Tornado Cash Medium post

* Root updater gives a SNARK proof proving the following
statement:
When the 256 leaves | am showing you are added to the Merkle
tree, its root changes from _currentRoot t0_newRoot.

24/27

https://tornado-cash.medium.com/gas-price-claimed-anonymity-mining-a-victim-but-now-everyone-can-claim-ap-5441aaa32a1a

Tree Updater is a Validity Rollup

e Off-chain SNARK proof generation reduces on-chain
computation

e All data needed by prover is present in event logs

emit DepositData(_instance, _commitment,
blockNumber (), _depositsLength);
emit WithdrawalData (_instance, _nullifierHash,
blockNumber (), _withdrawalsLength);

® Prover role is decentralized but without proper incentives

25/27

OFAC Sanctions

On Aug 8, 2022, the US Office of Foreign Assets Control placed
Tornado Cash addresses on a sanction list

US residents/businesses cannot interact with entities on the list

Allegations include facilitating money laundering by ransomware
operators and smart contract attackers

Github removed source repos and three contributors had Github
accounts suspended

Due to the efforts of Prof. Matthew Green and EFF, OFAC
allowed use of code for educational purposes

Github repositories and accounts restored in 2023

Developer Alexey Pertsev arrested in Netherlands in Aug 2022;
released on bail in April 2023

Developer Roman Storm arrested in US on Aug 23, 2023
Court hearings still pending

26/27

References

Tornado Cash App https://tornado.ws/

Tornado Cash Docs https://docs.tornado.ws/
Circom https://docs.circom.io/

Medium post introducing anonymity mining

Medium post on how SNARKs make anonymity mining cheaper
https://github.com/tornadocash/tornado-core
https://github.com/tornadocash/
tornado—-anonymity-mining
https://github.com/tornadocash/tornado-trees
EFF article on OFAC sanctions

EFF update in April 2023

DAO to fund court case against TC developers
https://wewantjusticedao.org/

Thanks for your attention

27/27

https://tornado.ws/
https://docs.tornado.ws/
https://docs.circom.io/
https://tornado-cash.medium.com/tornado-cash-governance-proposal-a55c5c7d0703
https://tornado-cash.medium.com/gas-price-claimed-anonymity-mining-a-victim-but-now-everyone-can-claim-ap-5441aaa32a1a
https://github.com/tornadocash/tornado-core
https://github.com/tornadocash/tornado-anonymity-mining
https://github.com/tornadocash/tornado-anonymity-mining
https://github.com/tornadocash/tornado-trees
https://www.eff.org/deeplinks/2022/08/code-speech-and-tornado-cash-mixer
https://www.eff.org/deeplinks/2023/04/update-tornado-cash
https://wewantjusticedao.org/

