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Methods for transient analysis

Consider the system of ODE’s given by,

dx1

dt
= f1(t, x1, x2, . . . , xN ) ,

dx2

dt
= f1(t, x1, x2, . . . , xN ) ,

...
dxN

dt
= f1(t, x1, x2, . . . , xN ) ,

with the initial values at t = t0 specified as x1(t0) = x0
1 , x2(t0) = x0

2 , etc.

The equations can be written in a concise vector form:

dx

dt
= f(t, x) , x(t0) = x0 .

We will consider the special case of a single ODE:

dx

dt
= f (t, x) , x(t0) = x0 .
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Discretization of time

∆∆∆∆ t t t t

time

2 31 N−1

t t t t t tNN−1

t t end

. . . . . .

2 30 1

0

* Denote the exact solution of ẋ = f (t, x), x(t0) = x0 on [t0, tend], by x(t),
and the numerical solution by the sequence {xn}, where xn is the
numerical solution computed for t = tn.

* The primary objective of a numerical method is to obtain {xn} such that
|x(tn)− xn| is “small” for all n.
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* Denote the exact solution of ẋ = f (t, x), x(t0) = x0 on [t0, tend], by x(t),
and the numerical solution by the sequence {xn}, where xn is the
numerical solution computed for t = tn.

* The primary objective of a numerical method is to obtain {xn} such that
|x(tn)− xn| is “small” for all n.

M. B. Patil, IIT Bombay



What is a “well-posed” problem?

The initial value problem ẋ = f (t, x), a ≤ t ≤ b, x(a) =α,
is said to be well-posed [1] if

(a) a unique solution x(t) exists, and

(b) For any ε > 0, and

(i) some ε0 s.t. |ε0| < ε, and

(ii) a function δ(t) which is continuous on [a, b], with |δ(t)| < ε on [a, b],

there exists a positive constant k such that the perturbed problem,

ż = f (t, z) + δ(t), a ≤ t ≤ b, z(a) = α+ ε0 ,

has a unique solution, with

|z(t)− x(t)| < k ε for a ≤ t ≤ b .

* In other words, if the original problem is perturbed, the solution is perturbed in a
bounded manner.

* Numerical methods are expected to work well only for well-posed problems
because the problem being solved by these methods is generally a perturbed
version of the original problem (due to round-off errors, for example).
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The initial value problem ẋ = f (t, x), a ≤ t ≤ b, x(a) =α,
is said to be well-posed [1] if

(a) a unique solution x(t) exists, and

(b) For any ε > 0, and

(i) some ε0 s.t. |ε0| < ε, and

(ii) a function δ(t) which is continuous on [a, b], with |δ(t)| < ε on [a, b],

there exists a positive constant k such that the perturbed problem,
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ż = f (t, z) + δ(t), a ≤ t ≤ b, z(a) = α+ ε0 ,

has a unique solution, with

|z(t)− x(t)| < k ε for a ≤ t ≤ b .

* In other words, if the original problem is perturbed, the solution is perturbed in a
bounded manner.

* Numerical methods are expected to work well only for well-posed problems
because the problem being solved by these methods is generally a perturbed
version of the original problem (due to round-off errors, for example).

M. B. Patil, IIT Bombay



What is a “well-posed” problem?
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Broad classification of methods

Single−step Predictor−Corrector

ExplicitImplicit

Backward Euler

Trapezoidal

Forward Euler

Taylor series

Adams−Moulton Adams−Bashforth

Gear’s formulas

Heun’s method

Implicit

Multi−step

Runge−Kutta Runge−Kutta

Numerical methods for ODEs

Explicit

* Of these methods, only a small subset is useful for circuit simulation.

* Other classifications are possible, based on stability and order.
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Local Truncation Error (LTE) and Global Error

numerical

exact

ttn+1tn tn+2

x

t

x

LTE

ǫglobal

* The local truncation error is due to the approximations made in the algorithm. It
is local since the starting point is assumed to be exact.

* The global error is due to all previous local errors, but it is not a simple
accumulation of the local errors.

* Other sources of error: (a) round-off error due to finite precision (b) In case of
implicit methods, the equations are not solved exactly but to a certain tolerance.

* If the LTE is O(hk+1), the method is said to be of order k.
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Numerical methods for solving ODEs: issues of interest

* Is it one-step or multi-step?

* How is it derived?

* What is its order (accuracy)?

* What are its stability properties? (Will the method allow relatively large
time steps?)

* How is it implemented (for a single ODE and for a system of ODEs)?

* What is the computational effort per time step?

* What is the memory requirement?
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Problem description

timetn−2

xn−2

fn−2

tn−1

xn−1

fn−1

tn

xn

fn

tn+1

xn+1 ?

* The ODE to be solved is ẋ = f (t, x), with x(0) = x0. The numerical
solution up to tn is available, and that for tn+1 is to be computed.

* The past function values fn, fn−1, .. are also available.

* Single-step methods: Only the information at tn is used.

* Multi-step methods: The information at tn and some others
(tn−1, tn−2, ..) is also used.
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Taylor’s theorem

If a function x(t) and its first (n + 1) derivatives are continuous on an interval
containing tn and tn+1 (= tn + h), then the value of the function at tn+1 is
given by,

x(tn+1) = x(tn) + x ′(tn) h +
x ′′(tn)

2 !
h2 + · · ·+ x (k)(tn)

k !
hk +

x (k+1)(ξ)

(k + 1) !
hk+1 (1)

for some ξ between tn and tn+1.

* In other words, for the conditions specified on x(t), it is possible to find ξ,
tn < ξ < tn+1, such that Eq. 1 is satisfied exactly.

* As h→ 0, ξ → tn, and defining C = x (k+1)(tn)/(k + 1) !, the last term in
Eq. 1 approaches Chk+1.

* We can rewrite Taylor’s theorem as,

x(tn+1) = x(tn) + x ′(tn) h +
x ′′(tn)

2 !
h2 + · · ·+ x (k)(tn)

k !
hk +O(hk+1) . (2)
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Taylor series methods for solving ẋ = f (t, x)

Taylor’s theorem:

x(tn+1) = x(tn) + x ′(tn) h + O(h2) ,

x(tn+1) = x(tn) + x ′(tn) h +
x ′′(tn)

2 !
h2 + O(h3) , etc.

We want to apply this to
dx

dt
= f (t, x) .

In the Taylor series method of order k, the first k derivative terms are retained.

xn+1 = xn + hf n ,

xn+1 = xn + hf n +
h2

2
(f n

t + f nf n
x ) ,

where f n = f (tn, xn), f n
t =

∂f

∂t
(tn, xn), and f n

x =
∂f

∂x
(tn, xn).
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Taylor series method for solving ẋ = f (t, x)

The derivatives can be computed as,

x ′(tn) = f (tn, x(tn)) ,

x ′′(tn) =
∂f

∂t
+
∂f

∂x

dx

dt
= ft + f fx ,

x (3)(tn) =
∂

∂t
[ft + f fx ] +

∂

∂x
[ft + f fx ] f

= [ftt + f fxt + ft fx ] + [ftx + fx fx + f fxx ] f

= ftt + 2 f fxt + ft fx + f f 2
x + f 2 fxx ,

Note that computation of the derivatives becomes expensive as the order

increases → Runge-Kutta methods.
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Runge-Kutta method for solving ẋ = f (t, x)

ttn−2 tn−1 tn tn+1

h

α1h

* Basic idea: Instead of evaluating higher-order derivatives (as required in
Taylor series method), evaluate the function f (t, x) at some intermediate
points such that the resulting formula is equivalent to a Taylor series
formula.

* Note that this is still a single-step method since we are using information
only at tn (and not tn−1, tn−2, etc.).
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Runge-Kutta method for solving ẋ = f (t, x)

ttn−2 tn−1 tn tn+1

h

α1h

Consider the algorithm given by,

f0 = f (tn, xn) ,

f1 = f (tn + α1 h, xn + h β1,0 f0) , (α1 < 1) ,

xn+1 = xn + h[γ0 f0 + γ1 f1] .

* Only function evaluations are involved (and not derivative computation).

* The algorithm looks very different than the Taylor series method, but let
us take a closer look.

* The reason for using subscripts for α and β will become clear later.
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Runge-Kutta method for solving ẋ = f (t, x)

* Taylor series for a function of two variables:

f (t , x) = f (tn, xn) + ft (tn, xn)(t − tn) + fx (tn, xn)(x − xn)

+
1

2 !

[
ftt (tn, xn)(t − tn)2 + ftx (tn, xn)(t − tn)(x − xn) + fxx (tn, xn)(x − xn)2

]
+ Higher-order terms .

* Substituting t = tn + α1 h and x = xn + h β1,0 f0, we get

xn+1 = xn + h[γ0 f0 + γ1 f (tn + α1 h, xn + h β1,0 f0)]

= xn + γ0hf + γ1hf + α1γ1h2ft + β1,0γ1h2ffx + O(h3) .

* Compare with the second-order Taylor series method,

xn+1 = xn + h f +
h2

2
(ft + f fx ) .

* With the conditions,
γ0 + γ1 = 1 ,

α1γ1 = 1/2 ,

β1,0γ1 = 1/2 ,

the two algorithms are the same to O(h2).
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Runge-Kutta method for solving ẋ = f (t, x)

* There are four parameters for this method (α1, β1,0, γ0, γ1) and only three
constraints:

γ0 + γ1 = 1 ,

α1γ1 = 1/2 ,

β1,0γ1 = 1/2 .

* It is therefore not one method, but a family of methods.

* We can treat one of them (say, γ0) as a “free” parameter. Assigning a
value to the free parameter then defines the algorithm completely.

* The parameters (α1, β1,0, γ0, γ1) are chosen so that the LTE is small for
problems that are typically encountered.

* For example, if γ0 is chosen to be 1/4, we get
α1 = 2/3, β1,0 = 2/3, γ1 = 3/4.

* The corresponding algorithm is,

f0 = f (tn, xn) ,

f1 = f (tn + 2
3
h, xn + 2

3
hf0) ,

xn+1 = xn + h [ 1
4
f0 + 3

4
f1] .
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Butcher array representation of RK methods [4]

f0 f1 · · · fs−1 fs

α0 β0,0 β0,1 β0,s−1 β0,s X0

α1 β1,0 β1,1 β1,s−1 β1,s X1

...
...

αs βs,0 βs,1 βs,s−1 βs,s Xs

γ0 γ1 · · · γs−1 γs

Interpretation: For i = 0, 1, · · · , s,

Ti = tn + αi h ,

Xi = xn + h
s∑

j=0

βi,j fj ,

fi = f (Ti ,Xi ) .

Finally,

xn+1 = xn + h
s∑

i=0

γi fi .
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Explicit RK methods

* When the β matrix in the Butcher array is lower-triangular, the RK method is
explicit, i.e., the computation of fi involves only f1, f2, · · · , fi−1.

* We can compute f0 = f (tn, xn), then f1 (using f0), followed by f2 (using f0 and
f1), and so on.

Examples: second-order formulas [4]

0

1
2

1
2

0 1

α1 = 1
2

0

2
3

2
3
1
4

3
4

α1 = 2
3

(Heun form)

0

1 1

1
2

1
2

α1 = 1

(Improved Euler)
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Explicit RK methods

Examples: third-order formulas [4]

0

1
2

1
2

1 −1 2

3
8

2
3

1
6

α1 = 1
2

, α2 = 1

(Classic form)

0

2
3

2
3

2
3

0 2
3

1
4

3
8

3
8

α1 = α2 = 2
3

(Nystrom form)

0

1
3

1
3

2
3

0 2
3

1
4

0 3
4

α1 = 1
3

, α2 = 2
3

(Heun form)
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Explicit RK methods

Examples: fourth-order formulas [4]

0

1
2

1
2

1
2

0 1
2

1 0 0 1

1
6

1
3

1
3

1
6

α1 = α2 = 1
2

(Classic form)

0

1
3

1
3

2
3
− 1

3
1

1 1 -1 1
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Implicit RK methods

* When there are non-zero entries on the diagonal or in the upper triangle of the β
matrix of the Butcher array, the corresponding RK method is an implicit
method.

* In this case, computation of fi may involve fi , fi+1, etc., thus ruling out a simple
successive computation of f0, f1, f2,· · · (which is possible for explicit RK
methods).

* Computation of fi would then require an iterative procedure, which makes it
expensive.

However, implicit methods have some advantages:

* An implicit RK formula may allow a higher order as compared to an explicit RK
formula with the same number of stages.

* Implicit formulas generally have better stability properties.
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Implicit RK methods [4]

Examples:
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RK method: system of equations

The RK methods (both explicit and implicit) can be used to solve a system of ODEs,

dx

dt
= f(t, x) , x(t0) = x0 .

The computation involves the following:

For i = 0, 1, · · · , s,

Ti = tn + αi h ,

Xi = xn + h
s∑

j=0

βi,j fj ,

fj = f (Ti ,Xi) ,

and finally,

xn+1 = xn + h
s∑

i=0

γi fi .

M. B. Patil, IIT Bombay
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Outline

* Introduction and problem definition

* Taylor series methods

* Runge-Kutta methods

* Specific multi-step methods

* Generalized multi-step methods

* Predictor-corrector methods

* Numerical results

* Stability of numerical methods

* Regions of stability

* Stiff equations

* Adaptive step size

* Miscellaneous topics
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Multi-step methods for solving ẋ = f (t, x)

Consider fitting the function x(t) with a staight line.
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approximation

The fit can be improved in two ways:

* Reduce the time step.

* Use a higher-order polynomial.
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Consider fitting the function x(t) with a staight line.

   −8

   −4

    0

 0.1  0.14  0.18
t

er
ro

r

  −12

    0

   10

   20

   30

x

x(t)

approximation

The fit can be improved in two ways:

* Reduce the time step.

* Use a higher-order polynomial.

M. B. Patil, IIT Bombay



Multi-step methods for solving ẋ = f (t, x)

Use of a smaller time step:
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dashed line: approximation

solid line: x(t)

* The approximation is better when the step size is reduced.

* A larger number of time steps ⇒ slower simulation

M. B. Patil, IIT Bombay



Multi-step methods for solving ẋ = f (t, x)
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Multi-step methods for solving ẋ = f (t, x)

Use of a higher-order polynomial:

p=1 p=2 p=3
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* The approximation is better when the order is increased.

* For fitting with a polynomial of order p, we need (p + 1) points.

* The Adams-Bashforth and Adams-Moulton methods are based on approximating
x(t) with a polynomial.

M. B. Patil, IIT Bombay



Multi-step methods for solving ẋ = f (t, x)
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Adams-Bashforth methods for ẋ = f (t, x)
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t tt t t tn−2n−3n−4 n−1 n n+1 t

f

* Motivation:

x(tn+1) = x(tn) +

∫ tn+1

tn

x ′(t)dt

= x(tn) +

∫ tn+1

tn

f dt .
(3)

* Obtain a polynomial (in t) which passes through (tn, fn), (tn−1, fn−1), etc.

* Compute

∫ tn+1

tn

f dt in Eq. 3 using the approximation for f ⇒ Adams-Bashforth

formula.
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Adams-Bashforth methods for ẋ = f (t, x)

The AB formula of order p is given by,

x(tn+1) = x(tn) + h

p−1∑
i=0

βi fn−i . (4)

Order β0 β1 β2 β3 β4 β5 LTE

1 1 1
2

h2x ′′(ξ0)

2 3
2

− 1
2

5
12

h3x(3)(ξ0)

3 23
12

− 16
12

5
12

9
24

h4x(4)(ξ0)

4 55
24

− 59
24

37
24

− 9
24

251
720

h5x(5)(ξ0)

5 1901
720

− 2774
720

2616
720

− 1274
720

251
720

475
1440

h6x(6)(ξ0)

6 4277
1440

− 7923
1440

9982
1440

− 7298
1440

2877
1440

− 475
1440

19,087
60,480

h7x(7)(ξ0)

(Note that the AB1 formula is the same as Forward Euler.)
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Adams-Moulton methods for ẋ = f (t, x)
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t tt t t tn−2n−3n−4 n−1 n n+1

f

t

* Motivation:

x(tn+1) = x(tn) +

∫ tn+1

tn

x ′(t)dt

= x(tn) +

∫ tn+1

tn

f dt .
(5)

* Obtain a polynomial (in t) which passes through (tn+1, fn+1), (tn, fn),
(tn−1, fn−1), etc. Note the involvement of fn+1 here, which makes the AM
methods implicit in nature.

* Compute

∫ tn+1

tn

f dt in Eq. 5 using the approximation for f ⇒ Adams-Moulton

formula.
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Adams-Moulton methods for ẋ = f (t, x)

The AM formula of order p is given by,

x(tn+1) = x(tn) + h

p−2∑
i=−1

βi fn−i . (6)

Order β−1 β0 β1 β2 β3 β4 LTE

1 1 − 1
2

h2x ′′(ξ0)

2 1
2

1
2

− 1
12

h3x(3)(ξ0)

3 5
12

8
12

− 1
12

− 1
24

h4x(4)(ξ0)

4 9
24

19
24

− 5
24

1
24

− 19
720

h5x(5)(ξ0)

5 251
720

646
720

− 264
720

106
720

− 19
720

− 27
1440

h6x(6)(ξ0)

6 475
1440

1427
1440

− 798
1440

482
1440

− 173
1440

27
1440

− 863
60,480

h7x(7)(ξ0)

* The AM1 and AM2 formulas are the same as the Backward Euler and
trapezoidal methods, respectively.

* By comparing the LTE columns in the AB and AM tables, we see that, for the
same order, the AM formula is more accurate.
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same order, the AM formula is more accurate.
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Adams-Moulton methods for ẋ = f (t, x)

The AM formula of order p is given by,

x(tn+1) = x(tn) + h

p−2∑
i=−1

βi fn−i . (6)
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2

1
2

− 1
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8
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− 1
24
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24
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1
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− 19
720
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Backward Differentiation Formulas (BDF): Gear’s formulas

We are looking for x(t) which will satisfy the ODE at t = tn+1, i.e.,

ẋ(tn+1) = f (tn+1, xn+1) . (7)

* First, obtain x̃(t), a polynomial approximation for x(t), passing through
(tn+1,xn+1), (tn,xn), (tn−1,xn−1), · · · .

* Differentiate to get an expression for ˜̇x(t).

* Replace the LHS of Eq. 7 with ˜̇x(t) at t = tn+1. ⇒ BDF formula

* BDFs are implicit in nature since f (tn+1, xn+1) appears in the formula.

M. B. Patil, IIT Bombay



Backward Differentiation Formulas (BDF): Gear’s formulas

We are looking for x(t) which will satisfy the ODE at t = tn+1, i.e.,
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ẋ(tn+1) = f (tn+1, xn+1) . (7)

* First, obtain x̃(t), a polynomial approximation for x(t), passing through
(tn+1,xn+1), (tn,xn), (tn−1,xn−1), · · · .

* Differentiate to get an expression for ˜̇x(t).

* Replace the LHS of Eq. 7 with ˜̇x(t) at t = tn+1. ⇒ BDF formula

* BDFs are implicit in nature since f (tn+1, xn+1) appears in the formula.

M. B. Patil, IIT Bombay



BDFs for ẋ = f (t, x)

The general form of the BDF of order p is,

p−1∑
i=−1

αi xn−i = h f (tn+1, xn+1) . (8)

Order α−1 α0 α1 α2 α3 α4 α5 LTE

1 1 −1 − 1
2

h2x ′′(ξ)

2 3
2

−2 1
2

− 2
9

h3x ′′′(ξ)

3 11
6

−3 − 3
2

− 1
3

− 3
22

h4x(4)(ξ)

4 25
12

−4 3 − 4
3

1
4

− 12
125

h5x(5)(ξ)

5 137
60

−5 5 − 10
3

5
4

− 1
5

− 10
137

h6x(6)(ξ)

6 147
60

−6 15
2

− 20
3

15
4

− 6
5

1
6

− 60
1029

h7x(7)(ξ)

(Note that the BDF1 formula is the same as the Backward Euler method.)
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Generalized linear multi-step methods

The AB, AM, and BDF methods are special cases of “linear multi-step methods”
(LMM) given by,

k∑
i=−1

αi xn−i = h
k∑

i=−1

βi f (tn−i , xn−i ) .

Method k αi βi

AB p − 1 αi = 0, i = 1 to k β−1 = 0

AM p − 2 αi = 0, i = 1 to k –

BDF p − 1 – βi = 0, i = 0 to k

* Many other LMMs can be derived; all we need to do is to pick a polynomial
passing through a suitable set of points.

* What is so special about the AM, AB, and BDF methods? (to be discussed)
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Exactness constraints for LMMs [6] for solving ẋ = f (t, x)

tn+1tntn−1tn−2

h0
t−h−2h

As an example, consider the LMM given by,

α−1 xn+1 + α0 xn + α1 xn−1 = h β−1 fn+1 . (9)

There are three independent coefficients here ⇒ the LMM formula is expected to
accurately predict xn+1 if x(t) is a second-order polynomial.

In particular, consider the special cases: (a) x(t) = 1, (b) x(t) = t, and (c) x(t) = t2.

For x(t) = 1, f (t, x) = 0, and xn−1 = xn = xn+1 = 1. Substituting in (9), we get,

α−1 + α0 + α1 = 0 .

Similarly, the other two exactness constraints can be derived.
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Exactness constraints for LMMs for solving ẋ = f (t, x)

x f xn+1 Constraint

1 0 1 α−1 + α0 + α1 = 0

t 1 h α−1 − α1 = β−1

t2 2 t h2 α−1 + α1 = 2β−1

* With β−1 = 1, we get α−1 = 3/2, α0 =−2, and α1 = 1/2.

* The LMM formula is therefore,

3

2
xn+1 − 2 xn +

1

2
xn−1 = h fn+1 .

* This is the same as the BDF2 formula.
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Exactness constraints for generalized LMM

k∑
i=−1

αi xn−i = h
k∑

i=−1

βi f (tn−i , xn−i ) .

By following the procedure described earlier, we get the following constraints:

x(t) = 1 :
k∑

i=−1

αi = 0 ,

x(t) = t :
k∑

i=−1

αi (−ih) = h
k∑

i=−1

βi ,

x(t) = t2 :
k∑

i=−1

αi (−ih)2 = h
k∑

i=−1

2βi (−ih) ,

...
...

x(t) = tp :
k∑

i=−1

αi (−ih)p = h
k∑

i=−1

p βi (−ih)p−1 .

(10)
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Predictor-corrector methods

* For the same order, AM methods are more accurate than AB methods.

* AB methods are explicit whereas AM methods are implicit.
⇒ For the same order, the AB method is faster.

* Can we combine the best of the AB and AM methods?
⇒ Predictor-Corrector (PC) methods

* In the PC method, in going from tn to tn+1,

- “Predict” xn+1 using an explicit method (such as AB).
- “Correct” xn+1 using an implicit method (such as AM). However, in this

step, use the implicit formula as an “evaluation” formula, i.e., treat xn+1 in
the RHS as a known value (given by the predicted xn+1).

- Repeat to the desired tolerance.
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- “Correct” xn+1 using an implicit method (such as AM). However, in this

step, use the implicit formula as an “evaluation” formula, i.e., treat xn+1 in
the RHS as a known value (given by the predicted xn+1).

- Repeat to the desired tolerance.
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Predictor-corrector method for solving ẋ = f (t, x)

Example: Use AB1 as predictor and AM2 as corrector.

Prediction (P) x
(0)
n+1 = xn + h fn (AB1)

Evaluation (E) f
(0)

n+1 = f (tn+1, x
(0)
n+1)

Correction (C) x
(1)
n+1 = xn +

h

2
(fn + f

(0)
n+1) (AM2)

Evaluation (E) f
(1)

n+1 = f (tn+1, x
(1)
n+1)

* We can repeat this process, e.g., PECECE, or PE(CE)k .

* If the process is taken to covergence, we could obtain the same result as using
the implicit (corrector) formula alone, i.e., solving the implicit equation of the
corrector exactly.

* Generally, one or two CE steps give a substantially better accuracy (over the
predicted xn+1).
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Example: Use AB1 as predictor and AM2 as corrector.

Prediction (P) x
(0)
n+1 = xn + h fn (AB1)

Evaluation (E) f
(0)

n+1 = f (tn+1, x
(0)
n+1)

Correction (C) x
(1)
n+1 = xn +

h

2
(fn + f

(0)
n+1) (AM2)

Evaluation (E) f
(1)

n+1 = f (tn+1, x
(1)
n+1)

* We can repeat this process, e.g., PECECE, or PE(CE)k .

* If the process is taken to covergence, we could obtain the same result as using
the implicit (corrector) formula alone, i.e., solving the implicit equation of the
corrector exactly.

* Generally, one or two CE steps give a substantially better accuracy (over the
predicted xn+1).

M. B. Patil, IIT Bombay



Predictor-corrector method for solving ẋ = f (t, x)
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Predictor-corrector method for solving ẋ = f (t, x)

Example: Use AB1 as predictor and AM2 as corrector for the ODE,

ẋ = 2 x − x2, with x(0) = 1 (analytic solution: x(t) = 2/(1 + exp(−2t)))

step size (h) 0.05 0.1 0.2

predicted x(h) 1.05 1.1 1.2

corrected x(h) (1) 1.04993750 1.09950000 1.19600000

(2) 1.04993766 1.09950499 1.19615840

(3) 1.04993766 1.09950494 1.19615219

(4) 1.04993766 1.09950494 1.19615243

(5) 1.04993766 1.09950494 1.19615242

x(h) (TRZ) 1.04993766 1.09950494 1.19615242

x(h) (exact) 1.04995837 1.09966799 1.19737532

LTE 2.0719×10−5 1.6306×10−4 1.2229×10−3
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Outline
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* Runge-Kutta methods
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Numerical examples: local/global error versus h
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Local and global errors versus step size h for ẋ = −x , with x(0) = 1, for Forward Euler, Backward

Euler, Trapezoidal, and Runge-Kutta (4th order) methods. The local error has been computed for

the first step, i.e., from t = 0 to t = h. The global error has been computed at t = 1.
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Local and global errors versus step size h for ẋ = −x , with x(0) = 1, for AB2, AM2, AB3, and

AM3 methods. The local error has been computed for the first step, i.e., from t = 0 to t = h. The

global error has been computed at t = 1.
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Numerical examples: comparison of methods
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Exact and numerical solutions for ẋ =sin(t), with x(0) = 1. (a) Forward Euler, (b) Backward Euler,

(c) Trapezoidal, and (d) Runge-Kutta (4th order).
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Remarks on numerical examples

* For a method of order p,

- the local error is O(hp+1), i.e., if h is reduced by 10, the local error goes
down by 10p+1.

- the global error is O(hp), i.e., if h is reduced by 10, the global error goes

down by 10p .

* A higher-order method is more accurate and therefore allows larger time steps to
be taken.

* Should we always prefer a high-order method?
NO. Need to worry about stability.
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Stability of numerical methods for ẋ = f (t, x)

* A numerical method generates a sequence of numbers, x1, x2, · · · to
approximate the actual values of the solution x(t1), x(t2), · · ·

* At a given time point tk , there is an error εk associated with the numerical
solution xk due to algorithmic and round-off errors.

* If the numerical method causes this error to get amplified in the subsequent time
intervals, |xn − x(tn)| can become indefinitely large as n→∞, and the method
is said to be unstable.

* Need to consider two cases:

- stability for small h (h→ 0)

- stability for large h
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* A numerical method generates a sequence of numbers, x1, x2, · · · to
approximate the actual values of the solution x(t1), x(t2), · · ·

* At a given time point tk , there is an error εk associated with the numerical
solution xk due to algorithmic and round-off errors.

* If the numerical method causes this error to get amplified in the subsequent time
intervals, |xn − x(tn)| can become indefinitely large as n→∞, and the method
is said to be unstable.

* Need to consider two cases:

- stability for small h (h→ 0)

- stability for large h

M. B. Patil, IIT Bombay



Stability of numerical methods for ẋ = f (t, x)
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Stability for small h

* If small discrepancies due to a slightly different initial condition, algorithmic
errors, or round-off errors lead to correspondingly small changes in the computed
solution, then the method is said to be stable (for small h).

* A method that is not stable in the above sense is of no practical use because
errors are always introduced in solving an ODE numerically, which will cause an
unstable method to “blow up” at some point of time.

* Runge-Kutta methods are stable.

* Linear multi-step methods (LMMs) can be unstable.
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Stability for small h: LMMs

Consider a linear multi-step method of order p,

k∑
i=−1

αi xn−i = h
k∑

i=−1

βi f (tn−i , xn−i ) .

* Perturb the starting values; let ∆ be the largest perturbation.

* Perturb the recipe for evaluating xn+1 as,

k∑
i=−1

αi xn−i = h
k∑

i=−1

βi f (tn−i , xn−i ) + δn .

* If the difference between the original numerical solution (xorig
n ) and the numerical

solution of the perturbed problem (xnew
n ) is such that,

max |xorig
n − xnew

n | ≤ S max(|∆|,max |δn|) ,
then the method is called zero-stable or D-stable (after Dahlquist) or simply
stable.
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Stability for small h: LMMs

Consider two explicit second-order LMMs [2]:

(a) AB2: xn+1 = xn + h (1.5 fn − 0.5 fn−1)

(b) New2: xn+1 = 2.1 xn − 1.1 xn−1 + h (0.95 fn − 1.05 fn−1)
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h=0.05

AB2

h=0.05

New2

h=0.01

New2

(c)(a)

numerical

exact
exact

(b)

numerical

exact
numerical

 3  0  1  2
t

 3 0  1  2
t

 0

 1

x

 0  1  2  3
t

* New2 is unstable while AB2 is stable.

* Why are these two methods so different?

M. B. Patil, IIT Bombay



Stability for small h: LMMs

Consider two explicit second-order LMMs [2]:

(a) AB2: xn+1 = xn + h (1.5 fn − 0.5 fn−1)

(b) New2: xn+1 = 2.1 xn − 1.1 xn−1 + h (0.95 fn − 1.05 fn−1)

* Both of these methods satisfy the exactness constraints (discussed earlier).

* Apply the two methods to ẋ =−x , x(0) = 1.
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Difference equations: general solution

Consider a linear difference equation with constant (real) coefficients,

ak xm+k + ak−1xm+k−1 + · · ·+ a1xm+1 + a0xm = b . (11)

* The solution has two parts: (a) homogeneous, (b) particular.

* For the homogeneous part (i.e., b = 0), we seek a solution of the form x
(h)
i = z i ,

substitute it in Eq. 11, and obtain

zm
[
ak zk + ak−1zk−1 + · · ·+ a1z + a0

]
= 0 . (12)

* Eq. 12 has the trivial solution z = 0, or

ak zk + ak−1zk−1 + · · ·+ a1z + a0 = 0 . (13)

* Eq. 13 is called the characteristic equation of the difference equation (Eq. 11).

M. B. Patil, IIT Bombay



Difference equations: general solution

Consider a linear difference equation with constant (real) coefficients,

ak xm+k + ak−1xm+k−1 + · · ·+ a1xm+1 + a0xm = b . (11)

* The solution has two parts: (a) homogeneous, (b) particular.

* For the homogeneous part (i.e., b = 0), we seek a solution of the form x
(h)
i = z i ,

substitute it in Eq. 11, and obtain

zm
[
ak zk + ak−1zk−1 + · · ·+ a1z + a0

]
= 0 . (12)

* Eq. 12 has the trivial solution z = 0, or

ak zk + ak−1zk−1 + · · ·+ a1z + a0 = 0 . (13)

* Eq. 13 is called the characteristic equation of the difference equation (Eq. 11).

M. B. Patil, IIT Bombay



Difference equations: general solution

Consider a linear difference equation with constant (real) coefficients,

ak xm+k + ak−1xm+k−1 + · · ·+ a1xm+1 + a0xm = b . (11)

* The solution has two parts: (a) homogeneous, (b) particular.

* For the homogeneous part (i.e., b = 0), we seek a solution of the form x
(h)
i = z i ,

substitute it in Eq. 11, and obtain

zm
[
ak zk + ak−1zk−1 + · · ·+ a1z + a0

]
= 0 . (12)

* Eq. 12 has the trivial solution z = 0, or

ak zk + ak−1zk−1 + · · ·+ a1z + a0 = 0 . (13)

* Eq. 13 is called the characteristic equation of the difference equation (Eq. 11).

M. B. Patil, IIT Bombay



Difference equations: general solution

Consider a linear difference equation with constant (real) coefficients,

ak xm+k + ak−1xm+k−1 + · · ·+ a1xm+1 + a0xm = b . (11)

* The solution has two parts: (a) homogeneous, (b) particular.

* For the homogeneous part (i.e., b = 0), we seek a solution of the form x
(h)
i = z i ,

substitute it in Eq. 11, and obtain

zm
[
ak zk + ak−1zk−1 + · · ·+ a1z + a0

]
= 0 . (12)

* Eq. 12 has the trivial solution z = 0, or

ak zk + ak−1zk−1 + · · ·+ a1z + a0 = 0 . (13)

* Eq. 13 is called the characteristic equation of the difference equation (Eq. 11).

M. B. Patil, IIT Bombay



Difference equations: general solution

Consider a linear difference equation with constant (real) coefficients,

ak xm+k + ak−1xm+k−1 + · · ·+ a1xm+1 + a0xm = b . (11)

* The solution has two parts: (a) homogeneous, (b) particular.

* For the homogeneous part (i.e., b = 0), we seek a solution of the form x
(h)
i = z i ,

substitute it in Eq. 11, and obtain

zm
[
ak zk + ak−1zk−1 + · · ·+ a1z + a0

]
= 0 . (12)

* Eq. 12 has the trivial solution z = 0, or

ak zk + ak−1zk−1 + · · ·+ a1z + a0 = 0 . (13)

* Eq. 13 is called the characteristic equation of the difference equation (Eq. 11).

M. B. Patil, IIT Bombay



Difference equations: general solution

* If the roots of the characteristic equation, z1, z2, · · · , zk , are distinct, then the
general solution of Eq. 12 is given by

x
(h)
i = c1z i

1 + c2z i
2 + · · ·+ ck z i

k . (14)

* If the roots are not distinct, then the general form for x
(h)
i gets modified. As an

example, if z1, z2, · · · , zl are identical, and the other roots are distinct, then x
(h)
i

is given by,

x
(h)
i = (c1 + c2n + · · ·+ cl n

l−1)z i
1 + cl+1z i

l+1 + · · ·+ ck z i
k . (15)

* The complete solution of Eq. 11 is then given by,

xi = x
(h)
i + x

(p)
i , (16)

where x
(p)
i is a particular solution. The constants c1, c2, etc. can be determined

from the initial condition(s), i.e., the starting values in the sequence {xi}.
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Stability of LMMs

* Consider the characteristic equation

k∑
i=−1

αi z1−i = 0 , (17)

associated with the LMM,

k∑
i=−1

αi xn−i = h
k∑

i=−1

βi f (tn−i , xn−i ) . (18)

Let the roots of Eq. 17 be z1, z2, · · · , zk . If |zi | ≤ 1 for all i , and all roots with
magnitude 1 are simple, then the LMM is said to satisfy the root condition.

* If an LMM satisfies the root condition, and if the only root of the associated
characteristic equation with magnitude one is equal to 1, then the LMM is said
to be strongly stable.

* If an LMM satisfies the root condition, and if more than one (distinct) roots of
the associated characteristic equation have magnitude one, then the LMM is
said to be weakly stable.

* If an LMM does not satisfy the root condition, it is said to be unstable.

M. B. Patil, IIT Bombay



Stability of LMMs

* Consider the characteristic equation

k∑
i=−1

αi z1−i = 0 , (17)

associated with the LMM,

k∑
i=−1

αi xn−i = h
k∑

i=−1

βi f (tn−i , xn−i ) . (18)

Let the roots of Eq. 17 be z1, z2, · · · , zk . If |zi | ≤ 1 for all i , and all roots with
magnitude 1 are simple, then the LMM is said to satisfy the root condition.

* If an LMM satisfies the root condition, and if the only root of the associated
characteristic equation with magnitude one is equal to 1, then the LMM is said
to be strongly stable.

* If an LMM satisfies the root condition, and if more than one (distinct) roots of
the associated characteristic equation have magnitude one, then the LMM is
said to be weakly stable.

* If an LMM does not satisfy the root condition, it is said to be unstable.

M. B. Patil, IIT Bombay



Stability of LMMs

* Consider the characteristic equation

k∑
i=−1

αi z1−i = 0 , (17)

associated with the LMM,

k∑
i=−1

αi xn−i = h
k∑

i=−1

βi f (tn−i , xn−i ) . (18)

Let the roots of Eq. 17 be z1, z2, · · · , zk . If |zi | ≤ 1 for all i , and all roots with
magnitude 1 are simple, then the LMM is said to satisfy the root condition.

* If an LMM satisfies the root condition, and if the only root of the associated
characteristic equation with magnitude one is equal to 1, then the LMM is said
to be strongly stable.

* If an LMM satisfies the root condition, and if more than one (distinct) roots of
the associated characteristic equation have magnitude one, then the LMM is
said to be weakly stable.

* If an LMM does not satisfy the root condition, it is said to be unstable.

M. B. Patil, IIT Bombay



Stability of LMMs

* Consider the characteristic equation

k∑
i=−1

αi z1−i = 0 , (17)

associated with the LMM,

k∑
i=−1

αi xn−i = h
k∑

i=−1

βi f (tn−i , xn−i ) . (18)

Let the roots of Eq. 17 be z1, z2, · · · , zk . If |zi | ≤ 1 for all i , and all roots with
magnitude 1 are simple, then the LMM is said to satisfy the root condition.

* If an LMM satisfies the root condition, and if the only root of the associated
characteristic equation with magnitude one is equal to 1, then the LMM is said
to be strongly stable.

* If an LMM satisfies the root condition, and if more than one (distinct) roots of
the associated characteristic equation have magnitude one, then the LMM is
said to be weakly stable.

* If an LMM does not satisfy the root condition, it is said to be unstable.

M. B. Patil, IIT Bombay



Stability of LMMs

Coming back to AB2 and New2,

AB2 xn+1 = xn + h (1.5 fn − 0.5 fn−1)

char. eqn.: z − 1 = 0 .

roots: z1 = 1 .

New2 xn+1 = 2.1 xn − 1.1 xn−1 + h (0.95 fn − 1.05 fn−1)

char. eqn.: z2 − 2.1 z + 1.1 = 0 .

roots: z1 = 1, z2 = 1.1 .

* AB2 satisfies the root condition; New2 does not.

* For the New2 method, the general solution, c1zn
1 + c2zn

2 , can grow indefinitely
since |z2| > 1.

* Even if c2 is forced to be zero because of initial conditions, numerical errors can
make it non-zero.
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Stability for large h

* A numerical method that is unstable even for small values of h (e.g., the “New2”
method seen earlier) is practically useless since it is unstable for any problem.

* A method that is stable for small h (e.g., the AB2 method) may still be unstable
in a different sense, viz., unstable if h exceeds a certain value, say, hmax.

* hmax would depend on the ODE being solved. Generally, it is determined for the
test equation,

ẋ = λx , x(0) = 1 , (19)

where λ is a constant, a complex number in general. Eq. 19 is representative of
several problems of practical importance, such as RC circuits.
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Stability for large h (for ẋ = λx , x(0) = 1)

Let λ be real and negative. Consider the Forward Euler method,

xn+1 = xn + h f (tn, xn)

= xn + hλ xn

= xn (1 + hλ)

(20)

The characteristic equation for this difference equation is,

z − (1 + hλ) = 0 , (21)

for which the general solution is given by,

xi = c1 z i
1

= (1 + hλ)i .
(22)

(c1 = 1 is required to satisfy the initial condition, x0 = 1.)
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Stability for large h (for ẋ = λx , x(0) = 1)

* The exact solution is x(t) = exp(λt) which, for tk = kh and |hλ| � 1, is

x(tk ) = eλtk = ekhλ

≈ (1 + hλ)k .

* Comparing with the numerical solution,

xk = (1 + hλ)k
,

we see that the numerical solution will approximate the true solution if hλ is small.

* As h is increased, z1 = 1 + hλ decreases (since λ < 0), and for hλ=−2, z1 becomes equal

to -1 (see figure). Beyond this point, |z1| > 1, and the numerical solution (xk = c1 zk
1 )

grows indefinitely with k ⇒ instability.

FE

 −1.5

 −1.0

 −0.5

 0.0

 0.5

 1.0

 −2.5  −2.0  −1.5  −1.0  −0.5  0.0

hλ
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z1
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≈ (1 + hλ)k .

* Comparing with the numerical solution,
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,

we see that the numerical solution will approximate the true solution if hλ is small.

* As h is increased, z1 = 1 + hλ decreases (since λ < 0), and for hλ=−2, z1 becomes equal

to -1 (see figure). Beyond this point, |z1| > 1, and the numerical solution (xk = c1 zk
1 )

grows indefinitely with k ⇒ instability.
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Stability for large h (for ẋ = λx , x(0) = 1)

Consider the second-order Adams-Bashforth method. The difference equation is,

xn+1 = xn + hλ

[
3

2
xn −

1

2
xn−1

]
.

The characteristic equation for this case is,

z2 −
(

1 +
3hλ

2

)
z +

(
hλ

2

)
= 0 ,

with the roots,

z1,2 =
1

2


(

1 +
3hλ

2

)
±

√(
1 +

3hλ

2

)2

− 2hλ

 ,

and the general solution,

xi = c1z i
1 + c2z i

2 .
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Stability for large h (AB2 method for ẋ = λx , x(0) = 1)

AB2
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* For small values of hλ, z1 represents ehλ more closely than in the FE method, as
we would expect from a second-order method.

* What is of concern, from the stability angle, is the other root z2 which starts off
at zero, but becomes greater than one in magnitude at hλ=−1, thus leading to
instability.

* This root is not required to represent ehλ, and in that sense, it is a parasitic or
spurious root. In contrast, the root z1, which approximates ehλ, is called the
principal root.
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Stability for large h: AB and AM methods for ẋ = λx , λ < 0

(a) (b)Adams−Moulton Adams−Bashforth
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* The AM methods, for the same order, are more stable than the AB methods.

* The AM methods of order 1 and 2 (the BE and TRZ methods) are stable for all
values of hλ.

* As the order increases, the range of stability becomes smaller for both AB and
AM methods. This explains why higher-order methods are not used in circuit
simulation.
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Stability for large h: AM1 and AM6 methods for ẋ = −x , x(0) = 1

t=0.2∆ t=0.2∆

(a) (b)

∆ t=1.3∆ t=1.3

(c) (d)
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* AM6 is more accurate than AM1 (upper figures).

* For ∆t = 1.3, AM1 is stable, but AM6 is not (lower figures).
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Stability for large h (ẋ = λ x , complex λ)

Consider the 2× 2 system of ODEs, ẋ=Ax, which may be written in the expanded
form,

ẋ1 = a11x1 + a12x2 ,

ẋ2 = a21x1 + a22x2 ,
(23)

with x1(0) = x0
1 and x2(0) = x0

2 .

Let λ1, λ2 be the eigenvalues (assumed to be distinct) of A, and S1, S2 be the
corresponding eigenvectors.

Eq. 23 can be re-written in a diagonalized form,

ẏ1 = λ1y1 ,

ẏ2 = λ2y2 .
(24)

The new variables y1 and y2 are given by,[
y1

y2

]
= [S1 S2]

[
x1

x2

]
. (25)

Solving the system of ODEs, Eq. 23, is thus equivalent to solving two separate ODEs.
Since λ1, λ2 are generally complex, we are interested in solving ẋ = λx when λ is
complex.
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Stability for large h (ẋ = λ x , complex λ)

* A method is said to be absolutely stable (with respect to the test equation) for a
given hλ with Re(λ) < 0 if all the roots of the characteristic equation lie inside
the unit circle in the hλ plane. The set of all such hλ is called the region of
absolute stability of the method [5].

(−1, 0) (0, 0)

(0,−1)

(1, 0)

Re(z)

(0, 1)

hλR

hλI

Im(z)

* Methods that are stable for all λ with Re(λ) < 0 are called A-stable.
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Region of stability for AB methods
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Region of stability for AM methods
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Region of stability for BDF methods
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Stability for large h (ẋ = λ x , complex λ)

* The AM1 (Backward Euler), AM2 (Trapezoidal), and second-order BDF
methods are A-stable; other methods are conditionally stable.

* The region of absolute stability for each method shrinks significantly as the order
increases.

* For purely real values of λ, the BDF methods (up to order six) are
unconditionally stable, while the AB and AM (except AM1 and AM2) methods
are conditionally stable.

* Stability conditions impose restrictions on the choice of methods for circuit
simulation.
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Region of stability for explicit Runge-Kutta methods
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* Explicit Runge-Kutta methods are conditionally stable.

* On the other hand, implicit Runge-Kutta methods are A-stable [4].
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Region of stability for explicit Runge-Kutta methods
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* Explicit Runge-Kutta methods are conditionally stable.

* On the other hand, implicit Runge-Kutta methods are A-stable [4].
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Stiff equations

Consider the 2× 2 system of ODEs,

ẋ1 = a11x1 + a12x2 ,

ẋ2 = a21x1 + a22x2 .
(26)

* If the magnitudes of the eigenvalues λ1 and λ2 of the A matrix are significantly
different, the system of ODEs is said to be stiff. (The same idea applies to larger
systems as well.)

* There are several physical examples of stiff systems, such as motion of masses
connected by springs, chemical reactions involving several reactants, and
electrical circuits.

* Stiff equations present a challenge because they involve vastly different time
constants. In some cases, it is important for the numerical method to be able to
resolve transients on a time scale corresponding to the smallest time constant.
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Stiff equations: RC circuit example

V0
C C1 2

R R21

0

V1 V2

dV1

dt
=

(−1

C1

)(
1

R1
+

1

R2

)
V1 +

(
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(27)

* This is a coupled system of ODEs (see Eq. 26).

* For R1 = 0.5 Ω, R2 = 5 Ω, C1 = 0.01 F , C2 = 1 F ,
the eigenvalues are, λ1 =−0.182 s−1, λ2 =−220 s−1,
and the time constants are τ1 = 5.5 s, τ2 = 0.0045 s.

* Note that τ1 ≈ 1000× τ2.
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Stiff equations: RC circuit example

V 1
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* The currents and voltages in the circuit are given by the general form,

x(t) = Ae−t/τ1 + Be−t/τ2 + C . (28)

* Two transients can be seen in (a) – an initial fast transient due to τ2, followed
by a slow transient due to τ1.

* An expanded view of the fast transient is shown in (b).
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Stiff equations: RC circuit example (FE results)
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* For ∆t = 0.002 s, Forward Euler results are acceptable.

* For ∆t = 0.01 s, which is large than 2 τ2 but much smaller than τ1, the Forward
Euler method is unstable.

* To prevent the unstable behaviour, a small time step is required throughout, i.e.,
even after the fast transient has vanished ⇒ extremely inefficient simulation.
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Stiff equations: RC circuit example (BE results)
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* The Backward Euler method is stable for For ∆t = 0.01 s as well, which is
expected from an A-stable method.

* The BE method allows much larger time steps than the FE method.
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Stiff equations: RC circuit example (BE results)
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* Although the BE method with ∆t = 0.01 s works well for the slow transient, it
does not capture the fast transient accurately, as shown in this expanded view.

* In practice, the time step is made small when things are changing rapidly, and
large otherwise. This strategy makes the simulation faster without compromising
on accuracy.
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Stiff equations: RC circuit example (RK4 results)
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* Parameters: R1 = 1 kΩ, R2 = 2 kΩ, C2 = 1 mF , f = 50 Hz, V̂ (amplitude of
Vs )=1 V , and h (step size)=1 ms.

* For f = 50 Hz, XC1 = 295 kΩ, and XC2 = 160 Ω. ⇒ C1 is effectively an open
circuit, and its exact value should have no effect on the results.

* However, for C1 = 540 nF and C1 = 535 nF , the RK4 results are dramatically
different. Why?

* C1 = 535 nF makes one of the time constants in the circuit small enough (with
respect to h = 1 ms) to make the RK4 method unstable.
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Adaptive step size
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* It is desirable to use small time steps when the solution is changing rapidly, and
large time steps otherwise.

* For automatic time step computation, the next time step can be computed on

the basis of

- an estimate of the local truncation error (LTE)
- convergence behaviour of Newton-Raphson algorithm (for nonlinear

problems)
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LTE estimation: use of two time steps

* The local error of a numerical method of order p is given by,

x(tn + h)− xn+1 = hp+1ψ(tn, xn) + O(hp+2) , (29)

where ψ is called the principal error function of the method.

* If, instead of a single step of h, we take two steps of h/2 each, then the local
error would be

x(tn + h)− x̃n+1 = 2

(
h

2

)p+1

ψ(tn, xn) + O(hp+2) , (30)

where x̃n+1 denotes the computed solution after the second step.

* By subtracting Eq. 29 from Eq. 30, we get an estimate for the LTE,

LTEest =

(
2p

2p − 1

)
|x̃n+1 − xn+1| . (31)
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LTE estimation: use of two time steps

* Suppose τ has been specified as the maximum allowed LTE.

* If LTEest < τ , the current step is accepted, and the next step is allowed to
increase (since a larger step may continue to fulfill the the constraint on the
LTE).

* If LTEest > τ , the current step is rejected, and a new trial step h′n is computed
such that it would result in an LTE equal to τ .

h′n = hn

( τ

LTEest

)1/p+1
. (32)

* LTEest may also be used to improve the accuracy of the solution.
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such that it would result in an LTE equal to τ .

h′n = hn

( τ

LTEest

)1/p+1
. (32)

* LTEest may also be used to improve the accuracy of the solution.
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LTE estimation: use of methods of different orders

Consider two methods of orders p and (p + 1). If xn = x(tn) is assumed, we get

LTE(p) = x(tn+1)− xn+1 , (33)

LTE(p+1) = x(tn+1)− x̃n+1 , (34)

where the superscript on LTE indicates the order of the method, and xn+1, x̃n+1

denote the numerical solutions corresponding to the two methods.

Subtracting Eq. 34 from Eq. 33 yields,

LTE(p) − LTE(p+1) = x̃n+1 − xn+1 . (35)

Assuming that LTE(p+1) can be neglected in comparison with LTE(p) (since LTE(p+1)

is for a higher-order method), we get an estimate for LTE(p).

Note that an additional cost of computing x̃n+1 with a higher-order method is involved
here. In practice, the low- and high-order methods are chosen so that some of the
computation of the low-order method can be used for the high-order method.
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Runge-Kutta-Fehlberg 4/5 method
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* Since the function values, f0, f1, · · · , f4 are the same in the two methods, only six
function evaluations are required in each time step.

* The estimated LTE of the fourth-order formula is given by,

LTEest = h

[
1

360
f0 −

128

4275
f2 −

2197

25740
f3 +

1

50
f4 +

2

55
f5

]
. (36)
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Runge-Kutta-Fehlberg 4/5 method: flow chart [1]

t = t0; x = x0; h = hmax(initialize)
Compute LTEest

t = t+ hCompute xn+1Output xn+1 h = hmin ? Write errormessage. Stop.

If h > hmax; h hmaxIf h < hmin; h hmin
Stop If Æ < 0:1; Æ  0:1If Æ > 4; Æ  4

Compute F0; F1; � � � ; F5
LTEest=h < � ?

t > tend ? Compute Æ
yes no yesnoyes no

h Æ � h
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Runge-Kutta-Fehlberg 4/5 method: example
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* Parameters: R = 1 kΩ, C = 1 µF , hmin = 1 ns, hmax = 1 ms,
ε (tolerance)=10 mV .

* When the solution is changing rapidly, the time step is made small in order to
meet the tolerance requirement.

* When the solution is changing slowly, the time step is made large (capped by a
user-specified hmax).
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Adaptive step size: convergence of N-R iterations

* The Newton-Raphson process is more likely to converge (in a given number of
iterations) if the starting point, i.e., the “initial guess”, is close to the solution.

* In transient analysis, xn serves as the starting point, and xn+1 is the solution
being sought.

* If the time step, (tn+1 − tn), is made smaller, the initial guess xn is expected to
be closer to the solution xn+1, and the N-R process is more likely to converge.

* The above observation is commonly used in circuit simulation for controlling the
time step. (It works only for non-linear problems.)
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Adaptive step size: convergence of N-R iterations
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Circuit parameters:

Vs = 10 V ,

R1 = R2 = 1 kΩ,

C = 1 µF ,

R0 = 100 Ω,

C0 = 0.1 µF ,

VIL = 1 V ,

VIH = 4 V ,

VOL = 0 V ,

VOH = 5 V .

Algorithm parameters:

τ = 10−12,

hmin = 10−9 s,

hmax = 10−4 s,

kup = 1.1,

kdown = 0.8,

Nmax
NR = 10.
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Transient analysis in circuit simulation

* The method must be zero-stable (i.e., stable for small h).

* There are small time constants involved in many circuits. Methods which are
conditionally stable are not practical since they will require unacceptably small
time steps. ⇒ The method must be A-stable.

* The above considerations severely restrict the choice of methods available: Only
AM1 (BE), AM2 (TRZ), BDF2, and implicit Runge-Kutta methods may be
used.

* Application of the MNA method to circuits would generally yield a set of
equations of the following type [7]:

F(x′, x, y, t) = 0 , (37)

G(x, y, t) = 0 . (38)

Equations in the above form are called “Differential-algebraic equations
(DAEs).”

* Runge-Kutta methods are not suitable for DAEs. ⇒ The choice is further
reduced to BE, TRZ, BDF2.
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Outline

* Introduction and problem definition

* Taylor series methods

* Runge-Kutta methods

* Specific multi-step methods

* Generalized multi-step methods

* Predictor-corrector methods

* Numerical results

* Stability of numerical methods

* Regions of stability

* Stiff equations

* Adaptive step size

* Miscellaneous topics
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Undamped oscillations
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Undamped oscillations

* BE and BDF2 (Gear2) methods introduce artificial damping; they should not be
used when there is little or no damping in the circuit.

* TRZ method does not introduce artificial damping.

* However, even the TRZ method is not perfect for purely oscillator problems
since it does introduce some phase error. ⇒ need to select a small time step.
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Ringing
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(Parameters: R = 1 Ω, C = 1 mF , and h (time step) = 5 msec.)

* If h is large, TRZ results in ringing.

* Ringing can be reduced by using a smaller time step.
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* If h is large, TRZ results in ringing.

* Ringing can be reduced by using a smaller time step.
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