EE101: BJT circuits (Part 2) M. B. Patil mbpatil@ee.iitb.ac.in mbpatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Department of Electrical Engineering Indian Institute of Technology Bombay * We have already analysed the DC (bias) circuit of this amplifier and found that $V_B=1.8~V,~V_E=1.1~V,~V_C=6~V,~{\rm and}~I_C=1.1~{\rm mA}.$ - * We have already analysed the DC (bias) circuit of this amplifier and found that $V_B=1.8~V,~V_E=1.1~V,~V_C=6~V,~{\rm and}~I_C=1.1~{\rm mA}.$ - * We now analyse the AC (small-signal) circuit to obtain v_b , v_e , v_c , i_c . - * We have already analysed the DC (bias) circuit of this amplifier and found that $V_B=1.8~V,~V_E=1.1~V,~V_C=6~V,~{\rm and}~I_C=1.1~{\rm m}A.$ - * We now analyse the AC (small-signal) circuit to obtain v_b , v_e , v_c , i_c . - * We will then get the complete solution by simply adding the DC and AC results, e.g., $i_C(t) = I_C + i_C(t)$. - * We have already analysed the DC (bias) circuit of this amplifier and found that $V_B=1.8~V,~V_E=1.1~V,~V_C=6~V,~{\rm and}~I_C=1.1~{\rm m}A.$ - * We now analyse the AC (small-signal) circuit to obtain v_b , v_e , v_c , i_c . - * We will then get the complete solution by simply adding the DC and AC results, e.g., $i_C(t) = I_C + i_C(t)$. - * We will assume that C_B , C_C , C_E are large enough so that, at the signal frequency (say, 1 kHz), they can be replaced by short circuits. - * The parasitic capacitances C_{π} and C_{μ} are in the pF range. At a signal frequency of 1 kHz, their impedance is $1/\omega C \sim 1/(2\pi \times 10^3 \times 10^{-12})$, i.e., $\sim 100 \, \text{M}\Omega$. ightarrow C_{π} and C_{μ} can be replaced by open circuits. - * The parasitic capacitances C_π and C_μ are in the pF range. At a signal frequency of 1 kHz, their impedance is $1/\omega C \sim 1/(2\pi \times 10^3 \times 10^{-12})$, i.e., $\sim 100 \, \text{M}\Omega$. $\rightarrow C_\pi$ and C_μ can be replaced by open circuits. - * For simplicity, we will assume r_b to be small and r_o to be large (this assumption will only slightly affect the gain computation). - * The parasitic capacitances C_{π} and C_{μ} are in the pF range. At a signal frequency of 1 kHz, their impedance is $1/\omega C \sim 1/(2\pi \times 10^3 \times 10^{-12})$, i.e., $\sim 100 \, \text{M}\Omega$. $\rightarrow C_{\pi}$ and C_{μ} can be replaced by open circuits. - * For simplicity, we will assume r_b to be small and r_o to be large (this assumption will only slightly affect the gain computation). - * The above considerations significantly simplify the AC circuit. - * The parasitic capacitances C_{π} and C_{μ} are in the pF range. At a signal frequency of 1 kHz, their impedance is $1/\omega C \sim 1/(2\pi \times 10^3 \times 10^{-12})$, i.e., $\sim 100 \, \text{M}\Omega$. $\rightarrow C_{\pi}$ and C_{μ} can be replaced by open circuits. - * For simplicity, we will assume r_b to be small and r_o to be large (this assumption will only slightly affect the gain computation). - * The above considerations significantly simplify the AC circuit. $$v_o = -(g_m \: v_{be}) \times (R_C \parallel R_L) = -(g_m \: v_s) \times (R_C \parallel R_L)$$ $$v_o = -(g_m \, v_{be}) \times (R_C \parallel R_L) = -(g_m \, v_s) \times (R_C \parallel R_L)$$ $\rightarrow A_V^L = \text{voltage gain} = \frac{v_o}{v_s} = -g_m \, (R_C \parallel R_L)$ (superscript L is used because the gain includes the effect of R_L .) $$v_o = -(g_m \: v_{be}) \times (R_C \parallel R_L) = -(g_m \: v_s) \times (R_C \parallel R_L)$$ $$ightarrow A_V^L = ext{voltage gain} = rac{v_o}{v_s} = -g_m \left(R_C \parallel R_L ight)$$ (superscript L is used because the gain includes the effect of R_L .) Since I_C (bias current) = 1.1 mA, $g_m = I_C/V_T = 1.1 \, \text{mA}/25.9 \, \text{mV} = 42.5 \, \text{m} \odot$. $$v_o = -(g_m v_{be}) \times (R_C \parallel R_L) = -(g_m v_s) \times (R_C \parallel R_L)$$ $$ightarrow A_V^L = ext{voltage gain} = rac{v_o}{v_s} = -g_m \left(R_C \parallel R_L ight)$$ (superscript L is used because the gain includes the effect of R_L .) Since I_C (bias current) = 1.1 mA, $g_m = I_C/V_T = 1.1$ mA/25.9 mV = 42.5 m \odot . $$\rightarrow A_V^L = -42.5 \,\mathrm{m} \mho \times (3.6 \,\mathrm{k} \parallel 10 \,\mathrm{k}) = -112.5$$ $$v_o = -(g_m \: v_{be}) \times (R_C \parallel R_L) = -(g_m \: v_s) \times (R_C \parallel R_L)$$ $$ightarrow A_V^L = ext{voltage gain} = rac{v_o}{v_s} = -g_m \left(R_C \parallel R_L ight)$$ (superscript L is used because the gain includes the effect of R_L .) Since I_C (bias current) = 1.1 mA, $g_m = I_C/V_T = 1.1$ mA/25.9 mV = 42.5 m \odot . $$\rightarrow A_V^L = -42.5 \,\mathrm{m} \mho \times (3.6 \,\mathrm{k} \parallel 10 \,\mathrm{k}) = -112.5$$ For $v_s(t) = (2 \text{ mV}) \sin \omega t$, the AC output voltage is, $$v_o = -(g_m \ v_{be}) \times (R_C \parallel R_L) = -(g_m \ v_s) \times (R_C \parallel R_L)$$ $$ightarrow A_V^L = ext{voltage gain} = rac{v_o}{v_s} = -g_m \left(R_C \parallel R_L ight)$$ (superscript L is used because the gain includes the effect of R_{L} .) Since I_C (bias current) = 1.1 mA, $g_m = I_C/V_T = 1.1 \text{ mA}/25.9 \text{ mV} = 42.5 \text{ m}$. $$\rightarrow A_V^L = -42.5 \,\mathrm{m} \mho \times (3.6 \,\mathrm{k} \parallel 10 \,\mathrm{k}) = -112.5$$ For $v_s(t) = (2 \text{ mV}) \sin \omega t$, the AC output voltage is, $$v_o = A_V^L v_s = -(112.5)(2 \,\mathrm{mV}) \sin \omega t = -(125 \,\mathrm{mV}) \sin \omega t$$ $$v_o = -(g_m v_{be}) \times (R_C \parallel R_L) = -(g_m v_s) \times (R_C \parallel R_L)$$ $$ightarrow A_V^L = ext{voltage gain} = rac{v_o}{v_s} = -g_m \left(R_C \parallel R_L ight)$$ (superscript L is used because the gain includes the effect of R_L .) Since I_C (bias current) = 1.1 mA, $g_m = I_C/V_T = 1.1 \text{ mA}/25.9 \text{ mV} = 42.5 \text{ m}$. $$\rightarrow A_V^L = -42.5 \,\mathrm{m} \mho \times (3.6 \,\mathrm{k} \parallel 10 \,\mathrm{k}) = -112.5$$ For $v_s(t) = (2 \text{ mV}) \sin \omega t$, the AC output voltage is, $$v_o = A_V^L v_s = -(112.5)(2 \,\mathrm{m} V) \sin \omega t = -(125 \,\mathrm{m} V) \sin \omega t$$ The AC collector current is, $$i_c = g_m v_{be} = g_m v_s = -42.5 \,\mathrm{m} \Im \times (2 \,\mathrm{m} V) \,\sin \omega t = -85 \,\sin \omega t \,\mu A.$$ For $v_s(t)=(2\,\mathrm{m}\,V)\sin\omega t$, we can now obtain expressions for the instantaneous currents and voltages: $$v_C(t) = V_C + v_c(t) = V_C + v_o(t) = 6 \ V - (125 \ \mathrm{m} V) \sin \omega t \ .$$ $$i_C(t) = I_C + i_c(t) = 1.1\,\mathrm{m}A - 0.085\,\sin\omega t\,\,\mathrm{m}A\,.$$ For $v_s(t)=(2\,\mathrm{m} V)\sin\omega t$, we can now obtain expressions for the instantaneous currents and voltages: $$v_C(t) = V_C + v_c(t) = V_C + v_o(t) = 6 V - (125 \,\mathrm{m} V) \,\sin \omega t$$. $$i_C(t) = I_C + i_c(t) = 1.1 \, \text{mA} - 0.085 \, \sin \omega t \, \, \text{mA} \, .$$ Note that the above procedure (DC + AC analysis) can be used *only if* the small-signal approximation (i.e., $|v_{be}| \ll V_T$) is valid. In the above example, the amplitude of v_{be} is 2 mV, which is much smaller than V_T . For $v_s(t) = (2 \text{ mV}) \sin \omega t$, we can now obtain expressions for the instantaneous currents and voltages: $$v_C(t) = V_C + v_c(t) = V_C + v_o(t) = 6 V - (125 \,\mathrm{m}V) \,\sin\omega t$$. $$i_C(t) = I_C + i_c(t) = 1.1 \, \mathrm{mA} - 0.085 \, \sin \omega t \, \, \mathrm{mA} \, .$$ Note that the above procedure (DC + AC analysis) can be used *only if* the small-signal approximation (i.e., $|v_{be}| \ll V_T$) is valid. In the above example, the amplitude of v_{be} is 2 mV, which is much smaller than V_T . For $v_s(t) = (20 \, \text{mV}) \sin \omega t$, for example, the small-signal approximation will not hold, and a numerical simulation will be required to obtain the currents and voltages of interest. For $v_s(t) = (2 \,\mathrm{m}\, V) \sin \omega t$, we can now obtain expressions for the instantaneous currents and voltages: $$v_C(t) = V_C + v_c(t) = V_C + v_o(t) = 6 V - (125 \,\mathrm{m} V) \sin \omega t$$. $$i_C(t) = I_C + i_c(t) = 1.1 \, \mathrm{mA} - 0.085 \, \sin \omega t \, \, \mathrm{mA} \, .$$ Note that the above procedure (DC + AC analysis) can be used *only if* the small-signal approximation (i.e., $|v_{be}| \ll V_T$) is valid. In the above example, the amplitude of v_{be} is 2 mV, which is much smaller than V_T . For $v_s(t) = (20 \,\mathrm{mV}) \sin \omega t$, for example, the small-signal approximation will not hold, and a numerical simulation will be required to obtain the currents and voltages of interest. In practice, such a situation is anyway not prevalent (because it gives rise to distortion in the output voltage) except in special types of amplifiers. * For DC computation, C_E is open, and the DC analysis is therefore identical to our earlier amplifier, with $R_E \leftarrow R_{E1} + R_{E2}$. - * For DC computation, C_E is open, and the DC analysis is therefore identical to our earlier amplifier, with $R_E \leftarrow R_{E1} + R_{E2}$. - * Bypassing a part of R_E (as opposed to all of it) does have an impact on the voltage gain (see next slide). Again, assume that, at the frequency of operation, C_B , C_C , C_E can be replaced by short circuits, and the BJT parasitic capacitances by open circuits. Again, assume that, at the frequency of operation, C_B , C_C , C_E can be replaced by short circuits, and the BJT parasitic capacitances by open circuits. $$v_s = v_{be} = i_b r_{\pi} + (\beta + 1) i_b R_{E1} \rightarrow i_b = \frac{v_s}{r_{\pi} + (\beta + 1) R_{E1}}.$$ Again, assume that, at the frequency of operation, C_B , C_C , C_E can be replaced by short circuits, and the BJT parasitic capacitances by open circuits. $$v_s = v_{be} = i_b r_{\pi} + (\beta + 1) i_b R_{E1} \rightarrow i_b = \frac{v_s}{r_{\pi} + (\beta + 1) R_{E1}}.$$ $$v_o = -\beta i_b \times (R_C \parallel R_L) \rightarrow \frac{v_o}{v_s} = -\frac{\beta (R_C \parallel R_L)}{r_\pi + (\beta + 1) R_{E1}}.$$ Again, assume that, at the frequency of operation, C_B , C_C , C_E can be replaced by short circuits, and the BJT parasitic capacitances by open circuits. $$v_s = v_{be} = i_b r_\pi + (\beta + 1) i_b R_{E1} \rightarrow i_b = \frac{v_s}{r_\pi + (\beta + 1) R_{E1}}.$$ $$v_o = -\beta i_b \times (R_C \parallel R_L) \rightarrow \frac{v_o}{v_s} = -\frac{\beta (R_C \parallel R_L)}{r_\pi + (\beta + 1) R_{E1}}$$ Note: R_{E1} gets multiplied by $(\beta + 1)$. * C_B , C_E , C_C are large capacitances $\to 1/\omega\,C$ is perceptibly large only at low frequencies. - * C_B , C_E , C_C are large capacitances $\to 1/\omega\,C$ is perceptibly large only at low frequencies. - * C_π , C_μ are small capacitances $\to 1/\omega C$ is perceptibly small only at high frequencies. - * C_B , C_E , C_C are large capacitances $\to 1/\omega\,C$ is perceptibly large only at low frequencies. - * C_π , C_μ are small capacitances $\to 1/\omega\,C$ is perceptibly small only at high frequencies. - * In the intermediate range (called "mid-band"), the large capacitances behave like short circuits, and the small capacitances behave like open circuits. In this range, the gain is independent of frequency. ## General representation of an amplifier * An amplifier is represented by a voltage gain, an input resistance, and an output resistance. ### General representation of an amplifier - * An amplifier is represented by a voltage gain, an input resistance, and an output resistance. - * The above representation involves AC quantities *only*, i.e., it describes the AC equivalent circuit of the amplifier. ### General representation of an amplifier - * An amplifier is represented by a voltage gain, an input resistance, and an output resistance. - * The above representation involves AC quantities *only*, i.e., it describes the AC equivalent circuit of the amplifier. - * The DC bias of the circuit can affect parameter values in the AC equivalent circuit $(A_V, R_{\rm in}, R_{\rm o})$. For example, for the common-emitter amplifier, $A_V \propto g_m = I_C/V_T$, I_C being the DC (bias) value of the collector current. #### General representation of an amplifier - * An amplifier is represented by a voltage gain, an input resistance, and an output resistance. - The above representation involves AC quantities only, i.e., it describes the AC equivalent circuit of the amplifier. - * The DC bias of the circuit can affect parameter values in the AC equivalent circuit $(A_V, R_{\rm in}, R_{\rm o})$. For example, for the common-emitter amplifier, $A_V \propto g_m = I_C/V_T$, I_C being the DC (bias) value of the collector current. - * Suppose we are given an amplifier as a "black box" and asked to find A_V , $R_{\rm in}$, and R_o . What experiments would give us this information? # Voltage gain A_V If $R_L \to \infty$, $i_l \to 0$, and $v_o \to A_V v_i$. # Voltage gain A_V If $R_L \to \infty$, $i_I \to 0$, and $v_o \to A_V v_i$. We can remove R_L (i.e., replace it with an open circuit), measure v_i and v_o , then use $A_V = v_o/v_i$. ## Input resistance R_{in} Measurement of v_i and i_i yields $R_{in} = v_i/i_i$. ### Output resistance R_o #### Method 1: If $v_s \rightarrow 0$, $A_V v_i \rightarrow 0$. Now, connect a test source v_o , and measure i_o . Clearly, $R_o = v_o/i_o$. This method works fine on paper, but it is difficult to use experimentally. ### Output resistance R_o #### Method 2: $$v_o = \frac{R_L}{R_L + R_o} A_V v_i.$$ # Output resistance Ro #### Method 2: $$v_o = \frac{R_L}{R_L + R_o} A_V v_i$$ If $$R_L \to \infty$$, $v_{o1} = A_V v_i$. ## Output resistance R_o #### Method 2: $$v_o = \frac{R_L}{R_L + R_o} A_V v_i.$$ If $$R_L \to \infty$$, $v_{o1} = A_V v_i$. If $$R_L = R_o$$, $v_{o2} = \frac{1}{2} A_V v_i = \frac{1}{2} v_{o1}$. #### Output resistance Ro #### Method 2: $$v_o = \frac{R_L}{R_L + R_o} A_V v_i.$$ If $$R_L \to \infty$$, $v_{o1} = A_V v_i$. If $$R_L = R_o$$, $v_{o2} = \frac{1}{2} A_V v_i = \frac{1}{2} v_{o1}$. #### Procedure: Measure v_{o1} with $R_L \to \infty$ (i.e., R_L removed). Vary R_L to obtain $v_o = v_{o1}/2$. The corresponding R_L is the same as R_o . $$A_V = \frac{v_o}{v_i}$$, with $R_L \to \infty$. $$A_V = \frac{-g_m v_{be} R_C}{v_i} = -g_m R_C = -42.5 \,\mathrm{m} \odot \times 3.6 \,\mathrm{k}{=}153.$$ $$A_V = \frac{v_o}{v_i}$$, with $R_L \to \infty$. $$A_V = \frac{-g_m v_{be} R_C}{v_i} = -g_m R_C = -42.5 \,\mathrm{m} \Im \times 3.6 \,\mathrm{k}{=}153.$$ The input resistance of the amplifier is, by inspection, $R_{\rm in} = (R_1 \parallel R_2) \parallel r_{\pi}$. $$r_{\pi} = \beta/g_m = 100/42.5 \,\mathrm{m} \mho = 2.35 \,\mathrm{k} \to R_{\mathrm{in}} = 1.24 \,\mathrm{k}.$$ $$A_V = \frac{v_o}{v_i}$$, with $R_L \to \infty$. $$A_V = \frac{-g_m v_{be} R_C}{v_i} = -g_m R_C = -42.5 \,\text{m} \odot \times 3.6 \,\text{k} = 153.$$ The input resistance of the amplifier is, by inspection, $R_{\text{in}} = (R_1 \parallel R_2) \parallel r_{\pi}$. $$r_{\pi} = \beta/g_m = 100/42.5 \,\mathrm{m} \odot = 2.35 \,\mathrm{k} \to R_{\mathrm{in}} = 1.24 \,\mathrm{k}.$$ The output resistance is R_C (by "Method 1" seen previously).