EE101: BJT circuits (Part 2)

M. B. Patil mbpatil@ee.iitb.ac.in

mbpatil@ee.iitb.ac.in
www.ee.iitb.ac.in/~sequel

Department of Electrical Engineering Indian Institute of Technology Bombay

* We have already analysed the DC (bias) circuit of this amplifier and found that $V_B=1.8~V,~V_E=1.1~V,~V_C=6~V,~{\rm and}~I_C=1.1~{\rm mA}.$

- * We have already analysed the DC (bias) circuit of this amplifier and found that $V_B=1.8~V,~V_E=1.1~V,~V_C=6~V,~{\rm and}~I_C=1.1~{\rm mA}.$
- * We now analyse the AC (small-signal) circuit to obtain v_b , v_e , v_c , i_c .

- * We have already analysed the DC (bias) circuit of this amplifier and found that $V_B=1.8~V,~V_E=1.1~V,~V_C=6~V,~{\rm and}~I_C=1.1~{\rm m}A.$
- * We now analyse the AC (small-signal) circuit to obtain v_b , v_e , v_c , i_c .
- * We will then get the complete solution by simply adding the DC and AC results, e.g., $i_C(t) = I_C + i_C(t)$.

- * We have already analysed the DC (bias) circuit of this amplifier and found that $V_B=1.8~V,~V_E=1.1~V,~V_C=6~V,~{\rm and}~I_C=1.1~{\rm m}A.$
- * We now analyse the AC (small-signal) circuit to obtain v_b , v_e , v_c , i_c .
- * We will then get the complete solution by simply adding the DC and AC results, e.g., $i_C(t) = I_C + i_C(t)$.
- * We will assume that C_B , C_C , C_E are large enough so that, at the signal frequency (say, 1 kHz), they can be replaced by short circuits.

- * The parasitic capacitances C_{π} and C_{μ} are in the pF range. At a signal frequency of 1 kHz, their impedance is $1/\omega C \sim 1/(2\pi \times 10^3 \times 10^{-12})$, i.e., $\sim 100 \, \text{M}\Omega$. ightarrow C_{π} and C_{μ} can be replaced by open circuits.

- * The parasitic capacitances C_π and C_μ are in the pF range. At a signal frequency of 1 kHz, their impedance is $1/\omega C \sim 1/(2\pi \times 10^3 \times 10^{-12})$, i.e., $\sim 100 \, \text{M}\Omega$. $\rightarrow C_\pi$ and C_μ can be replaced by open circuits.
- * For simplicity, we will assume r_b to be small and r_o to be large (this assumption will only slightly affect the gain computation).

- * The parasitic capacitances C_{π} and C_{μ} are in the pF range. At a signal frequency of 1 kHz, their impedance is $1/\omega C \sim 1/(2\pi \times 10^3 \times 10^{-12})$, i.e., $\sim 100 \, \text{M}\Omega$. $\rightarrow C_{\pi}$ and C_{μ} can be replaced by open circuits.
- * For simplicity, we will assume r_b to be small and r_o to be large (this assumption will only slightly affect the gain computation).
- * The above considerations significantly simplify the AC circuit.

- * The parasitic capacitances C_{π} and C_{μ} are in the pF range. At a signal frequency of 1 kHz, their impedance is $1/\omega C \sim 1/(2\pi \times 10^3 \times 10^{-12})$, i.e., $\sim 100 \, \text{M}\Omega$. $\rightarrow C_{\pi}$ and C_{μ} can be replaced by open circuits.
- * For simplicity, we will assume r_b to be small and r_o to be large (this assumption will only slightly affect the gain computation).
- * The above considerations significantly simplify the AC circuit.

$$v_o = -(g_m \: v_{be}) \times (R_C \parallel R_L) = -(g_m \: v_s) \times (R_C \parallel R_L)$$

$$v_o = -(g_m \, v_{be}) \times (R_C \parallel R_L) = -(g_m \, v_s) \times (R_C \parallel R_L)$$
 $\rightarrow A_V^L = \text{voltage gain} = \frac{v_o}{v_s} = -g_m \, (R_C \parallel R_L)$
(superscript L is used because the gain includes the effect of R_L .)

$$v_o = -(g_m \: v_{be}) \times (R_C \parallel R_L) = -(g_m \: v_s) \times (R_C \parallel R_L)$$

$$ightarrow A_V^L = ext{voltage gain} = rac{v_o}{v_s} = -g_m \left(R_C \parallel R_L
ight)$$

(superscript L is used because the gain includes the effect of R_L .)

Since I_C (bias current) = 1.1 mA, $g_m = I_C/V_T = 1.1 \, \text{mA}/25.9 \, \text{mV} = 42.5 \, \text{m} \odot$.

$$v_o = -(g_m v_{be}) \times (R_C \parallel R_L) = -(g_m v_s) \times (R_C \parallel R_L)$$

$$ightarrow A_V^L = ext{voltage gain} = rac{v_o}{v_s} = -g_m \left(R_C \parallel R_L
ight)$$

(superscript L is used because the gain includes the effect of R_L .)

Since I_C (bias current) = 1.1 mA, $g_m = I_C/V_T = 1.1$ mA/25.9 mV = 42.5 m \odot .

$$\rightarrow A_V^L = -42.5 \,\mathrm{m} \mho \times (3.6 \,\mathrm{k} \parallel 10 \,\mathrm{k}) = -112.5$$

$$v_o = -(g_m \: v_{be}) \times (R_C \parallel R_L) = -(g_m \: v_s) \times (R_C \parallel R_L)$$

$$ightarrow A_V^L = ext{voltage gain} = rac{v_o}{v_s} = -g_m \left(R_C \parallel R_L
ight)$$

(superscript L is used because the gain includes the effect of R_L .)

Since I_C (bias current) = 1.1 mA, $g_m = I_C/V_T = 1.1$ mA/25.9 mV = 42.5 m \odot .

$$\rightarrow A_V^L = -42.5 \,\mathrm{m} \mho \times (3.6 \,\mathrm{k} \parallel 10 \,\mathrm{k}) = -112.5$$

For $v_s(t) = (2 \text{ mV}) \sin \omega t$, the AC output voltage is,

$$v_o = -(g_m \ v_{be}) \times (R_C \parallel R_L) = -(g_m \ v_s) \times (R_C \parallel R_L)$$

$$ightarrow A_V^L = ext{voltage gain} = rac{v_o}{v_s} = -g_m \left(R_C \parallel R_L
ight)$$

(superscript L is used because the gain includes the effect of R_{L} .)

Since I_C (bias current) = 1.1 mA, $g_m = I_C/V_T = 1.1 \text{ mA}/25.9 \text{ mV} = 42.5 \text{ m}$.

$$\rightarrow A_V^L = -42.5 \,\mathrm{m} \mho \times (3.6 \,\mathrm{k} \parallel 10 \,\mathrm{k}) = -112.5$$

For $v_s(t) = (2 \text{ mV}) \sin \omega t$, the AC output voltage is,

$$v_o = A_V^L v_s = -(112.5)(2 \,\mathrm{mV}) \sin \omega t = -(125 \,\mathrm{mV}) \sin \omega t$$

$$v_o = -(g_m v_{be}) \times (R_C \parallel R_L) = -(g_m v_s) \times (R_C \parallel R_L)$$

$$ightarrow A_V^L = ext{voltage gain} = rac{v_o}{v_s} = -g_m \left(R_C \parallel R_L
ight)$$

(superscript L is used because the gain includes the effect of R_L .)

Since I_C (bias current) = 1.1 mA, $g_m = I_C/V_T = 1.1 \text{ mA}/25.9 \text{ mV} = 42.5 \text{ m}$.

$$\rightarrow A_V^L = -42.5 \,\mathrm{m} \mho \times (3.6 \,\mathrm{k} \parallel 10 \,\mathrm{k}) = -112.5$$

For $v_s(t) = (2 \text{ mV}) \sin \omega t$, the AC output voltage is,

$$v_o = A_V^L v_s = -(112.5)(2 \,\mathrm{m} V) \sin \omega t = -(125 \,\mathrm{m} V) \sin \omega t$$

The AC collector current is,

$$i_c = g_m v_{be} = g_m v_s = -42.5 \,\mathrm{m} \Im \times (2 \,\mathrm{m} V) \,\sin \omega t = -85 \,\sin \omega t \,\mu A.$$

For $v_s(t)=(2\,\mathrm{m}\,V)\sin\omega t$, we can now obtain expressions for the instantaneous currents and voltages:

$$v_C(t) = V_C + v_c(t) = V_C + v_o(t) = 6 \ V - (125 \ \mathrm{m} V) \sin \omega t \ .$$

$$i_C(t) = I_C + i_c(t) = 1.1\,\mathrm{m}A - 0.085\,\sin\omega t\,\,\mathrm{m}A\,.$$

For $v_s(t)=(2\,\mathrm{m} V)\sin\omega t$, we can now obtain expressions for the instantaneous currents and voltages:

$$v_C(t) = V_C + v_c(t) = V_C + v_o(t) = 6 V - (125 \,\mathrm{m} V) \,\sin \omega t$$
 .

$$i_C(t) = I_C + i_c(t) = 1.1 \, \text{mA} - 0.085 \, \sin \omega t \, \, \text{mA} \, .$$

Note that the above procedure (DC + AC analysis) can be used *only if* the small-signal approximation (i.e., $|v_{be}| \ll V_T$) is valid. In the above example, the amplitude of v_{be} is 2 mV, which is much smaller than V_T .

For $v_s(t) = (2 \text{ mV}) \sin \omega t$, we can now obtain expressions for the instantaneous currents and voltages:

$$v_C(t) = V_C + v_c(t) = V_C + v_o(t) = 6 V - (125 \,\mathrm{m}V) \,\sin\omega t$$
 .

$$i_C(t) = I_C + i_c(t) = 1.1 \, \mathrm{mA} - 0.085 \, \sin \omega t \, \, \mathrm{mA} \, .$$

Note that the above procedure (DC + AC analysis) can be used *only if* the small-signal approximation (i.e., $|v_{be}| \ll V_T$) is valid. In the above example, the amplitude of v_{be} is 2 mV, which is much smaller than V_T .

For $v_s(t) = (20 \, \text{mV}) \sin \omega t$, for example, the small-signal approximation will not hold, and a numerical simulation will be required to obtain the currents and voltages of interest.

For $v_s(t) = (2 \,\mathrm{m}\, V) \sin \omega t$, we can now obtain expressions for the instantaneous currents and voltages:

$$v_C(t) = V_C + v_c(t) = V_C + v_o(t) = 6 V - (125 \,\mathrm{m} V) \sin \omega t$$
 .

$$i_C(t) = I_C + i_c(t) = 1.1 \, \mathrm{mA} - 0.085 \, \sin \omega t \, \, \mathrm{mA} \, .$$

Note that the above procedure (DC + AC analysis) can be used *only if* the small-signal approximation (i.e., $|v_{be}| \ll V_T$) is valid. In the above example, the amplitude of v_{be} is 2 mV, which is much smaller than V_T .

For $v_s(t) = (20 \,\mathrm{mV}) \sin \omega t$, for example, the small-signal approximation will not hold, and a numerical simulation will be required to obtain the currents and voltages of interest.

In practice, such a situation is anyway not prevalent (because it gives rise to distortion in the output voltage) except in special types of amplifiers.

* For DC computation, C_E is open, and the DC analysis is therefore identical to our earlier amplifier, with $R_E \leftarrow R_{E1} + R_{E2}$.

- * For DC computation, C_E is open, and the DC analysis is therefore identical to our earlier amplifier, with $R_E \leftarrow R_{E1} + R_{E2}$.
- * Bypassing a part of R_E (as opposed to all of it) does have an impact on the voltage gain (see next slide).

Again, assume that, at the frequency of operation, C_B , C_C , C_E can be replaced by short circuits, and the BJT parasitic capacitances by open circuits.

Again, assume that, at the frequency of operation, C_B , C_C , C_E can be replaced by short circuits, and the BJT parasitic capacitances by open circuits.

$$v_s = v_{be} = i_b r_{\pi} + (\beta + 1) i_b R_{E1} \rightarrow i_b = \frac{v_s}{r_{\pi} + (\beta + 1) R_{E1}}.$$

Again, assume that, at the frequency of operation, C_B , C_C , C_E can be replaced by short circuits, and the BJT parasitic capacitances by open circuits.

$$v_s = v_{be} = i_b r_{\pi} + (\beta + 1) i_b R_{E1} \rightarrow i_b = \frac{v_s}{r_{\pi} + (\beta + 1) R_{E1}}.$$

$$v_o = -\beta i_b \times (R_C \parallel R_L) \rightarrow \frac{v_o}{v_s} = -\frac{\beta (R_C \parallel R_L)}{r_\pi + (\beta + 1) R_{E1}}.$$

Again, assume that, at the frequency of operation, C_B , C_C , C_E can be replaced by short circuits, and the BJT parasitic capacitances by open circuits.

$$v_s = v_{be} = i_b r_\pi + (\beta + 1) i_b R_{E1} \rightarrow i_b = \frac{v_s}{r_\pi + (\beta + 1) R_{E1}}.$$

$$v_o = -\beta i_b \times (R_C \parallel R_L) \rightarrow \frac{v_o}{v_s} = -\frac{\beta (R_C \parallel R_L)}{r_\pi + (\beta + 1) R_{E1}}$$

Note: R_{E1} gets multiplied by $(\beta + 1)$.

* C_B , C_E , C_C are large capacitances $\to 1/\omega\,C$ is perceptibly large only at low frequencies.

- * C_B , C_E , C_C are large capacitances $\to 1/\omega\,C$ is perceptibly large only at low frequencies.
- * C_π , C_μ are small capacitances $\to 1/\omega C$ is perceptibly small only at high frequencies.

- * C_B , C_E , C_C are large capacitances $\to 1/\omega\,C$ is perceptibly large only at low frequencies.
- * C_π , C_μ are small capacitances $\to 1/\omega\,C$ is perceptibly small only at high frequencies.
- * In the intermediate range (called "mid-band"), the large capacitances behave like short circuits, and the small capacitances behave like open circuits. In this range, the gain is independent of frequency.

General representation of an amplifier

* An amplifier is represented by a voltage gain, an input resistance, and an output resistance.

General representation of an amplifier

- * An amplifier is represented by a voltage gain, an input resistance, and an output resistance.
- * The above representation involves AC quantities *only*, i.e., it describes the AC equivalent circuit of the amplifier.

General representation of an amplifier

- * An amplifier is represented by a voltage gain, an input resistance, and an output resistance.
- * The above representation involves AC quantities *only*, i.e., it describes the AC equivalent circuit of the amplifier.
- * The DC bias of the circuit can affect parameter values in the AC equivalent circuit $(A_V, R_{\rm in}, R_{\rm o})$. For example, for the common-emitter amplifier, $A_V \propto g_m = I_C/V_T$, I_C being the DC (bias) value of the collector current.

General representation of an amplifier

- * An amplifier is represented by a voltage gain, an input resistance, and an output resistance.
- The above representation involves AC quantities only, i.e., it describes the AC equivalent circuit of the amplifier.
- * The DC bias of the circuit can affect parameter values in the AC equivalent circuit $(A_V, R_{\rm in}, R_{\rm o})$. For example, for the common-emitter amplifier, $A_V \propto g_m = I_C/V_T$, I_C being the DC (bias) value of the collector current.
- * Suppose we are given an amplifier as a "black box" and asked to find A_V , $R_{\rm in}$, and R_o . What experiments would give us this information?

Voltage gain A_V

If $R_L \to \infty$, $i_l \to 0$, and $v_o \to A_V v_i$.

Voltage gain A_V

If $R_L \to \infty$, $i_I \to 0$, and $v_o \to A_V v_i$.

We can remove R_L (i.e., replace it with an open circuit), measure v_i and v_o , then use $A_V = v_o/v_i$.

Input resistance R_{in}

Measurement of v_i and i_i yields $R_{in} = v_i/i_i$.

Output resistance R_o

Method 1:

If $v_s \rightarrow 0$, $A_V v_i \rightarrow 0$.

Now, connect a test source v_o , and measure i_o .

Clearly, $R_o = v_o/i_o$.

This method works fine on paper, but it is difficult to use experimentally.

Output resistance R_o

Method 2:

$$v_o = \frac{R_L}{R_L + R_o} A_V v_i.$$

Output resistance Ro

Method 2:

$$v_o = \frac{R_L}{R_L + R_o} A_V v_i$$

If
$$R_L \to \infty$$
, $v_{o1} = A_V v_i$.

Output resistance R_o

Method 2:

$$v_o = \frac{R_L}{R_L + R_o} A_V v_i.$$

If
$$R_L \to \infty$$
, $v_{o1} = A_V v_i$.

If
$$R_L = R_o$$
, $v_{o2} = \frac{1}{2} A_V v_i = \frac{1}{2} v_{o1}$.

Output resistance Ro

Method 2:

$$v_o = \frac{R_L}{R_L + R_o} A_V v_i.$$

If
$$R_L \to \infty$$
, $v_{o1} = A_V v_i$.

If
$$R_L = R_o$$
, $v_{o2} = \frac{1}{2} A_V v_i = \frac{1}{2} v_{o1}$.

Procedure:

Measure v_{o1} with $R_L \to \infty$ (i.e., R_L removed).

Vary R_L to obtain $v_o = v_{o1}/2$.

The corresponding R_L is the same as R_o .

$$A_V = \frac{v_o}{v_i}$$
, with $R_L \to \infty$.

$$A_V = \frac{-g_m v_{be} R_C}{v_i} = -g_m R_C = -42.5 \,\mathrm{m} \odot \times 3.6 \,\mathrm{k}{=}153.$$

$$A_V = \frac{v_o}{v_i}$$
, with $R_L \to \infty$.

$$A_V = \frac{-g_m v_{be} R_C}{v_i} = -g_m R_C = -42.5 \,\mathrm{m} \Im \times 3.6 \,\mathrm{k}{=}153.$$

The input resistance of the amplifier is, by inspection, $R_{\rm in} = (R_1 \parallel R_2) \parallel r_{\pi}$.

$$r_{\pi} = \beta/g_m = 100/42.5 \,\mathrm{m} \mho = 2.35 \,\mathrm{k} \to R_{\mathrm{in}} = 1.24 \,\mathrm{k}.$$

$$A_V = \frac{v_o}{v_i}$$
, with $R_L \to \infty$.

$$A_V = \frac{-g_m v_{be} R_C}{v_i} = -g_m R_C = -42.5 \,\text{m} \odot \times 3.6 \,\text{k} = 153.$$

The input resistance of the amplifier is, by inspection, $R_{\text{in}} = (R_1 \parallel R_2) \parallel r_{\pi}$.

$$r_{\pi} = \beta/g_m = 100/42.5 \,\mathrm{m} \odot = 2.35 \,\mathrm{k} \to R_{\mathrm{in}} = 1.24 \,\mathrm{k}.$$

The output resistance is R_C (by "Method 1" seen previously).

