Zero-Knowledge Proofs

Saravanan Vijayakumaran

Department of Electrical Engineering
Indian Institute of Technology Bombay

December 18, 2023

1/29

Interactive Proofs

Cryptographic protocols that enable a prover to prove the validity
of a statement to a verifier
Traditional proofs

® No interaction: Prover writes down a sequence of statements each
of which is an axiom or follows from axioms
® False statements are impossible to prove

Interactive proofs

® Prover and verifier exchange messages
® They can toss unbiased coins and keep the outcomes secret
® Aninvalid proof can pass verification with a small probability

Examples of statements

® Two graphs Gy, Gz are not isomorphic
® For a composite integer N, x € QN Ry

There exists no integer y such that x = y* mod N

Zero-Knowledge Proofs: Interactive proofs that allow a prover
to prove the validity of a statement without revealing anything
else

2/29

Knowledge vs Information

In information theory, entropy is used to quantify information
Entropy of a discrete random variable X defined over an
alphabet X is

H(X) = = 3~ p(x) log p(x)

xXex

Knowledge is related to computational difficulty, whereas
information is not
® Suppose Alice and Bob know Alice’s public key
® Alice sends her private key to Bob
® Bob has not gained new information (in the information-theoretic
sense)
® But Bob now knows a quantity he could not have calculated by
himself

Knowledge is related to publicly known objects, whereas
information relates to private objects

® Suppose Alice tosses a fair coin and sends the outcome to Bob

® Bob gains one bit of information (in the information-theoretic sense)

* We say Bob has not gained any knowledge as he could have
tossed a coin himself

3/29

Modeling the Prover and Verifier

PPT = Probabilistic Polynomial Time

® Algorithms with running time that is polynomial in input size

® They can toss coins and use the outcomes to take decisions
Prover and verifier will be modeled as algorithms

® Verifier is assumed to be PPT

® Prover may or may not be PPT
Prover is attempting to prove a statement
Malicious or dishonest provers will try convincing the verifier that
incorrect statements are true
When the prover is forced to be PPT, we get an argument (not a
proof)

® The A in SNARK and STARK

® All the ZK protocols deployed in the real-world are arguments
When the prover is attempting a ZK proof or argument, the
verifier is possibly malicious

® The verifier attempts to extract something more than the

statement’s validity from the prover

4/29

ZK = Existence of a Simulator

The prover is trying to prove a statement without leaking
knowledge

The set of messages exchanged by the prover and verifier is
called a transcript

An interactive proof is ZK if there is a PPT simulator who can
simulate the transcript
® Simulation = Generation of identically distributed transcript without
knowledge of prover’s secret
® Distributions can also be negligibly different

Does the existence of a simulator mean that proofs can be
forged?
® No, because simulation usually involves “forbidden” actions or
information
® Forbidden = Unavailable in a regular execution of the IP
® Like reversing the arrow of time
® Or using a simulation trapdoor

5/29

Modeling Statements

¢ Alanguage is a subset of {0,1}*
e {0,1}" is the set of all finite-length bit strings
® A prover is interested proving membership of a public value in a
language
e Examples of languages
® Set of pairs of non-isomorphic graphs Gi, G>
® A pre-determined encoding will represent a graph as a bitstring
® Two specific graphs Gy, Go will be specified as part of the statement
®* ORy for a composite N
® Set of quadratic residues modulo N
® Each quadratic residue is an integer in the set {0,1,...,N — 1}
® Each integer can be represented using [log, N1 bits

6/29

Interactive Proof Systems

Let (A, B)(x) denote the output of B when interacting with A on common input x
Output 1 is interpreted as "accept" and 0 is interpreted as "reject"”

Definition: A pair of interactive machines (P, V) is called an interactive proof
system for a language L if V is PPT and the following conditions hold:

® Completeness: For every x € L, we have Pr[(P, V)(x) = 1] > %
® Soundness: For every x ¢ L and every interactive machine B, we have
Pri(B,V)(x)=1]<{

Remarks

® Soundness condition — any possible prover

® Completeness condition — only prescribed prover

® By repeating interaction and taking majority, probabilities can be made
closeto 1 and 0

® The 2 and % are arbitrary choices by convention

3
® Any c(n), s(n) such that the acceptance gap

1
c(|x]) = s(Ix) = (X))

for a polynomial p will do

7129

Alternative Definition of IP Systems

e Let ¢,s: N — R be functions satisfying ¢(n) > s(n) + -\ for

p(n)
some polynomial p(-).
¢ Definition: A pair of interactive machines (P, V) is called an
interactive proof system for a language L if V is PPT and the
following conditions hold:
® Completeness: For every x € L, we have

Pri(P, V)(x) = 1] = c(|x])

® Soundness: For every x ¢ L and every interactive machine B, we
have
Pri(B, V)(x) = 1] < s(|x])

8/29

Interactive Proof Example

e Setting
® Suppose Peggy claims that Pepsi in large bottles tastes different
than Pepsi in small bottles
® Victor challenges Peggy to prove her claim
¢ Protocol
® Victor asks Peggy to leave the room
® He selects either a large bottle or a small bottle randomly and
pours some Pepsi into a glass
® Peggy is called into the room and asked to tell which bottle the
Pepsi came from by tasting it
® Victor accepts if Peggy answers correctly
¢ Analysis
¢ |f the claim is correct, Pr[(P, V)(x) = 1] =1
e [f the claim is wrong, Pr [(P, (x)=1] = } forany P
® The acceptance gapis 1 — 5 %

9/29

Graph Isomorphism
® An undirected graph consists of a set of vertices V and edges represented by a
subset Eof V x V

® Graphs Gy = (V4, Ey) and G, = (Vo, E>) are isomorphic if there exists a
bijection 7 : V4 — Vo such that (u,v) € E; <= (n(u),n(v)) € E

Image source: https://en.wikipedia.org/wiki/Graph_isomorphism

m(a) =1,7(b) =6,7(c) =8,n(d) =3,
m(g9) =5,7(h)y=2,7(i)=4,7(j) =7

10/29

https://en.wikipedia.org/wiki/Graph_isomorphism

Proving Graph Non-Isomorphism

Proving that two graphs Gj, G> are isomorphic is easy if ZK is
not required
® Prover can send an isomorphism 7
® Verifier is polynomial-time
How can we prove that two graphs G;, G. are non-isomorphic?
® Checking all bijections —> exponential-time verifier
Assume that G; and G, have the same number of nodes and
edges
e Otherwise, non-isomorphism is trivial
We need a subroutine that picks a graph randomly from the set
of graphs isomorphic to a graph G
Suppose G= (V,E)where V={1,2,...,nfand EC V x V
Pick a random permutation 7 of V
Calculate the relabelled edge set E' = {(w(u),n(v) | (u,v) € E)}
Output the graph =(G) = (V, E’)
Note that the vertex set is unchanged by 7

11/29

Proving Graph Non-Isomorphism

Suppose Gy = (V,Ey) and Go = (V, Ep)
Protocol
® Verifier picks o € {1,2} randomly and a random permutation
from the set of all permutations over V
® \Verifier sends the graph G’ = (G,) to prover
® Prover finds 7 € {1,2} such that G’ is isomorphic to G- and sends
7 to verifier
* |f r = o, verifier accepts claim. Otherwise, it rejects.
Remarks
® Verifier is PPT but no known PPT implementation for prover
® But even an exponential-time prover cannot cheat
® |f Gy and G; are not isomorphic, then verifier always accepts
* If Gi and G; are isomorphic, then verifier rejects with probability

Takeaway: Interactive proofs enable a PPT verifier for graph
non-isomorphism

12/29

Zero-Knowledge Interactive Proofs

¢ |Informal definition: An interactive proof system is
zero-knowledge if
® whatever can be efficiently computed after interaction with P on
input x
® can also be efficiently computed from x (without interaction)
e Let view}. (x) denote the verifier's view of the protocol
® |tis the messages V* receives and any randomness it generates
* Should be possible to generate something with the same
distribution as view}. (x) without interacting with P

13/29

Perfect Zero-Knowledge (ldeal)

Formal definition (ideal) : We say (P, V) is perfect
zero-knowledge if

e for every PPT interactive machine V*

® there exists a PPT algorithm M* such that

e forevery x € L

* the random variables view}. (x) and M*(x) are identically

distributed

M~ is called a simulator for the interaction of V* with P

Actually, P is zero-knowledge. The V is there to make it an
interactive proof system

Unfortunately, the above definition is too strict

14/29

Perfect Zero-Knowledge

¢ Definition : We say (P, V) is perfect zero-knowledge if
e for every PPT interactive machine V*

® there exists a PPT algorithm M* such that
® for every x € L the following two conditions hold:

1. With probability at most 3, algorithm M* outputs a special symbol L

2. Let m*(x) be the random variable describing the distribution of M*(x)

conditioned on M*(x) # L. Then the random variables view?. (x) and
m*(x) are identically distributed

e What if the simulator fails?

* The simulator fails with probability at most

® |t can be run repeatedly until it generates the non-failure output
® On the average it requires two runs

15/29

HVZK Proof of Graph Non-lsomorphism

HVZK = Honest Verifier Zero-Knowledge
Suppose Gy = (V,Ey) and Go = (V, E)
Protocol
® Verifier picks o € {1,2} randomly and a random permutation =
from the set of all permutations over V
® \Verifier sends the graph G’ = n(G,) to prover
® Prover finds 7 € {1,2} such that G’ is isomorphic to G- and sends
7 to verifier
Simulator
* view§ = (6,7, G',7) where G’ = 7(G,) and 7 = &
® A simulator M can pick o and 7 randomly, set 7 = o, and set
G =n(G,)
Only HVZK

® Protocol is ZK only when the verifier follows the protocol honestly

® Suppose there is a third graph Gz which the verifier wants to check
for isomorphism with Gy or Gz

® The verifier can set G’ = Gs and use the prover’s response to gain
knowledge it could not have calculated by itself

16/29

ZK Proof of Graph Non-Isomorphism

e How to ensure a honest verifier?

The verifier needs to convince the prover that the graph
G =7n(G,)foroc =10r2
The value of o cannot be revealed to the prover

e Protocol

Verifier picks o € {1, 2} randomly and a random permutation = of V

Verifier sends the graph G’ = =(G.,) to prover
Fori=1,2,...,s, verifier generates a random bit 5; and two
permutations =}, 7r;’ of V

* If B; = 0, verifier sends (Hi, Hy) = (n/(G1), 7} (Gz))

* If B; =1, verifier sends (H!, Hy) = (n}(Gz),=}'(G1))
Prover generates s random bits by, b, .. ., bs and sends them to
the verifier

® If b; = 0, verifier sends =] and 7}’

* If b; = 1, verifier sends an isomorphism from G’ to one of (Hi, H})

® |n both cases, the prover checks that the appropriate isomorphisms

were sent
® [f the checks fail for any i, the prover stops

The prover sends 7 such that G, is isomorphic to G'. If no such 7
exists, he sends a random value from {1,2}
The verifier accepts if o = 7. Otherwise, she rejects

17/29

ZK Proof of Graph Isomorphism

e Setting

® Two graphs Gy = (V, Ey) and Gz = (V, Ez) are isomorphic
® Prover wants to prove that they are isomorphic without revealing
the isomorphism ¢ : Gy — Go
¢ Protocol

® Prover picks a random permutation 7 of V
® Prover sends the graph G’ = n(G) to verifier
® Verifier picks o € {1,2} randomly and sends it to prover
® |f o = 2, then prover sends 7 to the verifier
® |f o =1, then prover sends w o ¢ to the verifier
* |f the received mapping is an isomorphism between G, and G, the
verifier accepts. Otherwise, it rejects
e Analysis
Verifier is PPT
If ¢ is known, prover is PPT
If Gy and G, are isomorphic, then verifier always accepts
If Gy and G, are not isomorphic, then verifier accepts with
probability

18/29

Simulator for Graph Isomorphism Protocol

For an arbitrary PPT verifier V*, view}. (x) = (G, o, 1) where 1
is an isomorphism between G, and G’
The simulator M* uses V* as a subroutine

On input (Gy, Gz), simulator randomly picks 7 € {1,2} and
generates a random isomorphic copy G” of G-

* Note that G is identically distributed to G’
Simulator gives G” to V* and receives o € {1,2} from it
® V* is asking for an isomorphism from G, to G”
If o = 7, then the simulator can provide the isomorphism
TG — G’
If o # 7, then the simulator outputs |

If the simulator does not output L, then (G”, r, 7) is identically
distributed to (G, 0, %)

19/29

GMR85

The First ZK Interactive Proof Protocols

¢ Published by Shafi Goldwasser, Silvio Micali, Charles Rackoff in
ACM STOC 1985
® Involves quadratic residues and non-residues modulo a
composite integer
® Preliminaries
® Forintegers x, N, r, we write

Xmod N=r

if x = gN + r where g, r are integerswith0 <r < N -1
® For aninteger N > 1, we define

Zy={x|1<x<N-1and ged(x,N) =1}

e Zny forms a group under multiplication modulo N
® |tis closed under multiplication modulo N
® Every element has a multiplicative inverse modulo N

® An x € Zj}, is called a quadratic residue if there exists a y € Zjy
such that
x=y?mod N

® |f no such y exists, x is called a quadratic non-residue
21/29

Properties of Quadratic Residues Modulo a Prime

e |[f N = pwhere pis a prime, checking if an integer is a quadratic
residue is easy
e Jacobi symbol modulo a prime

® Let QR denote the set of quadratic residues modulo p

® Let QN'R, denote the set of quadratic non-residues modulo p

® Forprime p > 2 and x € Zj, the Jacobi symbol of x modulo p is
given by

+1 ifx € QR,,

p—1
— x 7 modp=
Jp(x) = x 2 mod p {—1 if x € ON'R,.

* Exactly half the elements of Zj; are quadratic residues

22/29

Properties of Quadratic Residues Modulo a Composite
e |If N = pq for distinct odd primes p, g, then

X € QRN <= [x mod p] € QR and [x mod g] € QR4

e Corollaries

® Exactly } of the elements of Zj, are quadratic residues
® |[f the factorization of N is known, then checking if x € QR is easy
e |f the factorization of N is unknown, then checking if x € ON Ry
is sometimes easy

® For x € Zy, we define

In(X) = Tp([x mod p]) - Tq([x mod q])

® There is a polynomial time algorithm to calculate Jn(x) without
using the factorization of N

® |f In(x) = —1, we know x € ON'Ry

® If In(x) = +1, then x could still be in ONRy with

Jo(x mod p) = J4(x mod q) = —1

If n(x) = +1, then there is no known polynomial-time

algorithm for deciding the quadratic residuosity of x

23/29

ZK Proof for Quadratic Residuosity

e Setting
® For N = pq, prover wants to prove x € ORy
Prover knows w € Zj such that x = w? mod N
Verifier does not know factorization of N
Prover does not want to reveal w to the verifier
¢ Protocol
* Ppicks r < Zj and sends y = r to V
® V picks a bit b & {0,1} and sends bto P
Ifb=0,Psendsz=r.lfb=1, Psends z= wr
If b=0, Vchecks zZ2 = y. If b= 1, V checks zZ = xy
e Simulator
® For an arbitrary PPT verifier V*, view/. (x) = (y, b, z) where
22 = xby
® Consider a simulator M* which does the following
* M* picks z & 7 and b <& {0,1}
® M*setsy= i—i
e |f V*(y) = b, then M* outputs (y, b, z). Otherwise, M* outputs L

24/29

Interactive Proof for Quadratic Non-Residuosity

e Setting
® For N = pq, prover wants to prove x € QN Ry
® Assume Jn(x) = +1
® Verifier does not know factorization of N
® How can P prove x is a quadratic non-residue without revealing the
factorization of N?
¢ Protocol
e Vpicks y < Zj and a bit b < {0,1}
° lfb=0,Vsends z=y2 lfb=1, Vsends z = xy?
If z€ QRn, Psends b’ = 0.
If z€ ONRy, Psends b’ =1
V accepts if b’ = b
e |f x € ONRy, thenthe zsentby Visin QN Ry for b =1
® The prover knows the factorization of N and can decide the
quadratic residuosity of z
® So the prover can estimate b correctly
e |f x € QRn, then the z sent by V is in QR y for both b = 0 and
b=1
® The prover can estimate b correctly only with probability %

25/29

Protocol is Only HVZK

* The above protocol is honest verifier zero-knowledge but not
ZK

® Consider a PPT verifier V* which wants to find out if some u € Zy
isin QRy

® By replacing x in the above protocol with u, verifier V* can get
information about u

® |f the protocol was ZK, then there exists a PPT M* which can get
the same information without interacting with P

® This contradicts the non-existence of PPT algorithms for checking
membership in QR y

e Getting to ZK

® Solution: V has to prove that it either knows the square root of z
orzx '"to P
® The number of interaction rounds increases from 2 to 4

26/29

ZK Proof for Quadratic Non-Residuosity

1. V- P
® P wants to prove that x € QN Ry for N = pg
* Vpicks y < Zj and abit b < {0,1}
*lfb=0,Vsendsz=y2 Ifb=1, Vsends z = xy?
® For1<j<m,

V picks .1, 7.2 <i Z* and bit; < {o 1}

V computes o; = and Bj = xr

If bit; = 0, V sends palr = (oc/,ﬁ/)

If bit; = 1, V sends pairj = (B}, o).

2. P>V
® Psends V abit string [i1, iz, . . ., im] € {0,1}"
3. VP
® V sends P the sequence vi, Ve, ..., Vm
® Ifjj=0,thenv; = (rj1,12)-
® Ifj;=1,then v; = yr; 1 if b= 0. So V sends a square root of za;
® Ifj=1,then v; = xyr; > if b= 1. So V sends a square root of zg;

27/29

ZK Proof for Quadratic Non-Residuosity

4. P>V
® P checks the following:
® Ifj; = 0, P checks if (rﬁ1 , rﬁzx) equals pair;, possibly with elements in
the pair interchanged.

® If j =1, P checks if vj?z—1 is a member of pair;.
® [fze QRy, Psends b’ = 0.
® [fzc ONRy, Psends b’ =1
® Vacceptsif b’ =b

¢ How the protocol ensures a honest verifier?
* Assume the verifier computes o; = r? and 3; = xr?, correctly
e Suppose a cheating verifier sends some z other than y?2 or xy?
® Then the verifier cannot calculate the square roots of za; or z3;
* Suppose the verifier cheats by setting o = z~'v?
® Then the verifier can calculate the square root of zq; for arbitrary z
® But with probability % the verifier will need to calculate either , /& or

fev:ix—1
a;iX

® A cheating verifier can succeed only if it can predict the sequence
of bits i1, b,im sent by P perfectly

® This occurs with probability zim

28/29

References

Sections 4.1, 4.2, 4.3, 4.4.2 of Foundations of Cryptography, Volume | by Oded
Goldreich

Alon Rosen’s lecture in the 9th BIU Winter School on Cryptography
https://www.youtube.com/watch?v=6uGimDYZPMw

The Knowledge Complexity of Interactive Proof Systems, S. Goldwasser,
S. Micali, C. Rackoff, 1989. https://doi.org/10.1137/0218012

lvan Damgard’s lecture notes https://users—-cs.au.dk/~ivan/CPT1.pdf

29/29

https://www.youtube.com/watch?v=6uGimDYZPMw
https://doi.org/10.1137/0218012
https://users-cs.au.dk/~ivan/CPT1.pdf

	GMR85

