
Zero-Knowledge Proofs

Saravanan Vijayakumaran

Department of Electrical Engineering
Indian Institute of Technology Bombay

December 18, 2023

1 / 29

Interactive Proofs
• Cryptographic protocols that enable a prover to prove the validity

of a statement to a verifier
• Traditional proofs

• No interaction: Prover writes down a sequence of statements each
of which is an axiom or follows from axioms

• False statements are impossible to prove
• Interactive proofs

• Prover and verifier exchange messages
• They can toss unbiased coins and keep the outcomes secret
• An invalid proof can pass verification with a small probability

• Examples of statements
• Two graphs G1,G2 are not isomorphic
• For a composite integer N, x ∈ QNRN

There exists no integer y such that x = y2 mod N

• Zero-Knowledge Proofs: Interactive proofs that allow a prover
to prove the validity of a statement without revealing anything
else

2 / 29

Knowledge vs Information
• In information theory, entropy is used to quantify information
• Entropy of a discrete random variable X defined over an

alphabet X is
H(X) = −

∑
x∈X

p(x) log p(x)

• Knowledge is related to computational difficulty, whereas
information is not
• Suppose Alice and Bob know Alice’s public key
• Alice sends her private key to Bob
• Bob has not gained new information (in the information-theoretic

sense)
• But Bob now knows a quantity he could not have calculated by

himself
• Knowledge is related to publicly known objects, whereas

information relates to private objects
• Suppose Alice tosses a fair coin and sends the outcome to Bob
• Bob gains one bit of information (in the information-theoretic sense)
• We say Bob has not gained any knowledge as he could have

tossed a coin himself
3 / 29

Modeling the Prover and Verifier
• PPT = Probabilistic Polynomial Time

• Algorithms with running time that is polynomial in input size
• They can toss coins and use the outcomes to take decisions

• Prover and verifier will be modeled as algorithms
• Verifier is assumed to be PPT
• Prover may or may not be PPT

• Prover is attempting to prove a statement
• Malicious or dishonest provers will try convincing the verifier that

incorrect statements are true
• When the prover is forced to be PPT, we get an argument (not a

proof)
• The A in SNARK and STARK
• All the ZK protocols deployed in the real-world are arguments

• When the prover is attempting a ZK proof or argument, the
verifier is possibly malicious
• The verifier attempts to extract something more than the

statement’s validity from the prover

4 / 29

ZK = Existence of a Simulator
• The prover is trying to prove a statement without leaking

knowledge
• The set of messages exchanged by the prover and verifier is

called a transcript
• An interactive proof is ZK if there is a PPT simulator who can

simulate the transcript
• Simulation = Generation of identically distributed transcript without

knowledge of prover’s secret
• Distributions can also be negligibly different

• Does the existence of a simulator mean that proofs can be
forged?
• No, because simulation usually involves “forbidden” actions or

information
• Forbidden = Unavailable in a regular execution of the IP
• Like reversing the arrow of time
• Or using a simulation trapdoor

5 / 29

Modeling Statements
• A language is a subset of {0,1}∗

• {0, 1}∗ is the set of all finite-length bit strings
• A prover is interested proving membership of a public value in a

language
• Examples of languages

• Set of pairs of non-isomorphic graphs G1,G2
• A pre-determined encoding will represent a graph as a bitstring
• Two specific graphs G1,G2 will be specified as part of the statement

• QRN for a composite N
• Set of quadratic residues modulo N
• Each quadratic residue is an integer in the set {0, 1, . . . ,N − 1}
• Each integer can be represented using ⌈log2 N⌉ bits

6 / 29

Interactive Proof Systems
• Let ⟨A,B⟩(x) denote the output of B when interacting with A on common input x
• Output 1 is interpreted as "accept" and 0 is interpreted as "reject"

• Definition: A pair of interactive machines (P,V) is called an interactive proof
system for a language L if V is PPT and the following conditions hold:
• Completeness: For every x ∈ L, we have Pr [⟨P,V ⟩(x) = 1] ≥ 2

3• Soundness: For every x /∈ L and every interactive machine B, we have
Pr [⟨B,V ⟩(x) = 1] ≤ 1

3

• Remarks
• Soundness condition→ any possible prover
• Completeness condition→ only prescribed prover
• By repeating interaction and taking majority, probabilities can be made

close to 1 and 0
• The 2

3 and 1
3 are arbitrary choices by convention

• Any c(n), s(n) such that the acceptance gap

c(|x |)− s(|x |) ≥
1

p(|x |)

for a polynomial p will do

7 / 29

Alternative Definition of IP Systems
• Let c, s : N → R be functions satisfying c(n) > s(n) + 1

p(n) for
some polynomial p(·).

• Definition: A pair of interactive machines (P,V) is called an
interactive proof system for a language L if V is PPT and the
following conditions hold:
• Completeness: For every x ∈ L, we have

Pr [⟨P,V ⟩(x) = 1] ≥ c(|x |)

• Soundness: For every x /∈ L and every interactive machine B, we
have

Pr [⟨B,V ⟩(x) = 1] ≤ s(|x |)

8 / 29

Interactive Proof Example
• Setting

• Suppose Peggy claims that Pepsi in large bottles tastes different
than Pepsi in small bottles

• Victor challenges Peggy to prove her claim
• Protocol

• Victor asks Peggy to leave the room
• He selects either a large bottle or a small bottle randomly and

pours some Pepsi into a glass
• Peggy is called into the room and asked to tell which bottle the

Pepsi came from by tasting it
• Victor accepts if Peggy answers correctly

• Analysis
• If the claim is correct, Pr [⟨P,V ⟩(x) = 1] = 1
• If the claim is wrong, Pr [⟨P,V ⟩(x) = 1] = 1

2 for any P
• The acceptance gap is 1− 1

2 = 1
2

9 / 29

Graph Isomorphism
• An undirected graph consists of a set of vertices V and edges represented by a

subset E of V × V
• Graphs G1 = (V1,E1) and G2 = (V2,E2) are isomorphic if there exists a

bijection π : V1 7→ V2 such that (u, v) ∈ E1 ⇐⇒ (π(u), π(v)) ∈ E2

Image source: https://en.wikipedia.org/wiki/Graph_isomorphism

π(a) = 1, π(b) = 6, π(c) = 8, π(d) = 3,
π(g) = 5, π(h) = 2, π(i) = 4, π(j) = 7

10 / 29

https://en.wikipedia.org/wiki/Graph_isomorphism

Proving Graph Non-Isomorphism
• Proving that two graphs G1,G2 are isomorphic is easy if ZK is

not required
• Prover can send an isomorphism π
• Verifier is polynomial-time

• How can we prove that two graphs G1,G2 are non-isomorphic?
• Checking all bijections =⇒ exponential-time verifier

• Assume that G1 and G2 have the same number of nodes and
edges
• Otherwise, non-isomorphism is trivial

• We need a subroutine that picks a graph randomly from the set
of graphs isomorphic to a graph G

• Suppose G = (V ,E) where V = {1,2, . . . ,n} and E ⊆ V × V
• Pick a random permutation π of V
• Calculate the relabelled edge set E ′ = {(π(u), π(v) | (u, v) ∈ E)}
• Output the graph π(G) = (V ,E ′)
• Note that the vertex set is unchanged by π

11 / 29

Proving Graph Non-Isomorphism
• Suppose G1 = (V ,E1) and G2 = (V ,E2)

• Protocol
• Verifier picks σ ∈ {1, 2} randomly and a random permutation π

from the set of all permutations over V
• Verifier sends the graph G′ = π(Gσ) to prover
• Prover finds τ ∈ {1, 2} such that G′ is isomorphic to Gτ and sends

τ to verifier
• If τ = σ, verifier accepts claim. Otherwise, it rejects.

• Remarks
• Verifier is PPT but no known PPT implementation for prover

• But even an exponential-time prover cannot cheat
• If G1 and G2 are not isomorphic, then verifier always accepts
• If G1 and G2 are isomorphic, then verifier rejects with probability 1

2

• Takeaway: Interactive proofs enable a PPT verifier for graph
non-isomorphism

12 / 29

Zero-Knowledge Interactive Proofs
• Informal definition: An interactive proof system is

zero-knowledge if
• whatever can be efficiently computed after interaction with P on

input x
• can also be efficiently computed from x (without interaction)

• Let viewP
V∗(x) denote the verifier’s view of the protocol

• It is the messages V ∗ receives and any randomness it generates
• Should be possible to generate something with the same

distribution as viewP
V∗(x) without interacting with P

13 / 29

Perfect Zero-Knowledge (Ideal)
• Formal definition (ideal) : We say (P,V) is perfect

zero-knowledge if
• for every PPT interactive machine V ∗

• there exists a PPT algorithm M∗ such that
• for every x ∈ L
• the random variables viewP

V∗(x) and M∗(x) are identically
distributed

• M∗ is called a simulator for the interaction of V ∗ with P
• Actually, P is zero-knowledge. The V is there to make it an

interactive proof system
• Unfortunately, the above definition is too strict

14 / 29

Perfect Zero-Knowledge
• Definition : We say (P,V) is perfect zero-knowledge if

• for every PPT interactive machine V ∗

• there exists a PPT algorithm M∗ such that
• for every x ∈ L the following two conditions hold:

1. With probability at most 1
2 , algorithm M∗ outputs a special symbol ⊥

2. Let m∗(x) be the random variable describing the distribution of M∗(x)
conditioned on M∗(x) ̸=⊥. Then the random variables viewP

V∗ (x) and
m∗(x) are identically distributed

• What if the simulator fails?
• The simulator fails with probability at most 1

2
• It can be run repeatedly until it generates the non-failure output
• On the average it requires two runs

15 / 29

HVZK Proof of Graph Non-Isomorphism
• HVZK = Honest Verifier Zero-Knowledge
• Suppose G1 = (V ,E1) and G2 = (V ,E2)

• Protocol
• Verifier picks σ ∈ {1, 2} randomly and a random permutation π

from the set of all permutations over V
• Verifier sends the graph G′ = π(Gσ) to prover
• Prover finds τ ∈ {1, 2} such that G′ is isomorphic to Gτ and sends

τ to verifier
• Simulator

• viewP
V = (σ, π,G′, τ) where G′ = π(Gσ) and τ = σ

• A simulator M can pick σ and π randomly, set τ = σ, and set
G′ = π(Gσ)

• Only HVZK
• Protocol is ZK only when the verifier follows the protocol honestly
• Suppose there is a third graph G3 which the verifier wants to check

for isomorphism with G1 or G2
• The verifier can set G′ = G3 and use the prover’s response to gain

knowledge it could not have calculated by itself

16 / 29

ZK Proof of Graph Non-Isomorphism
• How to ensure a honest verifier?

• The verifier needs to convince the prover that the graph
G′ = π(Gσ) for σ = 1 or 2

• The value of σ cannot be revealed to the prover
• Protocol

• Verifier picks σ ∈ {1, 2} randomly and a random permutation π of V
• Verifier sends the graph G′ = π(Gσ) to prover
• For i = 1, 2, . . . , s, verifier generates a random bit βi and two

permutations π′
i , π

′′
i of V

• If βi = 0, verifier sends
(
H i

1,H
i
2

)
=

(
π′

i (G1), π
′′
i (G2)

)
• If βi = 1, verifier sends

(
H i

1,H
i
2

)
=

(
π′

i (G2), π
′′
i (G1)

)
• Prover generates s random bits b1, b2, . . . , bs and sends them to

the verifier
• If bi = 0, verifier sends π′

i and π′′
i

• If bi = 1, verifier sends an isomorphism from G′ to one of
(
H i

1,H
i
2

)
• In both cases, the prover checks that the appropriate isomorphisms

were sent
• If the checks fail for any i , the prover stops

• The prover sends τ such that Gτ is isomorphic to G′. If no such τ
exists, he sends a random value from {1, 2}

• The verifier accepts if σ = τ . Otherwise, she rejects
17 / 29

ZK Proof of Graph Isomorphism
• Setting

• Two graphs G1 = (V ,E1) and G2 = (V ,E2) are isomorphic
• Prover wants to prove that they are isomorphic without revealing

the isomorphism ϕ : G1 7→ G2

• Protocol
• Prover picks a random permutation π of V
• Prover sends the graph G′ = π(G2) to verifier
• Verifier picks σ ∈ {1, 2} randomly and sends it to prover

• If σ = 2, then prover sends π to the verifier
• If σ = 1, then prover sends π ◦ ϕ to the verifier

• If the received mapping is an isomorphism between Gσ and G′, the
verifier accepts. Otherwise, it rejects

• Analysis
• Verifier is PPT
• If ϕ is known, prover is PPT
• If G1 and G2 are isomorphic, then verifier always accepts
• If G1 and G2 are not isomorphic, then verifier accepts with

probability 1
2

18 / 29

Simulator for Graph Isomorphism Protocol
• For an arbitrary PPT verifier V ∗, viewP

V∗(x) = ⟨G′, σ, ψ⟩ where ψ
is an isomorphism between Gσ and G′

• The simulator M∗ uses V ∗ as a subroutine
• On input (G1,G2), simulator randomly picks τ ∈ {1,2} and

generates a random isomorphic copy G′′ of Gτ

• Note that G′′ is identically distributed to G′

• Simulator gives G′′ to V ∗ and receives σ ∈ {1,2} from it
• V ∗ is asking for an isomorphism from Gσ to G′′

• If σ = τ , then the simulator can provide the isomorphism
π : Gτ 7→ G′′

• If σ ̸= τ , then the simulator outputs ⊥
• If the simulator does not output ⊥, then ⟨G′′, τ, π⟩ is identically

distributed to ⟨G′, σ, ψ⟩

19 / 29

GMR85

The First ZK Interactive Proof Protocols
• Published by Shafi Goldwasser, Silvio Micali, Charles Rackoff in

ACM STOC 1985
• Involves quadratic residues and non-residues modulo a

composite integer
• Preliminaries

• For integers x ,N, r , we write

x mod N = r

if x = qN + r where q, r are integers with 0 ≤ r ≤ N − 1
• For an integer N > 1, we define

Z∗
N = {x | 1 ≤ x ≤ N − 1 and gcd(x ,N) = 1}

• Z∗
N forms a group under multiplication modulo N
• It is closed under multiplication modulo N
• Every element has a multiplicative inverse modulo N

• An x ∈ Z∗
N is called a quadratic residue if there exists a y ∈ Z∗

N
such that

x = y2 mod N

• If no such y exists, x is called a quadratic non-residue
21 / 29

Properties of Quadratic Residues Modulo a Prime
• If N = p where p is a prime, checking if an integer is a quadratic

residue is easy
• Jacobi symbol modulo a prime

• Let QRp denote the set of quadratic residues modulo p
• Let QNRp denote the set of quadratic non-residues modulo p
• For prime p > 2 and x ∈ Z∗

p , the Jacobi symbol of x modulo p is
given by

Jp(x) = x
p−1

2 mod p =

{
+1 if x ∈ QRp,

−1 if x ∈ QNRp.

• Exactly half the elements of Z∗
p are quadratic residues

22 / 29

Properties of Quadratic Residues Modulo a Composite
• If N = pq for distinct odd primes p,q, then

x ∈ QRN ⇐⇒ [x mod p] ∈ QRp and [x mod q] ∈ QRq

• Corollaries
• Exactly 1

4 of the elements of Z∗
N are quadratic residues

• If the factorization of N is known, then checking if x ∈ QRN is easy
• If the factorization of N is unknown, then checking if x ∈ QNRN

is sometimes easy
• For x ∈ Z∗

N , we define

JN(x) = Jp([x mod p]) · Jq([x mod q])

• There is a polynomial time algorithm to calculate JN(x) without
using the factorization of N

• If JN(x) = −1, we know x ∈ QNRN
• If JN(x) = +1, then x could still be in QNRN with
Jp(x mod p) = Jq(x mod q) = −1

• If JN(x) = +1, then there is no known polynomial-time
algorithm for deciding the quadratic residuosity of x

23 / 29

ZK Proof for Quadratic Residuosity
• Setting

• For N = pq, prover wants to prove x ∈ QRN
• Prover knows w ∈ Z∗

N such that x = w2 mod N
• Verifier does not know factorization of N
• Prover does not want to reveal w to the verifier

• Protocol
• P picks r $←− Z∗

N and sends y = r 2 to V
• V picks a bit b $←− {0, 1} and sends b to P
• If b = 0, P sends z = r . If b = 1, P sends z = wr
• If b = 0, V checks z2 = y . If b = 1, V checks z2 = xy

• Simulator
• For an arbitrary PPT verifier V ∗, viewP

V∗(x) = ⟨y , b, z⟩ where
z2 = xby

• Consider a simulator M∗ which does the following
• M∗ picks z $←− Z∗

N and b $←− {0, 1}
• M∗ sets y = z2

xb
• If V∗(y) = b, then M∗ outputs ⟨y , b, z⟩. Otherwise, M∗ outputs ⊥

24 / 29

Interactive Proof for Quadratic Non-Residuosity
• Setting

• For N = pq, prover wants to prove x ∈ QNRN
• Assume JN(x) = +1
• Verifier does not know factorization of N
• How can P prove x is a quadratic non-residue without revealing the

factorization of N?
• Protocol

• V picks y $←− Z∗
N and a bit b $←− {0, 1}

• If b = 0, V sends z = y2. If b = 1, V sends z = xy2

• If z ∈ QRN , P sends b′ = 0.
• If z ∈ QNRN , P sends b′ = 1
• V accepts if b′ = b

• If x ∈ QNRN , then the z sent by V is in QNRN for b = 1
• The prover knows the factorization of N and can decide the

quadratic residuosity of z
• So the prover can estimate b correctly

• If x ∈ QRN , then the z sent by V is in QRN for both b = 0 and
b = 1
• The prover can estimate b correctly only with probability 1

2

25 / 29

Protocol is Only HVZK
• The above protocol is honest verifier zero-knowledge but not

ZK
• Consider a PPT verifier V ∗ which wants to find out if some u ∈ Z∗

N
is in QRN

• By replacing x in the above protocol with u, verifier V ∗ can get
information about u

• If the protocol was ZK, then there exists a PPT M∗ which can get
the same information without interacting with P

• This contradicts the non-existence of PPT algorithms for checking
membership in QRN

• Getting to ZK
• Solution: V has to prove that it either knows the square root of z

or zx−1 to P
• The number of interaction rounds increases from 2 to 4

26 / 29

ZK Proof for Quadratic Non-Residuosity
1. V → P

• P wants to prove that x ∈ QNRN for N = pq
• V picks y $←− Z∗

N and a bit b $←− {0, 1}
• If b = 0, V sends z = y2. If b = 1, V sends z = xy2

• For 1 ≤ j ≤ m,
• V picks rj,1, rj,2

$←− Z∗
N and bitj

$←− {0, 1}
• V computes αj = r2

j,1 and βj = xr2
j,2.

• If bitj = 0, V sends pairj = (αj , βj).
• If bitj = 1, V sends pairj = (βj , αj).

2. P → V
• P sends V a bit string [i1, i2, . . . , im] ∈ {0, 1}m

3. V → P
• V sends P the sequence v1, v2, . . . , vm

• If ij = 0, then vj = (rj,1, rj,2).
• If ij = 1, then vj = yrj,1 if b = 0. So V sends a square root of zαj
• If ij = 1, then vj = xyrj,2 if b = 1. So V sends a square root of zβj

27 / 29

ZK Proof for Quadratic Non-Residuosity
4. P → V

• P checks the following:
• If ij = 0, P checks if (r2

j,1, r
2
j,2x) equals pairj , possibly with elements in

the pair interchanged.
• If ij = 1, P checks if v2

j z−1 is a member of pairj .

• If z ∈ QRN , P sends b′ = 0.
• If z ∈ QNRN , P sends b′ = 1
• V accepts if b′ = b

• How the protocol ensures a honest verifier?
• Assume the verifier computes αj = r 2

j,1 and βj = xr 2
j,2 correctly

• Suppose a cheating verifier sends some z other than y2 or xy2

• Then the verifier cannot calculate the square roots of zαj or zβj

• Suppose the verifier cheats by setting αj = z−1u2

• Then the verifier can calculate the square root of zαj for arbitrary z
• But with probability 1

2 the verifier will need to calculate either √αj or√
αj x−1

• A cheating verifier can succeed only if it can predict the sequence
of bits i1, i2,im sent by P perfectly
• This occurs with probability 1

2m

28 / 29

References
• Sections 4.1, 4.2, 4.3, 4.4.2 of Foundations of Cryptography, Volume I by Oded

Goldreich
• Alon Rosen’s lecture in the 9th BIU Winter School on Cryptography
https://www.youtube.com/watch?v=6uGimDYZPMw

• The Knowledge Complexity of Interactive Proof Systems, S. Goldwasser,
S. Micali, C. Rackoff, 1989. https://doi.org/10.1137/0218012

• Ivan Damgard’s lecture notes https://users-cs.au.dk/~ivan/CPT1.pdf

29 / 29

https://www.youtube.com/watch?v=6uGimDYZPMw
https://doi.org/10.1137/0218012
https://users-cs.au.dk/~ivan/CPT1.pdf

	GMR85

