Zero-Knowledge Proofs

Saravanan Vijayakumaran

Department of Electrical Engineering Indian Institute of Technology Bombay

December 18, 2023

Interactive Proofs

- Cryptographic protocols that enable a prover to prove the validity of a statement to a verifier
- Traditional proofs
 - *No interaction:* Prover writes down a sequence of statements each of which is an axiom or follows from axioms
 - False statements are impossible to prove
- Interactive proofs
 - Prover and verifier exchange messages
 - They can toss unbiased coins and keep the outcomes secret
 - An invalid proof can pass verification with a small probability
- Examples of statements
 - Two graphs G_1, G_2 are not isomorphic
 - For a composite integer $N, x \in QNR_N$

There exists no integer y such that $x = y^2 \mod N$

• Zero-Knowledge Proofs: Interactive proofs that allow a prover to prove the validity of a statement without revealing anything else

Knowledge vs Information

- In information theory, entropy is used to quantify information
- Entropy of a discrete random variable *X* defined over an alphabet \mathcal{X} is

$$H(X) = -\sum_{x \in \mathcal{X}} p(x) \log p(x)$$

- Knowledge is related to computational difficulty, whereas information is not
 - Suppose Alice and Bob know Alice's public key
 - Alice sends her private key to Bob
 - Bob has not gained new information (in the information-theoretic sense)
 - But Bob now knows a quantity he could not have calculated by himself
- Knowledge is related to publicly known objects, whereas information relates to private objects
 - Suppose Alice tosses a fair coin and sends the outcome to Bob
 - Bob gains one bit of information (in the information-theoretic sense)
 - We say Bob has not gained any knowledge as he could have tossed a coin himself

Modeling the Prover and Verifier

- PPT = Probabilistic Polynomial Time
 - Algorithms with running time that is polynomial in input size
 - They can toss coins and use the outcomes to take decisions
- Prover and verifier will be modeled as algorithms
 - Verifier is assumed to be PPT
 - Prover may or may not be PPT
- Prover is attempting to prove a statement
- Malicious or dishonest provers will try convincing the verifier that incorrect statements are true
- When the prover is forced to be PPT, we get an **argument** (not a proof)
 - The A in SNARK and STARK
 - All the ZK protocols deployed in the real-world are arguments
- When the prover is attempting a ZK proof or argument, the verifier is possibly malicious
 - The verifier attempts to extract something more than the statement's validity from the prover

ZK = Existence of a Simulator

- The prover is trying to prove a statement without leaking knowledge
- The set of messages exchanged by the prover and verifier is called a **transcript**
- An interactive proof is ZK if there is a PPT simulator who can **simulate** the transcript
 - Simulation = Generation of identically distributed transcript without knowledge of prover's secret
 - Distributions can also be negligibly different
- Does the existence of a simulator mean that proofs can be forged?
 - No, because simulation usually involves "forbidden" actions or information
 - Forbidden = Unavailable in a regular execution of the IP
 - Like reversing the arrow of time
 - Or using a simulation trapdoor

Modeling Statements

- A language is a subset of {0,1}*
 - $\{0,1\}^*$ is the set of all finite-length bit strings
- A prover is interested proving membership of a public value in a language
- Examples of languages
 - Set of pairs of non-isomorphic graphs G1, G2
 - A pre-determined encoding will represent a graph as a bitstring
 - Two specific graphs G_1 , G_2 will be specified as part of the statement
 - QR_N for a composite N
 - Set of quadratic residues modulo N
 - Each quadratic residue is an integer in the set $\{0, 1, \dots, N-1\}$
 - Each integer can be represented using [log₂ N] bits

Interactive Proof Systems

- Let (A, B)(x) denote the output of B when interacting with A on common input x
- Output 1 is interpreted as "accept" and 0 is interpreted as "reject"
- **Definition:** A pair of interactive machines (*P*, *V*) is called an **interactive proof system for a language** *L* if *V* is PPT and the following conditions hold:
 - **Completeness:** For every $x \in L$, we have $\Pr[\langle P, V \rangle(x) = 1] \ge \frac{2}{3}$
 - Soundness: For every $x \notin L$ and every interactive machine *B*, we have $\Pr[\langle B, V \rangle(x) = 1] \leq \frac{1}{3}$
- Remarks
 - Soundness condition \rightarrow any possible prover
 - Completeness condition \rightarrow only prescribed prover
 - By repeating interaction and taking majority, probabilities can be made close to 1 and 0
 - The $\frac{2}{3}$ and $\frac{1}{3}$ are arbitrary choices by convention
 - Any $\check{c}(n)$, $\check{s}(n)$ such that the **acceptance gap**

$$c(|x|) - s(|x|) \geq \frac{1}{p(|x|)}$$

for a polynomial p will do

Alternative Definition of IP Systems

- Let c, s : N → R be functions satisfying c(n) > s(n) + ¹/_{p(n)} for some polynomial p(·).
- **Definition**: A pair of interactive machines (*P*, *V*) is called an **interactive proof system for a language** *L* if *V* is PPT and the following conditions hold:
 - **Completeness**: For every $x \in L$, we have

$$\Pr\left[\langle P, V \rangle(x) = 1\right] \geq c(|x|)$$

• **Soundness**: For every *x* ∉ *L* and every interactive machine *B*, we have

$$\Pr[\langle B, V \rangle(x) = 1] \leq s(|x|)$$

Interactive Proof Example

- Setting
 - Suppose Peggy claims that Pepsi in large bottles tastes different than Pepsi in small bottles
 - Victor challenges Peggy to prove her claim
- Protocol
 - Victor asks Peggy to leave the room
 - He selects either a large bottle or a small bottle randomly and pours some Pepsi into a glass
 - Peggy is called into the room and asked to tell which bottle the Pepsi came from by tasting it
 - Victor accepts if Peggy answers correctly
- Analysis
 - If the claim is correct, $\Pr[\langle P, V \rangle(x) = 1] = 1$
 - If the claim is wrong, $\Pr[\langle P, V \rangle(x) = 1] = \frac{1}{2}$ for any P
 - The acceptance gap is $1 \frac{1}{2} = \frac{1}{2}$

Graph Isomorphism

- An undirected graph consists of a set of vertices V and edges represented by a subset E of $V \times V$
- Graphs G₁ = (V₁, E₁) and G₂ = (V₂, E₂) are isomorphic if there exists a bijection π : V₁ → V₂ such that (u, v) ∈ E₁ ⇔ (π(u), π(v)) ∈ E₂

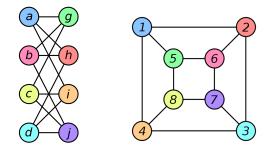


Image source: https://en.wikipedia.org/wiki/Graph_isomorphism

$$\pi(a) = 1, \pi(b) = 6, \pi(c) = 8, \pi(d) = 3,$$

 $\pi(g) = 5, \pi(h) = 2, \pi(i) = 4, \pi(j) = 7$

Proving Graph Non-Isomorphism

- Proving that two graphs *G*₁, *G*₂ are isomorphic is easy if ZK is not required
 - Prover can send an isomorphism π
 - Verifier is polynomial-time
- How can we prove that two graphs G₁, G₂ are non-isomorphic?
 - Checking all bijections \implies exponential-time verifier
- Assume that *G*₁ and *G*₂ have the same number of nodes and edges
 - Otherwise, non-isomorphism is trivial
- We need a subroutine that picks a graph randomly from the set of graphs isomorphic to a graph *G*
- Suppose G = (V, E) where $V = \{1, 2, \dots, n\}$ and $E \subseteq V \times V$
 - Pick a random permutation π of V
 - Calculate the relabelled edge set $E' = \{(\pi(u), \pi(v) \mid (u, v) \in E)\}$
 - Output the graph $\pi(G) = (V, E')$
 - Note that the vertex set is unchanged by π

Proving Graph Non-Isomorphism

- Suppose $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$
- Protocol
 - Verifier picks σ ∈ {1,2} randomly and a random permutation π from the set of all permutations over V
 - Verifier sends the graph G' = π(G_σ) to prover
 - Prover finds $\tau \in \{1, 2\}$ such that G' is isomorphic to G_{τ} and sends τ to verifier
 - If $\tau = \sigma$, verifier accepts claim. Otherwise, it rejects.
- Remarks
 - Verifier is PPT but no known PPT implementation for prover
 - But even an exponential-time prover cannot cheat
 - If G_1 and G_2 are not isomorphic, then verifier always accepts
 - If G_1 and G_2 are isomorphic, then verifier rejects with probability $\frac{1}{2}$
- **Takeaway:** Interactive proofs enable a PPT verifier for graph non-isomorphism

Zero-Knowledge Interactive Proofs

- Informal definition: An interactive proof system is zero-knowledge if
 - whatever can be efficiently computed **after interaction** with *P* on input *x*
 - can also be efficiently computed from x (without interaction)
- Let view $_{V^*}^{P}(x)$ denote the verifier's view of the protocol
 - It is the messages V* receives and any randomness it generates
- Should be possible to generate something with the same distribution as view^P_{V*}(x) without interacting with P

Perfect Zero-Knowledge (Ideal)

- Formal definition (ideal) : We say (*P*, *V*) is perfect zero-knowledge if
 - for every PPT interactive machine V*
 - there exists a PPT algorithm *M** such that
 - for every $x \in L$
 - the random variables view^P_{V*}(x) and M^{*}(x) are **identically distributed**
- *M*^{*} is called a **simulator** for the interaction of *V*^{*} with *P*
- Actually, *P* is zero-knowledge. The *V* is there to make it an interactive proof system
- Unfortunately, the above definition is too strict

Perfect Zero-Knowledge

- Definition : We say (P, V) is perfect zero-knowledge if
 - for every PPT interactive machine V*
 - there exists a PPT algorithm *M** such that
 - for every $x \in L$ the following two conditions hold:
 - 1. With probability at most $\frac{1}{2}$, algorithm M^* outputs a special symbol \perp
 - 2. Let $m^*(x)$ be the random variable describing the distribution of $M^*(x)$ conditioned on $M^*(x) \neq \perp$. Then the random variables view $_{V^*}^{P}(x)$ and $m^*(x)$ are **identically distributed**
- What if the simulator fails?
 - The simulator fails with probability at most $\frac{1}{2}$
 - It can be run repeatedly until it generates the non-failure output
 - On the average it requires two runs

HVZK Proof of Graph Non-Isomorphism

- HVZK = Honest Verifier Zero-Knowledge
- Suppose $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$
- Protocol
 - Verifier picks $\sigma \in \{1,2\}$ randomly and a random permutation π from the set of all permutations over *V*
 - Verifier sends the graph G' = π(G_σ) to prover
 - Prover finds $\tau \in \{1, 2\}$ such that G' is isomorphic to G_{τ} and sends τ to verifier
- Simulator
 - view $_V^{P} = (\sigma, \pi, G', \tau)$ where $G' = \pi(G_{\sigma})$ and $\tau = \sigma$
 - A simulator *M* can pick σ and π randomly, set $\tau = \sigma$, and set $G' = \pi(G_{\sigma})$
- Only HVZK
 - Protocol is ZK only when the verifier follows the protocol honestly
 - Suppose there is a third graph *G*₃ which the verifier wants to check for isomorphism with *G*₁ or *G*₂
 - The verifier can set $G' = G_3$ and use the prover's response to gain knowledge it could not have calculated by itself

ZK Proof of Graph Non-Isomorphism

- How to ensure a honest verifier?
 - The verifier needs to convince the prover that the graph $G' = \pi(G_{\sigma})$ for $\sigma = 1$ or 2
 - The value of σ cannot be revealed to the prover
- Protocol
 - Verifier picks $\sigma \in \{1, 2\}$ randomly and a random permutation π of V
 - Verifier sends the graph $G' = \pi(G_{\sigma})$ to prover
 - For *i* = 1, 2, ..., *s*, verifier generates a random bit β_i and two permutations π'_i, π''_i of V
 - If β_i = 0, verifier sends (Hⁱ₁, Hⁱ₂) = (πⁱ_i(G₁), π^{i'}_i(G₂))
 - If $\beta_i = 1$, verifier sends $(H_1^i, H_2^i) = (\pi'_i(G_2), \pi''_i(G_1))$
 - Prover generates s random bits b_1, b_2, \ldots, b_s and sends them to the verifier
 - If $b_i = 0$, verifier sends π'_i and π''_i
 - If $b_i = 1$, verifier sends an isomorphism from G' to one of (H_1^i, H_2^i)
 - In both cases, the prover checks that the appropriate isomorphisms were sent
 - If the checks fail for any *i*, the prover stops
 - The prover sends *τ* such that *G_τ* is isomorphic to *G'*. If no such *τ* exists, he sends a random value from {1,2}
 - The verifier accepts if $\sigma = \tau$. Otherwise, she rejects

ZK Proof of Graph Isomorphism

- Setting
 - Two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ are isomorphic
 - Prover wants to prove that they are isomorphic without revealing the isomorphism $\phi: G_1 \mapsto G_2$
- Protocol
 - Prover picks a random permutation π of V
 - Prover sends the graph $G' = \pi(G_2)$ to verifier
 - Verifier picks $\sigma \in \{1, 2\}$ randomly and sends it to prover
 - If $\sigma = 2$, then prover sends π to the verifier
 - If $\sigma = 1$, then prover sends $\pi \circ \phi$ to the verifier
 - If the received mapping is an isomorphism between G_σ and G', the verifier accepts. Otherwise, it rejects
- Analysis
 - Verifier is PPT
 - If ϕ is known, prover is PPT
 - If G_1 and G_2 are isomorphic, then verifier always accepts
 - If G_1 and G_2 are not isomorphic, then verifier accepts with probability $\frac{1}{2}$

Simulator for Graph Isomorphism Protocol

- For an arbitrary PPT verifier V^* , view $_{V^*}^P(x) = \langle G', \sigma, \psi \rangle$ where ψ is an isomorphism between G_{σ} and G'
- The simulator *M*^{*} uses *V*^{*} as a subroutine
- On input (G₁, G₂), simulator randomly picks τ ∈ {1, 2} and generates a random isomorphic copy G["] of G_τ
 - Note that G'' is identically distributed to G'
- Simulator gives G'' to V^* and receives $\sigma \in \{1, 2\}$ from it
 - V^* is asking for an isomorphism from G_σ to G''
- If $\sigma = \tau$, then the simulator can provide the isomorphism $\pi: \mathbf{G}_{\tau} \mapsto \mathbf{G}''$
- If $\sigma \neq \tau$, then the simulator outputs \perp
- If the simulator does not output \bot , then $\langle G'', \tau, \pi \rangle$ is identically distributed to $\langle G', \sigma, \psi \rangle$

GMR85

The First ZK Interactive Proof Protocols

- Published by Shafi Goldwasser, Silvio Micali, Charles Rackoff in ACM STOC 1985
- Involves quadratic residues and non-residues modulo a composite integer
- Preliminaries
 - For integers x, N, r, we write

 $x \mod N = r$

if x = qN + r where q, r are integers with $0 \le r \le N - 1$

• For an integer N > 1, we define

 $\mathbb{Z}_{N}^{*} = \{x \mid 1 \le x \le N - 1 \text{ and } gcd(x, N) = 1\}$

- \mathbb{Z}_N^* forms a group under multiplication modulo N
 - It is closed under multiplication modulo N
 - Every element has a multiplicative inverse modulo N
- An x ∈ Z_N^{*} is called a quadratic residue if there exists a y ∈ Z_N^{*} such that

$$x = y^2 \mod N$$

• If no such y exists, x is called a quadratic non-residue

Properties of Quadratic Residues Modulo a Prime

- If *N* = *p* where *p* is a prime, checking if an integer is a quadratic residue is easy
- Jacobi symbol modulo a prime
 - Let QR_p denote the set of quadratic residues modulo p
 - Let QNR_p denote the set of quadratic non-residues modulo p
 - For prime p > 2 and $x \in \mathbb{Z}_p^*$, the **Jacobi symbol of** x **modulo** p is given by

$$\mathcal{J}_{p}(x) = x^{\frac{p-1}{2}} \mod p = \begin{cases} +1 & \text{if } x \in \mathcal{QR}_{p}, \\ -1 & \text{if } x \in \mathcal{QNR}_{p}. \end{cases}$$

Exactly half the elements of Z^{*}_p are quadratic residues

Properties of Quadratic Residues Modulo a Composite

• If N = pq for distinct odd primes p, q, then

 $x \in \mathcal{QR}_N \iff [x \mod p] \in \mathcal{QR}_p \text{ and } [x \mod q] \in \mathcal{QR}_q$

- Corollaries
 - Exactly $\frac{1}{4}$ of the elements of \mathbb{Z}_N^* are quadratic residues
 - If the factorization of N is known, then checking if $x \in QR_N$ is easy
- If the factorization of N is unknown, then checking if $x \in QNR_N$ is sometimes easy
 - For $x \in \mathbb{Z}_N^*$, we define

 $\mathcal{J}_N(x) = \mathcal{J}_p([x \bmod p]) \cdot \mathcal{J}_q([x \bmod q])$

- There is a polynomial time algorithm to calculate $\mathcal{J}_N(x)$ without using the factorization of N
- If $\mathcal{J}_N(x) = -1$, we know $x \in \mathcal{QNR}_N$
- If $\mathcal{J}_N(x) = +1$, then x could still be in \mathcal{QNR}_N with $\mathcal{J}_p(x \mod p) = \mathcal{J}_q(x \mod q) = -1$
- If J_N(x) = +1, then there is no known polynomial-time algorithm for deciding the quadratic residuosity of x

ZK Proof for Quadratic Residuosity

Setting

- For N = pq, prover wants to prove $x \in QR_N$
- Prover knows $w \in \mathbb{Z}_N^*$ such that $x = w^2 \mod N$
- Verifier does not know factorization of N
- Prover does not want to reveal w to the verifier
- Protocol
 - *P* picks $r \stackrel{\$}{\leftarrow} \mathbb{Z}_N^*$ and sends $y = r^2$ to *V*
 - V picks a bit $b \stackrel{\$}{\leftarrow} \{0, 1\}$ and sends b to P
 - If b = 0, P sends z = r. If b = 1, P sends z = wr
 - If b = 0, V checks $z^2 = y$. If b = 1, V checks $z^2 = xy$
- Simulator
 - For an arbitrary PPT verifier V^* , view $_{V^*}^P(x) = \langle y, b, z \rangle$ where $z^2 = x^b y$
 - Consider a simulator M* which does the following
 - M^* picks $z \stackrel{\$}{\leftarrow} \mathbb{Z}^*_N$ and $b \stackrel{\$}{\leftarrow} \{0, 1\}$

•
$$M^*$$
 sets $y = \frac{z^2}{x^b}$

• If $V^*(y) = b$, then M^* outputs $\langle y, b, z \rangle$. Otherwise, M^* outputs \perp

Interactive Proof for Quadratic Non-Residuosity

Setting

- For N = pq, prover wants to prove $x \in QNR_N$
- Assume *J_N(x)* = +1
- Verifier does not know factorization of N
- How can *P* prove *x* is a quadratic non-residue without revealing the factorization of *N*?
- Protocol
 - *V* picks $y \stackrel{\$}{\leftarrow} \mathbb{Z}_N^*$ and a bit $b \stackrel{\$}{\leftarrow} \{0, 1\}$
 - If b = 0, V sends $z = y^2$. If b = 1, V sends $z = xy^2$
 - If $z \in QR_N$, P sends b' = 0.
 - If $z \in QNR_N$, *P* sends b' = 1
 - V accepts if b' = b
- If $x \in QNR_N$, then the *z* sent by *V* is in QNR_N for b = 1
 - The prover knows the factorization of *N* and can decide the quadratic residuosity of *z*
 - So the prover can estimate *b* correctly
- If $x \in QR_N$, then the *z* sent by *V* is in QR_N for both b = 0 and b = 1
 - The prover can estimate b correctly only with probability $\frac{1}{2}$

Protocol is Only HVZK

- The above protocol is honest verifier zero-knowledge but not ZK
 - Consider a PPT verifier V^{*} which wants to find out if some u ∈ Z^{*}_N is in QR_N
 - By replacing x in the above protocol with u, verifier V* can get information about u
 - If the protocol was ZK, then there exists a PPT *M*^{*} which can get the same information without interacting with *P*
 - This contradicts the non-existence of PPT algorithms for checking membership in $\mathcal{QR}_{\textit{N}}$
- Getting to ZK
 - **Solution**: *V* has to prove that it either knows the square root of *z* or *zx*⁻¹ to *P*
 - The number of interaction rounds increases from 2 to 4

ZK Proof for Quadratic Non-Residuosity

1. $V \rightarrow P$

- *P* wants to prove that $x \in QNR_N$ for N = pq
- V picks $v \stackrel{\$}{\leftarrow} \mathbb{Z}_{N}^{*}$ and a bit $b \stackrel{\$}{\leftarrow} \{0, 1\}$
- If b = 0, V sends $z = v^2$. If b = 1, V sends $z = xv^2$

- V picks $r_{i,1}, r_{i,2} \stackrel{\$}{\leftarrow} \mathbb{Z}_N^*$ and bit_i $\stackrel{\$}{\leftarrow} \{0,1\}$
- V computes $\alpha_j = r_{i,1}^2$ and $\beta_j = xr_{i,2}^2$.
- If bit_i = 0, V sends pair_i = (α_i, β_i) .

• If bit
$$j = 1$$
, V sends pair $j = (\beta_j, \alpha_j)$

2. $P \rightarrow V$

• *P* sends *V* a bit string $[i_1, i_2, ..., i_m] \in \{0, 1\}^m$

- 3. $V \rightarrow P$
 - V sends P the sequence v_1, v_2, \ldots, v_m

 - If i_j = 0, then v_j = (r_{j,1}, r_{j,2}).
 If i_j = 1, then v_j = yr_{j,1} if b = 0. So V sends a square root of zα_j
 If i_j = 1, then v_j = xyr_{j,2} if b = 1. So V sends a square root of zβ_j

ZK Proof for Quadratic Non-Residuosity

- 4. $P \rightarrow V$
 - P checks the following:
 - If $i_j = 0$, *P* checks if $(r_{j,1}^2, r_{j,2}^2x)$ equals pair_j, possibly with elements in the pair interchanged.
 - If $i_j = 1$, *P* checks if $v_j^2 z^{-1}$ is a member of pair_j.
 - If $z \in QR_N$, P sends b' = 0.
 - If $z \in QNR_N$, P sends b' = 1
 - V accepts if b' = b
 - How the protocol ensures a honest verifier?
 - Assume the verifier computes $\alpha_j = r_{j,1}^2$ and $\beta_j = xr_{j,2}^2$ correctly
 - Suppose a cheating verifier sends some z other than y^2 or xy^2
 - Then the verifier cannot calculate the square roots of $z\alpha_j$ or $z\beta_j$
 - Suppose the verifier cheats by setting α_j = z⁻¹u²
 - Then the verifier can calculate the square root of $z\alpha_j$ for arbitrary z
 - But with probability $\frac{1}{2}$ the verifier will need to calculate either $\sqrt{\alpha_j}$ or $\sqrt{\alpha_j x^{-1}}$
 - A cheating verifier can succeed only if it can predict the sequence of bits *i*₁, *i*₂, ..., *i*_m sent by *P* perfectly
 - This occurs with probability ¹/_{2^m}

References

- Sections 4.1, 4.2, 4.3, 4.4.2 of *Foundations of Cryptography, Volume I* by Oded Goldreich
- Alon Rosen's lecture in the 9th BIU Winter School on Cryptography https://www.youtube.com/watch?v=6uGimDYZPMw
- The Knowledge Complexity of Interactive Proof Systems, S. Goldwasser, S. Micali, C. Rackoff, 1989. https://doi.org/10.1137/0218012
- Ivan Damgard's lecture notes https://users-cs.au.dk/~ivan/CPT1.pdf