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Circuit simulation

* DC analysis

* transient (time-domain) analysis

* AC (frequency-domain) analysis

* logic-level simulation

* mixed-signal simulation

* noise computation

* periodic steady state computation

* sensitivity analysis
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Circuit simulation on a computer

* Must be efficient in terms of CPU time (especially for large circuits).

* Must make good use of the memory available. If a matrix is sparse,
it should not be stored in the a(i , j) form.

* The approach must be systematic. “Tricks” such as resistors in
series or parallel, star-to-delta conversion, etc. will work in special
cases. What we need is a general-purpose method that will work for
all circuits.
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Nodal Analysis of a linear circuit

* Take some node as the “reference node” and denote
the node voltages of the remaining nodes by e1 , e2 ,
etc.

* Write KCL at each node in terms of the node
voltages. Follow a fixed convention, e.g., current
leaving a node is positive.

* When all KCL equations are treated, we have the
“admittance matrix” and the RHS vector.

* Solve the resulting linear system of equations,
Ye = Is for the node voltages.

* The equation assembly (also called “parsing”) can be
done element-by-element, i.e., by considering one line
of the circuit file at a time.

* The computer cannot see the entire circuit; it can,
however, go through the circuit file line by line.
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Step 1: Initialize
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Step 3
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Step 3
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Step 4
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Step 4
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Step 5
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Step 6
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Modified Nodal Analysis (MNA) of a linear circuit
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e2 e3
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0V v2
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* When a voltage source is involved, we cannot write its current in terms of
node voltages (e1, e2, etc.). The NA approach has to be modified ⇒
MNA.

* Treat the current through the voltage source as an additional unknown.

* We also need to get an additional equation since the number of unknowns
has gone up by 1. This equation is provided by the branch equation of the
voltage source.

* The “solution vector” now contains the voltage source currents in
addition to the node voltages.

M. B. Patil, IIT Bombay



Modified Nodal Analysis (MNA) of a linear circuit

+

e1
e2 e3

R1

2R 3R

v2

0V v2

0

i i1 2

α

* When a voltage source is involved, we cannot write its current in terms of
node voltages (e1, e2, etc.). The NA approach has to be modified ⇒
MNA.

* Treat the current through the voltage source as an additional unknown.

* We also need to get an additional equation since the number of unknowns
has gone up by 1. This equation is provided by the branch equation of the
voltage source.

* The “solution vector” now contains the voltage source currents in
addition to the node voltages.

M. B. Patil, IIT Bombay



Modified Nodal Analysis (MNA) of a linear circuit

+

e1
e2 e3

R1

2R 3R

v2

0V v2

0

i i1 2

α

* When a voltage source is involved, we cannot write its current in terms of
node voltages (e1, e2, etc.). The NA approach has to be modified ⇒
MNA.

* Treat the current through the voltage source as an additional unknown.

* We also need to get an additional equation since the number of unknowns
has gone up by 1. This equation is provided by the branch equation of the
voltage source.

* The “solution vector” now contains the voltage source currents in
addition to the node voltages.

M. B. Patil, IIT Bombay



Modified Nodal Analysis (MNA) of a linear circuit

+

e1
e2 e3

R1

2R 3R

v2

0V v2

0

i i1 2

α

* When a voltage source is involved, we cannot write its current in terms of
node voltages (e1, e2, etc.). The NA approach has to be modified ⇒
MNA.

* Treat the current through the voltage source as an additional unknown.

* We also need to get an additional equation since the number of unknowns
has gone up by 1. This equation is provided by the branch equation of the
voltage source.

* The “solution vector” now contains the voltage source currents in
addition to the node voltages.

M. B. Patil, IIT Bombay



Modified Nodal Analysis of a linear circuit
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Modified Nodal Analysis of a linear circuit
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Modified Nodal Analysis of a linear circuit
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Modified Nodal Analysis of a linear circuit
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Sparse Tableau Analysis (STA)

* Variables: node voltages, branch currents, and branch voltages

* No need for special treatment of voltage sources or any other
elements

* Circuit topology and element equations are decoupled.

* Easier to implement as compared to MNA
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Comparison of MNA and STA

* STA matrix is larger, but more sparse.

* If A is an N × N matrix, the CPU time to solve Ax = b is proportional to
Nα, where α is 3 for a dense matrix and typically 1.5 to 2 for a sparse
matrix.

* STA is generally slower than MNA, but this is not a concern for relatively
small problems (including many problems in power electronics).

* Historically, STA was the first systematic approach used for circuit
simulation (ASTAP by IBM). SPICE, based on MNA, was developed
subsequently at UC Berkeley.

* Most of the circuit simulation programs available today are based on
MNA, and many of them make use of SPICE.
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Nonlinear circuits: Newton-Raphson method

Vs

+
V+ D

R

0

V V

0

1 2

V0 − V2

R
= Is [exp (V2/VT )− 1]

V0 − V2

R
−Is [exp (V2/VT )− 1] = 0

Rewrite1 as f (V2) = 0. In general, consider f (x) = 0. Expand around an initial
guess x0.

f (x0 + ∆x) = f (x0) + ∆x f ′(x0) + · · ·

We want ∆x such that f (x0 + ∆x) = 0 .

∆x = − f (x0)

f ′(x0)

1Note that a circuit simulator such as SPICE will use a combination of MNA and
N-R to solve this problem. Here, we will reduce it to the form f (x) = 0 for simplicity.
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Newton-Raphson method: graphical interpretation of ∆x = − f (x0)
f ′(x0)

x

P
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2
3

f (
x)

 0

 400

 600

 800

 2  3  4  5  6  7  8  9  10

 200

Solution of x3 − 20 x = 0, with x = 8 as the initial guess.
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Newton-Raphson method: convergence

i x (i) f (x (i)) ∆x (i)

1 0.800000×101 0.352×103 -0.204×101

2 0.595349×101 0.919×102 -0.106×101

3 0.488846×101 0.190×102 -0.368

4 0.451992×101 0.194×101 -0.470×10−1

5 0.447288×101 0.298×10−1 -0.746×10−3

6 0.447214×101 0.748×10−5 -0.187×10−6

7 0.447214×101 0.470×10−12 -0.117×10−13

Solution of f (x) = x3 − 20 x = 0, with x = 8 as the initial guess.
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Convergence of Newton-Raphson method

Consider solving f (x) = 0 with the N-R method. Define

g(x) = x −
f (x)

f ′(x)
. (1)

The N-R iteration can be written as [8],

x(n+1) = x(n) + ∆x(n) = g(x(n)) . (2)

Application of Taylor’s theorem to Eq. 1 yields,

g(x) = g(r) + g ′(r)(x − r) +
g ′′(ξ)

2
(x − r)2, (3)

where ξ lies between x and r .

The derivative g ′(x) can be obtained from Eq. 1 as,

g ′(x) = 1−
[f ′(x)]2 − f (x)f ′′(x)

[f ′(x)]2
. (4)
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Convergence of Newton-Raphson method

Since f (r) = 0, we get g(r) = r from Eq. 1 and g ′(r) = 0 from Eq. 4. Substituting for
g(r) and g ′(r) in Eq. 3, we get,

g(x) = r +
g ′′(ξ)

2
(x − r)2 . (5)

Replace x by x(n) and use the fact that g(x(n)) is the same as x(n+1) in the N-R
procedure, to get (

x(n+1) − r
)

=
g ′′(ξ)

2

(
x(n) − r

)2
. (6)

As x(n) converges to r , so does ξ; and we can replace g ′′(ξ) by g ′′(r), a constant.
Further, if we define ε(n) ≡ x(n) − r (the “error” at the nth N-R iteration), we can
write Eq. 6 as

ε(n+1) = k [ε(n)]2 , (7)

where k = g ′′(r)/2. Eq. 7 describes the well-known feature of “quadratic

convergence” of the N-R method, i.e., the error goes down quadratically as x(n) → r .
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Convergence of Newton-Raphson method

Fixed−point iterations

N−R iterations

ε(n
+

1)
lo

g 
[
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log (ε(n+1)) versus log (ε(n)) with the N-R scheme and the fixed-point iteration method for

f (x) = x2 − 6x + 8 = 0, with x = 0 as the initial guess. The green line represents

ε(n+1) =
g ′′(r)

2
(ε(n))2. The iteration numbers are also shown for each scheme. Note the quadratic

convergence of the N-R method. (Both schemes were found to converge to r = 2 for the specified
initial guess.)
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Newton-Raphson method for N equations

Consider a system of N ODEs:

f1(x1, x2, . . , xN) = 0 ,

f2(x1, x2, . . , xN) = 0 ,

. . . . ,

fN(x1, x2, . . , xN) = 0 .

The correction vector ∆x can be obtained
by solving

J(i) ∆x(i) = −f(i) ,

where i is the iteration number, J is the
Jacobian matrix, and f is the function
vector.

f =


f1(x)
f2(x)
..

fN(x)

 ,

J =



∂f1
∂x1

∂f1
∂x2

. .
∂f1
∂xN

∂f2
∂x1

∂f2
∂x2

. .
∂f2
∂xN

. . . . . .

∂fN
∂x1

∂fN
∂x2

. .
∂fN
∂xN


.
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N-R method: example with two variables

i x
(i)
1 x

(i)
2 || f ||2 ∆x

(i)
1 ∆x

(i)
2

1 0.40000×101 0.15000×102 0.10241×102 −0.73776× 101 −0.16223× 101

2 0.25244×101 0.14675×102 0.78909×101 −0.34368× 101 −0.37631× 101

3 0.18371×101 0.13922×102 0.61523×101 −0.17887× 101 −0.39712× 101

4 0.14793×101 0.13128×102 0.48512×101 −0.10737× 101 −0.35342× 101

5 0.12646×101 0.12421×102 0.38481×101 −0.70747 −0.29789× 101

6 0.11231×101 0.11826×102 0.30620×101 −0.49427 −0.24548× 101

7 0.62883 0.93711×101 0.95091 0.80932×10−1 −0.80932× 10−1

8 0.70976 0.92902×101 0.31487×10−1 0.28690×10−2 −0.28690× 10−2

9 0.71263 0.92873×101 0.38735×10−4 0.35381×10−5 −0.35381× 10−5

10 0.71263 0.92873×101 0.58855×10−10 0.53759×10−11 −0.53753× 10−11

Application of the N-R method to a system of two equations, with f1 ≡ x1 + x2 − 10 = 0, and
f2 ≡ x2 − 15 tan−1(x1) = 0. (damping was used for the first 5 iterations.)
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N-R method: example with two variables
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Application of the N-R method to a system of two equations, with f1 ≡ x1 + x2 − 10 = 0, and
f2 ≡ x2 − 15 tan−1(x1) = 0. The contours are labelled by the 2-norm, || f ||2. Circled integers
represent the iteration numbers. (damping was used for the first 5 iterations.)
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Newton-Raphson method: convergence issues

x
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Application of the N-R method to f (x) = tan−1 x = 0, with x = 1.5 as the

initial guess.
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Newton-Raphson method: use of damping

Instead of

x (n+1) = x (n) + ∆x (n) ,

as in the standard N-R algorithm, we use

x (n+1) = x (n) + k ∆x (n)

= x (n) + k
{
−[f ′(x (n))]−1 f (x (n))

}
,

where k (< 1 ) is the “damping factor.”
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Newton-Raphson method: use of damping
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Application of the N-R method to f (x) = tan−1 x = 0, with x = 1.5 as the
initial guess and a damping factor k = 0.7.
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Newton-Raphson method: use of damping
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Application of the N-R method to f (x) = tan−1 x = 0, with x = 1.5 as the initial guess and

different damping factors. (For the case with no damping, N-R iterations stopped due to
df

dx
becoming too small.)
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Newton-Raphson method: use of damping

* Damping improves chances of convergence.

* However, it makes convergence slower as compared to the standard N-R
method.

* Damping should be used only when the standard N-R method fails to
converge.

* Damping is very useful in power electronic circuits since they are highly
non-linear (due to switches).

* For transient simulation, in addition to damping, reducing the time step
may also help in convergence.
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Convergence of N-R iterations

VCC

RCR1

R2 RE

* We are interested in obtaining the DC (“bias”) solution for a circuit with
highly non-linear elements (e.g., BJTs).

* N-R iterations, starting from the zero solution (i.e., all node voltages
equal to 0 V), may fail to converge in this case.

* Two tricks: (a) gmin stepping, (b) VCC stepping.
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gmin stepping

1Ω
1Ω

1Ω
1Ω

* Connect R = 1/g between each node and ground.

* Assign a small value (say, 1 Ω) to each resistance,
i.e., a large value to g (1f).

→ easy convergence since the non-linear elements got bypassed.
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gmin stepping

1Ω
1Ω

1Ω
1Ω

10Ω

10Ω
10Ω

10Ω

* Increase R from, say, 1 Ω to 10 Ω, i.e., decrease g from 1f to 0.1f.

* Convergence is easy since the previous solution serves as a good initial
guess.
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gmin stepping

1012Ω
1012Ω

1012Ω
1012Ω

* Keep increasing R (i.e., decreasing g) and solve every time.

* When g = 10−12 f, for example, R = 1012 Ω, which is as good as an open
circuit.

* We have now got the DC solution for the original circuit.
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Voltage supply stepping

VCC

RCR1

R2 RE

* When VCC = 0 V, the zero initial solution (all node voltages equal to 0 V)
is valid.

* Treating that as the initial guess, solve for a small value of VCC (say,
0.1 V). The N-R iterations are likely to converge since VCC = 0.1 V is a
small change from VCC = 0 V.

* Repeat. VCC : 0 V → 0.1 V → 0.2 V → · · · → 5 V
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N-R method: effect of scaling and precision

Consider the system of equations,

f1(x1, x2) ≡ k (x1 + x2 − 6
√

3) = 0 ,

f2(x1, x2) ≡ 10x2
1 − x2

2 + 45 = 0 . (8)
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|| f || 2 versus N-R iteration number for Eq. 8, with x1 = x2 = 1 as the initial guess, (a) Single

precision arithmetic, (b) Double precision arithmetic.

* If k is made larger, the norm saturates at a higher value.

* Precision has a significant effect on the lowest achievable norm.
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Non-linear circuit analysis

Vs

+
V+ D

R

0

e e

i i

0

1 D

1 2

MNA equations:

i1 + G(e1 − e2) = 0 ,

G(e2 − e1) + iD(e2) = 0 ,

e1 = V0 ,

where

iD(e2) = Is0 [exp (e2/VT )− 1] .

* The circuit equations can be assembled using the MNA or STA approach.

* Since the equations are non-linear, the N-R method is used to solve them.

* More expensive than a linear circuit of the same size, since several
(typically 3 to 5) N-R iterations are involved, each requiring the solution
of J∆x = −f.
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Outline

* Circuit simulation: introduction

* Nodal analysis

* Modified nodal analysis

* Sparse tableau approach

* Nonlinear circuits

* Transient (dynamic) analysis
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Transient (dynamic) analysis

V (t)s

V (t)s V (t)s

(a) (b)

(c) (d)

V (t)s

* In (a) and (b), we can use the techniques seen earlier. At a given time t,
we simply need to replace the source with a DC source with voltage =
Vs(t).

* In (c) and (d), the situation is very different due to the presence of a
capacitor which involves time derivatives.
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Transient analysis

a
R

b

C

0

vC

iC

* The capacitor current, iC = C
dvC
dt

, cannot be written in terms of the

instantaneous node voltages or branch voltages since its value depends on
the past behaviour of vC .

* We need some way of approximating the derivative in terms of the past
behaviour of vC .
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Discretization of time

∆∆∆∆ t t t t

time

2 31 N−1

t t t t t tNN−1

t t end

. . . . . .

begin

2 30 1

* Discretization of time is required since numerical solution can only be
obtained at a finite number of points.

* The time steps (∆ti ) may not be uniform.

* Generally, the time steps are computed dynamically, not a priori.
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Discretization of time
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(a) Typical simulator output.

(b) After connecting the output points with line segments.

(c) After removing the output points (but retaining the segments), the
waveform looks continuous, but this is an illusion!
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Transient simulation: Forward Euler method

tn tn+1

x

t

h

xn

xn+1
(predicted)

* Consider
dx

dt
= f (t, x). We have the solution at tn and want to

obtain x(tn+1).

* Compute the slope at tn:
dx

dt

∣∣∣∣
t=tn

= f (tn, xn).

*
xn+1 − xn
tn+1 − tn

≈ f (tn, xn)

→ xn+1 = xn + h f (tn, xn).
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Transient analysis: a quick look

tn tn+1

xn

xn+1

h
x

t

Method Approximation for
dx

dt
= f (t, x)

Forward Euler
xn+1 − xn

h
= f (tn, xn)

Backward Euler
xn+1 − xn

h
= f (tn+1, xn+1)

Trapezoidal
xn+1 − xn

h
=

1

2
[f (tn, xn) + f (tn+1, xn+1)]
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Application to ẋ =−x , with x(0) = 1

FE :
xn+1 − xn

h
= f (tn, xn) = −xn

BE :
xn+1 − xn

h
= f (tn+1, xn+1) = −xn+1

TRZ :
xn+1 − xn

h
=

1

2
[f (tn, xn) + f (tn+1, xn+1)] = −1

2
(xn + xn+1)

Simple manipulation yields the following approximations:

FE : xn+1 = xn (1− h)

BE : xn+1 = xn
1

1 + h

TRZ : xn+1 = xn
1− h/2

1 + h/2
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Application to ẋ =−x , with x(0) = 1

The exact solution is x̂(t) = e−t . Expanding around tn, we get,

x̂n+1 = x̂n + h
dx̂

dt
+ · · · = x̂n + h(−e−tn ) + · · · = x̂n(1− h + h2/2− h3/6 + · · · ) .

Compare with

FE : xn+1 = xn (1− h)

BE : xn+1 = xn
1

1 + h
= xn (1− h + h2 + · · · )

TRZ : xn+1 = xn
1− h/2

1 + h/2
= xn (1− h + h2/2− h3/4 + · · · )

* If h � 1, the three approximations are equivalent, as we would expect.

* If the starting point x(tn) is the same, the “error” (difference between the
exact and numerical solutions) is O(h2) for FE and BE, and O(h3) for
TRZ.
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Application to ẋ =−x , with x(0) = 1
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* The local error is the error made in a single step, assuming that the
starting point is exact. In this case, starting from the exact value,
x(0) = 1, the difference |x(h)− x̂(h)| has been computed.

* If h→ h/10, the error decreases by a factor of 102 for the FE and BE
methods, and by 103 for the TRZ method.

* The TRZ method is therefore said to be more accurate than FE or BE.
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Application to ẋ =−x , with x(0) = 1
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* The higher accuracy of the TRZ method allows larger time steps.
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Comparison of FE and BE for ẋ = −x , x(0) = 1
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Comparison of FE and BE for ẋ = −x , x(0) = 1

* Although the FE and BE methods are comparable in accuracy, the FE
method is unstable and therefore not useful for circuit simulation.

* Can we not use a smaller time step and avoid the instability problem?
Yes, but it increases the simulation time, and in some cases (stiff circuits),
by orders of magnitude!

* The issue of stability rules out many other methods as well.
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Explicit and implicit methods

Consider the ODE,

dx

dt
= −x2, with 1 ≤ t ≤ 5, x(1) = 1 .

Application of the FE, BE, and TRZ formulas yields,

xn+1 = xn + h (−x2
n ) (FE) ,

xn+1 = xn + h (−x2
n+1) (BE) ,

xn+1 = xn +
h

2
(−x2

n − x2
n+1) (TRZ) .

* In the FE formula, xn+1 can be explicitly evaluated in terms of xn.

* The BE and TRZ formulas result in equations which must be solved for
xn+1. This is much more work, and it gets worse when there are many
equations involved.

* However, the FE method is not useful because it can be unstable in some
cases.
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Choice of method for transient simulation

* Two major concerns: accuracy (order) and stability

* A method with a higher accuracy (order) is more efficient as it allows a
larger time step ⇒ fewer time points ⇒ faster simulation.

* However, high-order methods are conditionally stable, i.e., if the time step
is large (compared to the smallest time constant in the circuit), the
solution grows indefinitely, as in the FE example.

* Power electronic circuits are usually stiff (i.e., they involve time constants
which are vastly different), and one cannot afford to make h smaller than
the smallest τ because
(a) such a high resolution is not required,
(b) it would dramatically increase the simulation time.

* The stability constraints significantly reduce the choices available for
circuit simulation. BE, Gear (order 2), and Trapezoidal methods are
commonly used.
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Equivalent circuit for a capacitor

With Backward Euler method, we get
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Time step selection

* In some circuits, a constant ∆t is appropriate; in others, especially with
many switching events, automatic time step selection is more effective.

* Automatic time step selection is based on (a) estimate of the local
truncation error at a given time step, (b) convergence behaviour of N-R
iterations.

* Power electronic circuits are generally nonlinear; time step has a
significant impact on convergence of N-R iterations. Option (b) is
therefore very effective.

* N-R convergence

- The solution obtained at ti serves as the “initial guess” at ti+1.
- ∆t too large ⇒ N-R iterations may not converge.
- ∆t too small ⇒ large simulation time.
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Automatic time step selection
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Automatic time step selection: example
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Transient simulation: are the results accurate?

* very difficult to judge except for simple problems

* In practice, reduce ∆t by a factor of 2 and see if the results are different.

* Usually, the user would have some idea of the time scale, For example,
(a) Buck converter: ∆t = Tc/50 may be appropriate.
(b) Half-wave rectifier: ∆t = T/50 may be appropriate.
Such a rule of thumb provides a good starting point.
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Steady-State Waveform (SSW) Analysis

* In many periodic systems, only the steady-state behaviour is of interest
(and not how it is attained). e.g., power electronic circuits, rf circuits

* Transient simulation (from some initial condition to the steady state) may
involve thousands of cycles; this is very expensive.

* Total time for which transient simulation needs to be performed to reach
the steady state is not known a priori; need to rely on a trial-and-error
approach.

* It is much faster to obtain the steady-state information directly where a
nonlinear problem in the state variables is solved.
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SSW Analysis: Buck Converter
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* A large number of cycles are required if transient simulation is used.
(Note that, for this example, the steady state is not quite reached as
indicated by the small amplitude variation.)

* If a component value (L or C) is changed, we would not know how long
to simulate to attain steady state. This is cumbersome.
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SSW Analysis: Basic idea
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* Start with an initial guess for the state variable(s) (the capacitor voltage
here).

* Integrate for one cycle. Is Vc(T ) =Vc(0)?

* If yes (red curve), we have obtained the SSW solution; if not, we need to
compute a better initial guess (in an outer Newton-Raphson loop) and
repeat [7].
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SSW: Examples

Example Ntrns Nssw

Buck Converter 750 4

Boost Converter 625 3

Cúk Converter 1250 3

1-φ half-wave rectifier 150 3

1-φ half-controlled bridge converter 110 4

3-φ diode bridge rectifier 200 4

Induction motor 125 17

* Note the dramatic reduction in computational effort for the SSW method
as compared to transient analysis.
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