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ABSTRACT

This paper describes a new method for fuzzy segmenta-
tion based on spatial constraints. Taking into account the
neighborhood influence two techniques are used. First a
new feature is derived from Peano scans to represent a spa-
tial relationship among neighbors. Second we incorporate
a regularization term to Fuzzy C-means algorithm (FCM).
The algorithm is tested on both synthetic and multispectral
images. Experimental results are presented and discussed.
They show the effectiveness of the method.

1. INTRODUCTION

Image segmentation is an essential task for image under-
standing and analysis. A large variety of methods have
been proposed in the literature. Image segmentation can
be defined as a classification problem where each pixel is
assigned to a specific class. Clustering methods are con-
sidered as an unsupervised classification, where there is no
need for prior knowledge about the data set. Many different
clustering techniques have been proposed [1] [2] in com-
puter vision and pattern recognition. Among those tech-
niques Fuzzy c-means algorithm [3] which is widely used
for image segmentation [4]. FCM algorithm allows points
to belong to two or more classes with appropriate member-
ship. This flexibility during the classification process is a
useful property since it informs about the confidence at-
tributed to a particular class or cluster. Although the original
FCM algorithm yields good results for segmenting noise-
free images, it fails to segment images corrupted by noise,
outliers and other imaging artifact. Therefore segmenting
real world images such as remote sensing images by FCM
can lead to a erroneous segmentation. One way to deal with
this problem is to filter image before applying FCM. How-
ever filtering may lose important information. It is advan-
tageous to explicitly incorporate the neighborhood informa-
tion along with pixel intensities in the image plane. Ear-
lier works [5] show the improvement in segmentation re-
sults by incorporating the spatial information into the FCM
algorithm. Pahm et al [6] propose a method by incorporat-

ing a second constraint term to allow the membership func-
tion to be influenced by neighborhood membership func-
tions. In the same context, Ahmed et al [7] add a second
term to the FCM objective function in order to influence
the classification of a given point by its neighborhood val-
ues. Those methods are based on direct contribution of
neighbors’ intensity values and do not take into account
any other property of that neighborhood. Another approach
which merges naturally the spatial context is Markov Ran-
dom Field (MRF) [8]. It is widely used for segmentation
problem, but computationally very expensive due to the com-
plexity of parameters estimation. Generally segmentation
methods are sensitive to contrast change or illumination con-
ditions. We need to encode the neighborhood context in
such a way as being:

1) Invariant to a shift in the pixel intensities as well as
contrast changes

2) Able to encode a small number of parameters proper-
ties in a non-parametrized way as the estimation of such is
often a very difficult task.

3) The encodeship should be local just as the pixel val-
ues so that the segmentation can be performed in a single
pass.

Peano space filling curves have good topological prop-
erties [9] they preserve a spatial proximity, generally used to
map a multi-dimensional space onto one dimension. Peano
scans have been also used for mulitresolution image analy-
sis [10]. However earlier works of [11] uses optimal Peano
scans to generate a local patterns called motifs. It has been
shown that method is efficient for texture analysis and im-
age retrieval.

In this paper we present an approach based on spatial
constraints for FCM. Two techniques are combined to in-
corporate the spatial context. The first one is an additional
feature: rather than pixel intensity we introduce a new repre-
sentation of neighborhood relationship by using local space
filling curves. The second consists in modifying FCM ob-
jective function by adding a second term. This term allows
the pixel to be influenced by its neighbors which yield a
regularization effect. The proposed algorithm improves ro-
bustness to noise, outliers and retain simplicity.



This paper is organized as follows. Section 2 describes
the use of the local Peano scan to evaluate the relationship
between adjacent pixels. Then, in the following section we
present a new objective function for FCM. Our segmenta-
tion method is tested on both synthetic and real images, re-
sults are illustrated in section 4. The paper is concluded in
section 5.

2. FEATURE SELECTION

2.1. Optimal Scan

The relationship among adjacent pixels is an important fea-
ture. It allows a better efficiency for image segmentation.
In this section we describe a method that uses Peano space
filling curves properties to encode the relationship in local
neighborhood. Our method consists in determining the de-
pendence between four adjacent pixels in term of intensity
variation. A 2x2 pixels grid is traversed by a set of Peano
curves to obtain a path which minimizes the intensity value
over the scan, yielding an optimal scan. Given four adjacent

pixels
p1 p2

p3 p4

the optimal scan follows the permutation

r∗ that corresponds to

δ = min
r

{|pr1 − pr2| + |pr2 − pr3| + |pr3 − pr4|} (1)

Fixing the start point in 2x2 grid yields a set of 6 possible
paths (motifs). Changing the start point in the grid results in
a different set of motifs. Using all possible scans results in
24 possible motifs. Referring to the minimization criterion

Fig. 1. 12 possible scans to account for all pairs traversing
the four adjacent pixels

in Eq. 1, the number of motifs can be reduced to 12 as illus-
trated in Fig. 1. Note that given four adjacent pixels one of
12 paths yields a minimum value δ. The advantage for using
the optimal scan is that it brings information about adjacent
pixels by minimizing the variation of intensity. Small value
of δ means that there are less variation of intensity. In partic-
ular case where 2x2 pixels have the same values, all motifs
scan optimally those pixels and δ is equal to 0.

2.2. Neighborhood Contribution

Consider a set of grey level values of 8-connected pixels.
The centre pixel and its neighbors are divided into four groups

g1 = {o, a, b, c}, g2 = {o, c, d, e}, g3 = {o, e, f, g}, g4 =
{o, g, h, a}, where each group contains four adjacent points
as illustrated in Figure 2. Using this configuration one can
obtain δ (optimal scan) in each set. Then the four optimal
values will be considered as a feature that represents the re-
lationship between a given pixel and its neighbors. However
in order to control the influence of this feature a weight w is
attributed. Finally the feature vector of a given pixel shows
the flowing structure:

x = {a1, ...ap, w(δ1
1 , δ1

2 , δ1
3 , δ1

4 , ..., δ
p
1 , δ

p
2 , δ

p
3 , δ

p
4)}

where ap represent intensity value in color plane p and δ
p
k

is the optimal scan of the group gk (k ∈ {1, 2, 3, 4}) in
the pth color plane.An advantage of using such feature is
its invariance under uniform additive light or a sensor gain.
Adding the same intensity to a four adjacent pixels do not
affect the optimal path.
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Fig. 2. Decomposition of 3x3 neighborhood in a set of four
groups

3. MODIFIED FCM

The traditional FCM algorithm minimizes the objective func-
tion J(U, V ) which is defined by sum of similarity mea-
sures. The objective function is given by

J(U, V ) =

C
∑

i=1

N
∑

j=1

um
ij‖ xj − vi ‖

2 (2)

where X = {x1, x2, ..., xN} denote the set of data (xk cor-
respond to feature vector described in section 2.2). V =
{v1, v2, ..., vC} represents the prototypes, known as the clus-
ters centers. U = [uij ] is the partition matrix which satisfies
the following conditions:

uij ∈ [0, 1] ∀i, j 0 <

N
∑

j

uij < N ∀i (3)

C
∑

i

uij = 1 ∀j (4)



m is a fuzzifier which indicate the fuzziness of membership
for each point. FCM algorithm is based on an iterative pro-
cess by minimizing the distance between each point and the
prototypes. As we can notice from Eq. 2 the FCM objective
function does not incorporate any spatial constraint. This
can lead to a formation of small undesirable regions. More
over in presence of noise classification process is affected
directly by the noise. In order to overcome this problem,
the regularization term is added to constraint the Eq. 2 al-
lowing the classification of each point to be influenced by
its neighborhood. The modified objective function can be
expressed as follow:

JM (U, V ) =

C
∑

i=1

N
∑

j=1

um
ij‖ xj − vi ‖

2

+ α

C
∑

i=1

N
∑

j=1

um
ij e−

P

k∈Ω
um

ik (5)

where Ω is a set of neighbors. The parameter α is a weight
that controls the influence of the second term. The objec-
tive function (5) has two components. The first component
is the same as FCM, the second is a penalty term. This com-
ponent reaches a minimum when the membership value of
neighbors in a particular cluster is large. The optimization
of (5) with respect to U will be solved by using Lagrange
multiplier technique.

JM (U, V ) =
C
∑

i=1

N
∑

j=1

um
ij (‖ xj − vi ‖

2
+ αe−

P

k∈Ω
um

ik)

+
N
∑

j=1

λj(1 −
C
∑

i=1

uij) (6)

the derivative of (6) with respect to uij

∂JM

∂uij

= mum−1

ij (‖ xj − vi ‖
2

+ αe−
P

k∈Ω
um

ik) − λj (7)

solving for uij we have

uij =

(

λj

m(‖ xj − vi ‖
2

+ αe−
P

k∈Ω
um

ik)

)
1

m−1

(8)

solving for λj with respect to the constraint (4) we obtain

C
∑

i=1

(

λj

m(‖ xj − vi ‖
2

+ αe−
P

k∈Ω
um

ik)

)
1

m−1

= 1 (9)

As λj does not depend in the term of the sum this yield

λ
−1

m−1

j =

C
∑

i=1

(

m‖ xj − vi ‖
2

+ αe−
P

k∈Ω
um

ik

)

−1

m−1

(10)

substituting in (8) we obtain the following update member-
ship

uij =
1

∑C

p=1

(

‖xj−vi‖
2
+αe

−
P

k∈Ω um
ik

‖xj−vp‖
2
+αe

−
P

k∈Ω um
pk

)
1

m−1

(11)

As seen from (11), the neighboring membership values (upk)
influence uij to follow the neighborhood behavior. For in-
stance if a given point has a high membership value to a par-
ticular cluster and its spatial neighbors have a small mem-
bership values to this cluster, the penalty term plays the role
to force the point to belong to the same cluster as its neigh-
bors. As we can notice from (11), the weight α controls
the importance of the regularization term. In the particular
case when α = 0 the membership value, uij , is independent
of the neighborhood membership values and it turn out the
same standard FCM membership function. If α is too large,
the segmentation result will be very smooth and the shape
of regions can be affected. The value α should be chosen
with respect to trade-off between both terms.

The prototype update equation is the same as standard
FCM, since the second component of (5) does not depend
on vi. Thus we obtain the centroids update by the following
equation:

vi =

∑N

j=1
um

ij xj

∑N

j=1
um

ij

(12)

The Modified FCM (MFCM) algorithm can be summarized
in the following steps:

Step 1 Fix the number of clusters
Initialize uij by random value ∈[0,1]
Initialize the centers by random points from data set
Step 2 Compute the distance ‖ xj − vi ‖

2

Step 3 Update the partition matrix using (11)
Step 4 Update centroids using (12)
Step 5 Repeat step 2 to step 5 till convergence
The convergence of the process is considered here to be
reached when the change in membership values is less than
the threshold.

4. EXPERIMENTS

In this section we illustrate the application of the proposed
algorithm on synthetic images corrupted by noise and re-
mote sensing (RS) images. In all experiences the parameter
α was set to 70, w=0.5 and m is chosen to be 2.

Fig. 3 (a) shows a synthetic image containing five class pat-
terns corrupted by 20% of shotnoise. Fig. 3 (b) shows the
result of applying FCM to the original image. As we can



(a) (b) (c)

Fig. 3. Segmentation results using FCM and MFCM algo-
rithms for synthetic images

see FCM algorithm is not able to segment correctly the orig-
inal image. This example shows us the sensitivity of FCM
to noise and other image artifacts. It is due to that FCM
classify pixels without taking into account the spatial de-
pendence of pixels. Application of MFCM yields the seg-
mentation shown in Fig. 3 (c). The five classes are correctly
detected.

(a) (b) (c)

Fig. 4. Segmentation results using FCM and MFCM for RS
images

Real multispectral test images were obtained from CCRS
(http://www.ccrs.nrcan.gc.ca). Fig. 4 (a) represents agricul-
tural fields. The image was created by C/X band SAR sys-
tem: in each pixel 3 bands represent the spectral characteris-
tics. This images contain many kinds of noise and artifacts
due to the sensor, atmospheric distortions.... Such condi-
tions make it difficult to segment such images by classical
methods as FCM. The segmentation results yielded by FCM
and MFCM are shown respectively in Figs. 4 (b)(c). We can
notice that FCM segmentation shows a lot of insignificant
regions. Comparing to that, MFCM provides more accurate
segmentation. The proposed method outperforms FCM and
brings out a good segmentation performance: the difference
with FCM remains qualitatively consistent on samples of a
dozen of similar images(eg. agricultural, forest, urban,...).

5. CONCLUSION

In this paper we proposed a new method for segmentation.
A new feature and a new FCM objective function are used
to incorporate spatial information, aiming for more effec-

tive segmentation. We compared our results with traditional
FCM. The MFCM proves more robust than FCM on both
synthetic and RS images. In future works more criteria will
be considered for additional constraints such as automatic
determination of the number of classes and probabilistic
methods to calculate weights.
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