EE101: Bode plots

M. B. Patil
mbpatil@ee.iitb.ac.in
www.ee.iitb.ac.in/~sequel

Department of Electrical Engineering
Indian Institute of Technology Bombay
What is deciBel (dB)?

* The unit dB is used to represent quantities on a logarithmic scale.
What is deciBel (dB)?

* The unit dB is used to represent quantities on a logarithmic scale.
* Because of the log scale, dB is convenient for representing numbers that vary in a wide range.
What is deciBel (dB)?

* The unit dB is used to represent quantities on a logarithmic scale.
* Because of the log scale, dB is convenient for representing numbers that vary in a wide range.
* log scaling roughly corresponds to human perception of sound and light.
What is deciBel (dB)?

* The unit dB is used to represent quantities on a logarithmic scale.
* Because of the log scale, dB is convenient for representing numbers that vary in a wide range.
* Log scaling roughly corresponds to human perception of sound and light.
* Log scale allows \times and \div to be replaced by $+$ and $-$ → simpler!
* The unit dB is used to represent quantities on a logarithmic scale.
* Because of the log scale, dB is convenient for representing numbers that vary in a wide range.
* log scaling roughly corresponds to human perception of sound and light.
* log scale allows \times and \div to be replaced by $+$ and $-$ → simpler!
* The unit “Bel” was developed in the 1920s by Bell Labs engineers to quantify attenuation of an audio signal over one mile of cable.
What is deciBel (dB)?

* The unit dB is used to represent quantities on a logarithmic scale.
* Because of the log scale, dB is convenient for representing numbers that vary in a wide range.
* log scaling roughly corresponds to human perception of sound and light.
* log scale allows \times and \div to be replaced by $+$ and $-$ → simpler!
* The unit “Bel” was developed in the 1920s by Bell Labs engineers to quantify attenuation of an audio signal over one mile of cable.

Interesting facts:

- Alexander Graham Bell, who invented the telephone in 1876, could never talk to his wife on the phone (she was deaf).
What is deciBel (dB)?

* The unit dB is used to represent quantities on a logarithmic scale.
* Because of the log scale, dB is convenient for representing numbers that vary in a wide range.
* log scaling roughly corresponds to human perception of sound and light.
* log scale allows \times and \div to be replaced by $+$ and $-$ → simpler!
* The unit “Bel” was developed in the 1920s by Bell Labs engineers to quantify attenuation of an audio signal over one mile of cable.

Interesting facts:

- Alexander Graham Bell, who invented the telephone in 1876, could never talk to his wife on the phone (she was deaf).
- Bell considered the telephone an intrusion and refused to put one in his office.
What is deciBel (dB)?

* The unit dB is used to represent quantities on a logarithmic scale.
* Because of the log scale, dB is convenient for representing numbers that vary in a wide range.
* log scaling roughly corresponds to human perception of sound and light.
* log scale allows \times and \div to be replaced by $+$ and $-$ → simpler!
* The unit “Bel” was developed in the 1920s by Bell Labs engineers to quantify attenuation of an audio signal over one mile of cable.

Interesting facts:

- Alexander Graham Bell, who invented the telephone in 1876, could never talk to his wife on the phone (she was deaf).
- Bell considered the telephone an intrusion and refused to put one in his office.

* Bel turned out to be too large in practice → deciBel (i.e., one tenth of a Bel).
What is deciBel (dB)?

* dB is a unit that describes a quantity, on a log scale, with respect to a reference quantity.

\[X \text{ (in dB)} = 10 \log_{10} \left(\frac{X}{X_{\text{ref}}} \right). \]
What is deciBel (dB)?

* dB is a unit that describes a quantity, on a log scale, with respect to a reference quantity.

\[X \text{ (in dB)} = 10 \log_{10} (X/X_{\text{ref}}). \]

For example, if \(P_1 = 20 \text{ W} \) and \(P_{\text{ref}} = 1 \text{ W} \),
\[P_1 = 10 \log (20 \text{ W}/1 \text{ W}) = 10 \log (20) = 13 \text{ dB}. \]
What is deciBel (dB)?

* dB is a unit that describes a quantity, on a log scale, with respect to a reference quantity.

\[X \text{ (in dB)} = 10 \log_{10} \left(\frac{X}{X_{\text{ref}}} \right). \]

For example, if \(P_1 = 20 \text{ W} \) and \(P_{\text{ref}} = 1 \text{ W} \),

\[P_1 = 10 \log (20 \text{ W/1 W}) = 10 \log (20) = 13 \text{ dB}. \]

* For voltages or currents, the ratio of squares is taken (since \(P \propto V^2 \) or \(P \propto I^2 \) for a resistor).
What is deciBel (dB)?

* dB is a unit that describes a quantity, on a log scale, with respect to a reference quantity.

\[X \text{ (in dB)} = 10 \log_{10} \left(\frac{X}{X_{\text{ref}}} \right). \]

For example, if \(P_1 = 20 \text{ W} \) and \(P_{\text{ref}} = 1 \text{ W} \),

\[P_1 = 10 \log \left(\frac{20 \text{ W}}{1 \text{ W}} \right) = 10 \log (20) = 13 \text{ dB}. \]

* For voltages or currents, the ratio of squares is taken (since \(P \propto V^2 \) or \(P \propto I^2 \) for a resistor).

For example, if \(V_1 = 1.2 \text{ V} \), \(V_{\text{ref}} = 1 \text{ mV} \), then

\[V_1 = 10 \log \left(\frac{1.2 \text{ V}}{1 \text{ mV}} \right)^2 = 20 \log \left(1.2/10^{-3} \right) = 61.6 \text{ dBm}. \]
dB is a unit that describes a quantity, on a log scale, with respect to a reference quantity.

\[X \text{ (in dB)} = 10 \log_{10} \left(\frac{X}{X_{\text{ref}}} \right). \]

For example, if \(P_1 = 20 \text{ W} \) and \(P_{\text{ref}} = 1 \text{ W} \),
\[P_1 = 10 \log (20 \text{ W} / 1 \text{ W}) = 10 \log (20) = 13 \text{ dB}. \]

* For voltages or currents, the ratio of squares is taken (since \(P \propto V^2 \) or \(P \propto I^2 \) for a resistor).

For example, if \(V_1 = 1.2 \text{ V} \), \(V_{\text{ref}} = 1 \text{ mV} \), then
\[V_1 = 10 \log (1.2 \text{ V} / 1 \text{ mV})^2 = 20 \log \left(\frac{1.2}{10^{-3}} \right) = 61.6 \text{ dBm}. \]

* The voltage gain of an amplifier is
\[A_V \text{ in dB} = 20 \log \left(\frac{V_o}{V_i} \right), \]
with \(V_i \) serving as the reference voltage.
Example

Given $V_i = 2.5 \text{ mV}$ and $A_V = 36.3 \text{ dB}$, compute V_o in dBm and in mV.

(V_i and V_o are peak input and peak output voltages, respectively).
Example

Given $V_i = 2.5 \text{ mV}$ and $A_V = 36.3 \text{ dB}$, compute V_o in dBm and in mV.

(V_i and V_o are peak input and peak output voltages, respectively).

Method 1:

\[
V_i = 20 \log \left(\frac{2.5 \text{ mV}}{1 \text{ mV}} \right) = 7.96 \text{ dBm}
\]
Given $V_i = 2.5 \text{ mV}$ and $A_V = 36.3 \text{ dB}$, compute V_o in dBm and in mV.

(V_i and V_o are peak input and peak output voltages, respectively).

Method 1:

\[
V_i = 20 \log \left(\frac{2.5 \text{ mV}}{1 \text{ mV}} \right) = 7.96 \text{ dBm}
\]

\[
V_o = 7.96 + 36.3 = 44.22 \text{ dBm}
\]
Example

Given \(V_i = 2.5 \text{ mV} \) and \(A_V = 36.3 \text{ dB} \), compute \(V_o \) in dBm and in mV.

(\(V_i \) and \(V_o \) are peak input and peak output voltages, respectively).

Method 1:

\[
V_i = 20 \log \left(\frac{2.5 \text{ mV}}{1 \text{ mV}} \right) = 7.96 \text{ dBm}
\]

\[
V_o = 7.96 + 36.3 = 44.22 \text{ dBm}
\]

Since \(V_o \) (dBm) = 20 log \(\left(\frac{V_o \text{ (in mV)}}{1 \text{ mV}} \right) \),

\[
V_o = 10^x \times 1 \text{ mV}, \text{ where}
\]

\[
x = \frac{1}{20} V_o \text{ (in dBm)}
\]
Example

Given $V_i = 2.5 \text{ mV}$ and $A_V = 36.3 \text{ dB}$, compute V_o in dBm and in mV.

(V_i and V_o are peak input and peak output voltages, respectively).

Method 1:

$$V_i = 20 \log \left(\frac{2.5 \text{ mV}}{1 \text{ mV}} \right) = 7.96 \text{ dBm}$$

$$V_o = 7.96 + 36.3 = 44.22 \text{ dBm}$$

Since $V_o (\text{dBm}) = 20 \log \left(\frac{V_o (\text{in mV})}{1 \text{ mV}} \right)$,

$$V_o = 10^x \times 1 \text{ mV}, \text{ where}$$

$$x = \frac{1}{20} \ V_o (\text{in dBm})$$

$\rightarrow V_o = 162.5 \text{ mV}$.

M. B. Patil, IIT Bombay
Example

\[V_i \rightarrow \text{Amplifier} \rightarrow V_o \]

Given \(V_i = 2.5 \text{ mV} \) and \(A_V = 36.3 \text{ dB} \),
compute \(V_o \) in dBm and in mV.

(\(V_i \) and \(V_o \) are peak input and peak output voltages, respectively).

Method 1:

\[
V_i = 20 \log \left(\frac{2.5 \text{ mV}}{1 \text{ mV}} \right) = 7.96 \text{ dBm}
\]

\[
V_o = 7.96 + 36.3 = 44.22 \text{ dBm}
\]

Since \(V_o \) (dBm) = \(20 \log \left(\frac{V_o \text{ (in mV)}}{1 \text{ mV}} \right) \),

\[
V_o = 10^x \times 1 \text{ mV}, \text{ where}
\]

\[
x = \frac{1}{20} V_o \text{ (in dBm)}
\]

\[
\rightarrow V_o = 162.5 \text{ mV}.
\]

Method 2:

\[
A_V = 36.3 \text{ dB}
\]

\[
\rightarrow 20 \log A_V = 36.3 \rightarrow A_V = 65.
\]
Example

Given $V_i = 2.5 \text{ mV}$ and $A_V = 36.3 \text{ dB}$, compute V_o in dBm and in mV.

(V_i and V_o are peak input and peak output voltages, respectively).

Method 1:

$$V_i = 20 \log \left(\frac{2.5 \text{ mV}}{1 \text{ mV}} \right) = 7.96 \text{ dBm}$$

$$V_o = 7.96 + 36.3 = 44.22 \text{ dBm}$$

Since $V_o \text{ (dBm)} = 20 \log \left(\frac{V_o \text{ (in mV)}}{1 \text{ mV}} \right)$,

$$V_o = 10^x \times 1 \text{ mV}, \text{ where}$$

$$x = \frac{1}{20} V_o \text{ (in dBm)}$$

$$V_o = 162.5 \text{ mV}.$$

Method 2:

$$A_V = 36.3 \text{ dB}$$

$$\rightarrow 20 \log A_V = 36.3 \rightarrow A_V = 65.$$

$$V_o = A_V \times V_i = 65 \times 2.5 \text{ mV} = 162.5 \text{ mV}.$$
* When sound intensity is specified in dB, the reference pressure is $P_{\text{ref}} = 20 \mu Pa$ (our hearing threshold).

If the pressure corresponding to the sound being measured is P, we say that it is $20 \log \left(\frac{P}{P_{\text{ref}}} \right)$ dB.
* When sound intensity is specified in dB, the reference pressure is $P_{\text{ref}} = 20 \mu Pa$ (our hearing threshold).

 If the pressure corresponding to the sound being measured is P, we say that it is $20 \log \left(\frac{P}{P_{\text{ref}}} \right)$ dB.

* Some interesting numbers:

 - mosquito 3 m away: 0 dB
When sound intensity is specified in dB, the reference pressure is $P_{\text{ref}} = 20 \mu Pa$ (our hearing threshold).

If the pressure corresponding to the sound being measured is P, we say that it is $20 \log \left(\frac{P}{P_{\text{ref}}} \right)$ dB.

Some interesting numbers:

- mosquito 3 m away: 0 dB
- whisper: 20 dB
When sound intensity is specified in dB, the reference pressure is \(P_{\text{ref}} = 20 \mu Pa \) (our hearing threshold).

If the pressure corresponding to the sound being measured is \(P \), we say that it is \(20 \log \left(\frac{P}{P_{\text{ref}}} \right) \) dB.

Some interesting numbers:

- mosquito 3 m away: 0 dB
- whisper: 20 dB
- normal conversation: 60 to 70 dB

windows break: 163 dB
When sound intensity is specified in dB, the reference pressure is $P_{ref} = 20 \mu Pa$ (our hearing threshold).

If the pressure corresponding to the sound being measured is P, we say that it is $20 \log \left(\frac{P}{P_{ref}} \right)$ dB.

* Some interesting numbers:

- mosquito 3 m away: 0 dB
- whisper: 20 dB
- normal conversation: 60 to 70 dB
- noisy factory: 90 to 100 dB

M. B. Patil, IIT Bombay
When sound intensity is specified in dB, the reference pressure is $P_{\text{ref}} = 20 \mu Pa$ (our hearing threshold).

If the pressure corresponding to the sound being measured is P, we say that it is $20 \log \left(\frac{P}{P_{\text{ref}}} \right)$ dB.

Some interesting numbers:

- mosquito 3 m away: 0 dB
- whisper: 20 dB
- normal conversation: 60 to 70 dB
- noisy factory: 90 to 100 dB
- loud thunder: 110 dB
When sound intensity is specified in dB, the reference pressure is $P_{\text{ref}} = 20 \, \mu Pa$ (our hearing threshold).
If the pressure corresponding to the sound being measured is P, we say that it is $20 \log \left(\frac{P}{P_{\text{ref}}} \right)$ dB.

Some interesting numbers:

- mosquito 3 m away: 0 dB
- whisper: 20 dB
- normal conversation: 60 to 70 dB
- noisy factory: 90 to 100 dB
- loud thunder: 110 dB
- loudest sound human ear can tolerate: 120 dB
* When sound intensity is specified in dB, the reference pressure is $P_{\text{ref}} = 20 \mu Pa$ (our hearing threshold).

If the pressure corresponding to the sound being measured is P, we say that it is $20 \log \left(\frac{P}{P_{\text{ref}}} \right)$ dB.

* Some interesting numbers:

- mosquito 3 m away: 0 dB
- whisper: 20 dB
- normal conversation: 60 to 70 dB
- noisy factory: 90 to 100 dB
- loud thunder: 110 dB
- loudest sound human ear can tolerate: 120 dB
- windows break: 163 dB
The transfer function of a circuit such as an amplifier or a filter is given by,
\[H(s) = \frac{V_o(s)}{V_i(s)}, \]
where \(s = j\omega \).

\[H(j\omega) = K_1 + s\tau = K_1 + j\omega\tau \]

* \(H(j\omega) \) is a complex number, and a complete description of \(H(j\omega) \) involves
 (a) a plot of \(|H(j\omega)| \) versus \(\omega \).
 (b) a plot of \(\angle H(j\omega) \) versus \(\omega \).

Bode gave simple rules which allow construction of the above “Bode plots” in an
approximate (asymptotic) manner.
The transfer function of a circuit such as an amplifier or a filter is given by,

\[H(s) = \frac{V_o(s)}{V_i(s)}, \quad s = j\omega. \]

e.g., \(H(s) = \frac{K}{1 + s\tau} = \frac{K}{1 + j\omega\tau} \)
The transfer function of a circuit such as an amplifier or a filter is given by,

\[H(s) = \frac{V_o(s)}{V_i(s)}, \quad s = j\omega. \]

e.g., \(H(s) = \frac{K}{1 + s\tau} = \frac{K}{1 + j\omega\tau} \)

* \(H(j\omega) \) is a complex number, and a complete description of \(H(j\omega) \) involves
 (a) a plot of \(|H(j\omega)| \) versus \(\omega \).
 (b) a plot of \(\angle H(j\omega) \) versus \(\omega \).
The transfer function of a circuit such as an amplifier or a filter is given by,

\[H(s) = \frac{V_o(s)}{V_i(s)}, \quad s = j\omega. \]

e.g., \[H(s) = \frac{K}{1 + s\tau} = \frac{K}{1 + j\omega\tau} \]

* \(H(j\omega) \) is a complex number, and a complete description of \(H(j\omega) \) involves
 (a) a plot of \(|H(j\omega)| \) versus \(\omega \).
 (b) a plot of \(\angle H(j\omega) \) versus \(\omega \).

* Bode gave simple rules which allow construction of the above “Bode plots” in an approximate (asymptotic) manner.
A simple transfer function

\[V_o = \frac{(1/sC)}{R + (1/sC)} V_s, \]

\[\rightarrow H(s) = \frac{1}{1 + sRC} = \frac{1}{1 + (j\omega/\omega_0)}, \]

\[\omega_0 = \frac{1}{RC}. \]
A simple transfer function

\[H(s) = \frac{1}{1 + s \frac{1}{RC}} = \frac{1}{1 + (j \omega / \omega_0)} \]

\[V_o = \frac{(1/s C)}{R + (1/s C)} V_s, \]

\[\omega_0 = \frac{1}{RC}. \]

* The circuit behaves like a low-pass filter.

 For \(\omega \ll \omega_0 \), \(|H(j\omega)| \rightarrow 1.\)

 For \(\omega \gg \omega_0 \), \(|H(j\omega)| \propto 1/\omega.\)
A simple transfer function

\[V_o = \frac{(1/sC)}{R + (1/sC)} V_s, \]

\[H(s) = \frac{1}{1+sRC} = \frac{1}{1+(j\omega/\omega_0)}, \]

\[\omega_0 = \frac{1}{RC}. \]

* The circuit behaves like a low-pass filter.

 For \(\omega \ll \omega_0 \), \(|H(j\omega)| \rightarrow 1.\)

 For \(\omega \gg \omega_0 \), \(|H(j\omega)| \propto 1/\omega.\)

* The magnitude and phase of \(H(j\omega)\) are given by,

\[|H(j\omega)| = \frac{1}{\sqrt{1 + (\omega/\omega_0)^2}}, \quad \angle H(j\omega) = -\tan^{-1}\left(\frac{\omega}{\omega_0}\right). \]
A simple transfer function

\[H(s) = \frac{1}{1 + \frac{j \omega}{\omega_0}} \]

\[\omega_0 = \frac{1}{RC} \]

\[V_o = \frac{(1/s C)}{R + (1/s C)} V_s, \]

\[\rightarrow \]

\[H(s) = \frac{1}{1 + \frac{j \omega}{\omega_0}} \]

* The circuit behaves like a low-pass filter.
 - For \(\omega \ll \omega_0 \), \(|H(j\omega)| \rightarrow 1\).
 - For \(\omega \gg \omega_0 \), \(|H(j\omega)| \propto \frac{1}{\omega} \).

* The magnitude and phase of \(H(j\omega) \) are given by,
 \[
 |H(j\omega)| = \frac{1}{\sqrt{1 + (\omega/\omega_0)^2}}, \quad \angle H(j\omega) = -\tan^{-1}\left(\frac{\omega}{\omega_0}\right).
 \]

* We are generally interested in a large variation in \(\omega \) (several orders), and its effect on \(|H|\) and \(\angle H\).
A simple transfer function

\[H(s) = \frac{1}{1+sRC} = \frac{1}{1+(j\omega/\omega_0)}, \]

\[V_o = \frac{1}{sC}R + \frac{1}{sC}V_s, \]

\[\omega_0 = \frac{1}{RC}. \]

* The circuit behaves like a low-pass filter.

 For \(\omega \ll \omega_0 \), \(|H(j\omega)| \rightarrow 1.\)

 For \(\omega \gg \omega_0 \), \(|H(j\omega)| \propto 1/\omega.\)

* The magnitude and phase of \(H(j\omega) \) are given by,

 \[|H(j\omega)| = \frac{1}{\sqrt{1 + (\omega/\omega_0)^2}}, \quad \angle H(j\omega) = -\tan^{-1}\left(\frac{\omega}{\omega_0}\right). \]

* We are generally interested in a large variation in \(\omega \) (several orders), and its effect on \(|H|\) and \(\angle H\).

* The magnitude \(|H|\) varies by orders of magnitude as well.

 The phase \(\angle H\) varies from 0 (for \(\omega \ll \omega_0 \)) to \(-\pi/2\) (for \(\omega \gg \omega_0 \)).
A simple transfer function: magnitude

$$V_o = \frac{(1/sC) V_s}{R + (1/sC)}$$

$$\rightarrow H(s) = \frac{1}{1+sRC} = \frac{1}{1+(j\omega/\omega_0)}.$$

$$\omega_0 = \frac{1}{RC}.$$

Since $$\omega$$ and $$|H(j\omega)|$$ vary by several orders of magnitude, a linear $$\omega$$- or $$|H|$$-axis is not appropriate \rightarrow log $$|H|$$ is plotted against log $$\omega$$.

M. B. Patil, IIT Bombay
A simple transfer function: magnitude

\[V_o = \frac{(1/sC)}{R + (1/sC)} V_s, \]

\[H(s) = \frac{1}{1 + sRC} = \frac{1}{1 + (j\omega/\omega_0)}, \]

\[\omega_0 = \frac{1}{RC}. \]

Since \(\omega \) and \(|H(j\omega)| \) vary by several orders of magnitude, a linear \(\omega \)- or \(|H| \)-axis is not appropriate \(\rightarrow \) log \(|H| \) is plotted against log \(\omega \).
A simple transfer function: magnitude

$$V_o = \frac{(1/s C)}{R + (1/s C)} V_s,$$

$$\rightarrow H(s) = \frac{1}{1+sRC} = \frac{1}{1+(j\omega/\omega_0)},$$

$$\omega_0 = \frac{1}{RC}.$$
A simple transfer function: magnitude

\[H(s) = \frac{1}{1 + \left(\frac{j\omega}{\omega_0}\right)} \]

\[\omega_0 = \frac{1}{RC} \]

Note that the shape of the plot does not change.

\[|H| \text{ (dB)} = 20 \log |H| \text{ is simply a scaled version of } \log |H|. \]
A simple transfer function: magnitude

\[H(s) = \frac{1}{1+s\frac{1}{RC}} = \frac{1}{1+(j\omega/\omega_0)}, \]

\[\omega_0 = \frac{1}{RC}. \]

Since \(\omega = 2\pi f \), the shape of the plot does not change.
A simple transfer function: magnitude

\[V_o = \frac{(1/s C)}{R + (1/s C)} V_s, \]

\[\rightarrow H(s) = \frac{1}{1+sRC} = \frac{1}{1+(j\omega/\omega_0)}, \]

\[\omega_0 = \frac{1}{RC}. \]

Since \(\omega = 2\pi f \), the shape of the plot does not change.

M. B. Patil, IIT Bombay
A simple transfer function: phase

\[H(s) = \frac{1}{1 + sRC} = \frac{1}{1 + (j\omega/\omega_0)} , \]

\[\omega_0 = \frac{1}{RC} . \]

\[V_o = \frac{(1/sC)}{R + (1/sC)} V_s , \]

\[\Rightarrow \]

\[\angle H = -\tan^{-1}(\omega/\omega_0) \]

Since \(\angle H \) varies in a limited range (0° to −90° in this example), a linear axis is appropriate for \(\angle H \).

As in the magnitude plot, we use a log axis for \(\omega \), since we are interested in a wide range of \(\omega \).

M. B. Patil, IIT Bombay
A simple transfer function: phase

\[V_o = \frac{(1/s C)}{R + (1/s C)} V_s, \]
\[\rightarrow H(s) = \frac{1}{1+s RC} = \frac{1}{1 + (j \omega/\omega_0)}, \]
\[\omega_0 = \frac{1}{RC}. \]

* Since \(\angle H = -\tan^{-1}(\omega/\omega_0) \) varies in a limited range (0° to −90° in this example), a linear axis is appropriate for \(\angle H \).
A simple transfer function: phase

\[V_o = \frac{(1/s C)}{R + (1/s C)} V_s , \]

\[\rightarrow H(s) = \frac{1}{1+s RC} = \frac{1}{1 + (j \omega/\omega_0)} , \]

\[\omega_0 = \frac{1}{RC} . \]

* Since \(\angle H = -\tan^{-1}(\omega/\omega_0) \) varies in a limited range (0° to −90° in this example), a linear axis is appropriate for \(\angle H \).

* As in the magnitude plot, we use a log axis for \(\omega \), since we are interested in a wide range of \(\omega \).
Consider \(H(s) = \frac{K (1 + s/z_1)(1 + s/z_2) \cdots (1 + s/z_M)}{(1 + s/p_1)(1 + s/p_2) \cdots (1 + s/p_N)} \).

\(-z_1, -z_2, \cdots \) are called the “zeros” of \(H(s) \).

\(-p_1, -p_2, \cdots \) are called the “poles” of \(H(s) \).

(In addition, there could be terms like \(s, s^2, \cdots \) in the numerator.)

We will assume, for simplicity, that the zeros (and poles) are real and distinct.

Construction of Bode plots involves

(a) computing approximate contribution of each pole/zero as a function \(\omega \).

(b) combining the various contributions to obtain \(|H| \) and \(\angle H \) versus \(\omega \).
Consider \(H(s) = \frac{K (1 + s/z_1)(1 + s/z_2) \cdots (1 + s/z_M)}{(1 + s/p_1)(1 + s/p_2) \cdots (1 + s/p_N)} \).

\(-z_1, -z_2, \cdots\) are called the “zeros” of \(H(s) \).

\(-p_1, -p_2, \cdots\) are called the “poles” of \(H(s) \).

(In addition, there could be terms like \(s, s^2, \cdots \) in the numerator.)

We will assume, for simplicity, that the zeros (and poles) are real and distinct.

Construction of Bode plots involves
Construction of Bode plots

Consider

\[H(s) = \frac{K (1 + s/z_1)(1 + s/z_2) \cdots (1 + s/z_M)}{(1 + s/p_1)(1 + s/p_2) \cdots (1 + s/p_N)}. \]

\(-z_1, -z_2, \cdots\) are called the “zeros” of \(H(s)\).

\(-p_1, -p_2, \cdots\) are called the “poles” of \(H(s)\).

(In addition, there could be terms like \(s, s^2, \cdots\) in the numerator.)

We will assume, for simplicity, that the zeros (and poles) are real and distinct.

Construction of Bode plots involves

(a) computing approximate contribution of each pole/zero as a function \(\omega\).
Consider $H(s) = \frac{K (1 + s/z_1)(1 + s/z_2) \cdots (1 + s/z_M)}{(1 + s/p_1)(1 + s/p_2) \cdots (1 + s/p_N)}$.

$-z_1, -z_2, \cdots$ are called the “zeros” of $H(s)$.

$-p_1, -p_2, \cdots$ are called the “poles” of $H(s)$.

(In addition, there could be terms like s, s^2, \cdots in the numerator.)

We will assume, for simplicity, that the zeros (and poles) are real and distinct.

Construction of Bode plots involves

(a) computing approximate contribution of each pole/zero as a function ω.

(b) combining the various contributions to obtain $|H|$ and $\angle H$ versus ω.
Consider $H(s) = \frac{1}{1 + s/p} \rightarrow H(j\omega) = \frac{1}{1 + j(\omega/p)}$, $|H(j\omega)| = \frac{1}{\sqrt{1 + (\omega/p)^2}}$.

Note that, at $\omega = p$, the actual value of $|H|$ is $1/\sqrt{2}$ (i.e., -3 dB).
Consider $H(s) = \frac{1}{1 + s/p} \rightarrow H(j\omega) = \frac{1}{1 + j(\omega/p)}$, $|H(j\omega)| = \frac{1}{\sqrt{1 + (\omega/p)^2}}$.

Asymptote 1: $\omega \ll p$: $|H| \rightarrow 1$, $20 \log |H| = 0$ dB.
Consider \(H(s) = \frac{1}{1 + s/p} \rightarrow H(j\omega) = \frac{1}{1 + j(\omega/p)} \), \(|H(j\omega)| = \frac{1}{\sqrt{1 + (\omega/p)^2}} \).

Asymptote 1: \(\omega \ll p \): \(|H| \rightarrow 1, \quad 20 \log |H| = 0 \text{ dB} \).

Asymptote 2: \(\omega \gg p \): \(|H| \rightarrow \frac{1}{\omega/p} = \frac{p}{\omega} \rightarrow |H| = 20 \log p - 20 \log \omega \text{ (dB)} \).
Consider $H(s) = \frac{1}{1 + s/p} \rightarrow H(j\omega) = \frac{1}{1 + j(\omega/p)}$, $|H(j\omega)| = \frac{1}{\sqrt{1 + (\omega/p)^2}}$.

Asymptote 1: $\omega \ll p$: $|H| \rightarrow 1, \ 20 \log |H| = 0 \text{ dB}$.

Asymptote 2: $\omega \gg p$: $|H| \rightarrow \frac{1}{\omega/p} = \frac{p}{\omega} \rightarrow |H| = 20 \log p - 20 \log \omega \ (\text{dB})$

Consider two values of ω: ω_1 and $10\omega_1$.

$|H|_1 = 20 \log p - 20 \log \omega_1 \ (\text{dB})$

$|H|_2 = 20 \log p - 20 \log (10\omega_1) \ (\text{dB})$
Contribution of a pole: magnitude

Consider \(H(s) = \frac{1}{1 + s/p} \rightarrow H(j\omega) = \frac{1}{1 + j(\omega/p)} \), \(|H(j\omega)| = \frac{1}{\sqrt{1 + (\omega/p)^2}}\).

Asymptote 1: \(\omega \ll p \): \(|H| \rightarrow 1, \quad 20 \log |H| = 0 \text{ dB} \).

Asymptote 2: \(\omega \gg p \): \(|H| \rightarrow \frac{1}{\omega/p} = \frac{p}{\omega} \rightarrow |H| = 20 \log p - 20 \log \omega \) (dB)

Consider two values of \(\omega \): \(\omega_1 \) and 10 \(\omega_1 \).

\(|H|_1 = 20 \log p - 20 \log \omega_1 \) (dB)

\(|H|_2 = 20 \log p - 20 \log (10 \omega_1) \) (dB)

\(|H|_1 - |H|_2 = -20 \log \frac{\omega_1}{10 \omega_1} = 20 \text{ dB} \).
Consider $H(s) = \frac{1}{1 + s/p} \rightarrow H(j\omega) = \frac{1}{1 + j(\omega/p)}$, $|H(j\omega)| = \frac{1}{\sqrt{1 + (\omega/p)^2}}$.

Asymptote 1: $\omega \ll p$: $|H| \rightarrow 1$, $20\log |H| = 0$ dB.
Asymptote 2: $\omega \gg p$: $|H| \rightarrow \frac{1}{\omega/p} = \frac{p}{\omega} \rightarrow |H| = 20 \log p - 20 \log \omega$ (dB)

Consider two values of ω: ω_1 and $10\omega_1$.

$|H|_1 = 20 \log p - 20 \log \omega_1$ (dB)
$|H|_2 = 20 \log p - 20 \log (10\omega_1)$ (dB)

$|H|_1 - |H|_2 = -20 \log \frac{\omega_1}{10\omega_1} = 20$ dB.

$\rightarrow |H|$ versus ω has a slope of -20 dB/decade.

Note that, at $\omega = p$, the actual value of $|H|$ is $1/\sqrt{2}$ (i.e., -3 dB).
Consider $H(s) = \frac{1}{1 + s/p} = \frac{1}{1 + j(\omega/p)} \rightarrow \angle H = -\tan^{-1}\left(\frac{\omega}{p}\right)$
Contribution of a pole: phase

Consider $H(s) = \frac{1}{1 + s/p} = \frac{1}{1 + j(\omega/p)} \rightarrow \angle H = -\tan^{-1}\left(\frac{\omega}{p}\right)$

Asymptote 1: $\omega \ll p$ (say, $\omega < p/10$): $\angle H = 0$.

M. B. Patil, IIT Bombay
Consider $H(s) = \frac{1}{1 + s/p} = \frac{1}{1 + j(\omega/p)} \rightarrow \angle H = -\tan^{-1}\left(\frac{\omega}{p}\right)$

Asymptote 1: $\omega \ll p$ (say, $\omega < p/10$): $\angle H = 0$.

Asymptote 2: $\omega \gg p$ (say, $\omega > 10p$): $\angle H = -\pi/2$.
Consider $H(s) = \frac{1}{1 + s/p} = \frac{1}{1 + j(\omega/p)} \rightarrow \angle H = -\tan^{-1}\left(\frac{\omega}{p}\right)$

Asymptote 1: $\omega \ll p$ (say, $\omega < p/10$): $\angle H = 0$.

Asymptote 2: $\omega \gg p$ (say, $\omega > 10p$): $\angle H = -\pi/2$.

Asymptote 3: For $p/10 < \omega < 10p$, $\angle H$ is assumed to vary linearly with $\log \omega$
→ at $\omega = p$, $\angle H = -\pi/4$ (which is also the actual value of $\angle H$).
Consider \(H(s) = 1 + \frac{s}{z} \rightarrow H(j\omega) = 1 + j\left(\frac{\omega}{z}\right) \), \(|H(j\omega)| = \sqrt{1 + \left(\frac{\omega}{z}\right)^2}\).
Consider $H(s) = 1 + s/z \rightarrow H(j\omega) = 1 + j(\omega/z)$, $|H(j\omega)| = \sqrt{1 + (\omega/z)^2}$.

Asymptote 1: $\omega \ll p$: $|H| \rightarrow 1$, $20 \log |H| = 0$ dB.
Consider $H(s) = 1 + s/z \rightarrow H(j\omega) = 1 + j(\omega/z)$, $|H(j\omega)| = \sqrt{1 + (\omega/z)^2}$.

Asymptote 1: $\omega \ll p$: $|H| \rightarrow 1, \ 20 \log |H| = 0$ dB.

Asymptote 2: $\omega \gg p$: $|H| \rightarrow \frac{\omega}{z} \rightarrow |H| = 20 \log \omega - 20 \log z$ (dB)
Consider $H(s) = 1 + s/z \rightarrow H(j\omega) = 1 + j(\omega/z)$, $|H(j\omega)| = \sqrt{1 + (\omega/z)^2}$.

Asymptote 1: $\omega \ll p$: $|H| \rightarrow 1$, $20 \log |H| = 0$ dB.

Asymptote 2: $\omega \gg p$: $|H| \rightarrow \frac{\omega}{z} \rightarrow |H| = 20 \log \omega - 20 \log z$ (dB)

Consider two values of ω: ω_1 and $10\omega_1$.

$|H|_1 = 20 \log \omega_1 - 20 \log z$ (dB)

$|H|_2 = 20 \log (10\omega_1) - 20 \log z$ (dB)
Contribution of a zero: magnitude

Consider $H(s) = 1 + s/z \rightarrow H(j\omega) = 1 + j(\omega/z)$, $|H(j\omega)| = \sqrt{1 + (\omega/z)^2}$.

Asymptote 1: $\omega \ll p$: $|H| \rightarrow 1$, $20 \log |H| = 0$ dB.

Asymptote 2: $\omega \gg p$: $|H| \rightarrow \frac{\omega}{z} \rightarrow |H| = 20 \log \omega - 20 \log z$ (dB)

Consider two values of ω: ω_1 and $10\omega_1$.

$|H|_1 = 20 \log \omega_1 - 20 \log z$ (dB)

$|H|_2 = 20 \log (10\omega_1) - 20 \log z$ (dB)

$|H|_1 - |H|_2 = 20 \log \frac{\omega_1}{10\omega_1} = -20$ dB.
Consider $H(s) = 1 + s/z \rightarrow H(j\omega) = 1 + j\left(\omega/z\right)$, $|H(j\omega)| = \sqrt{1 + (\omega/z)^2}$.

Asymptote 1: $\omega \ll p$: $|H| \rightarrow 1$, $20 \log |H| = 0$ dB.

Asymptote 2: $\omega \gg p$: $|H| \rightarrow \frac{\omega}{z} \rightarrow |H| = 20 \log \omega - 20 \log z$ (dB)

Consider two values of ω: ω_1 and $10 \omega_1$.

$|H|_1 = 20 \log \omega_1 - 20 \log z$ (dB)

$|H|_2 = 20 \log (10 \omega_1) - 20 \log z$ (dB)

$|H|_1 - |H|_2 = 20 \log \frac{\omega_1}{10 \omega_1} = -20$ dB.

$\rightarrow |H|$ versus ω has a slope of $+20$ dB/decade.

Note that, at $\omega = z$, the actual value of $|H|$ is $\sqrt{2}$ (i.e., 3 dB).
Consider \(H(s) = 1 + s/z = 1 + j(\omega/z) \rightarrow \angle H = \tan^{-1}\left(\frac{\omega}{z}\right) \)
Consider $H(s) = 1 + s/z = 1 + j(\omega/z) \rightarrow \angle H = \tan^{-1}\left(\frac{\omega}{z}\right)$

Asymptote 1: $\omega \ll z$ (say, $\omega < z/10$): $\angle H = 0$.
Consider \(H(s) = 1 + s/z = 1 + j(\omega/z) \rightarrow \angle H = \tan^{-1}\left(\frac{\omega}{z}\right) \)

Asymptote 1: \(\omega \ll z \) (say, \(\omega < z/10 \)): \(\angle H = 0 \).

Asymptote 2: \(\omega \gg z \) (say, \(\omega > 10z \)): \(\angle H = \pi/2 \).
Consider \(H(s) = 1 + s/z = 1 + j(\omega/z) \rightarrow \angle H = \tan^{-1}\left(\frac{\omega}{z}\right) \)

Asymptote 1: \(\omega \ll z \) (say, \(\omega < z/10 \)): \(\angle H = 0 \).

Asymptote 2: \(\omega \gg z \) (say, \(\omega > 10z \)): \(\angle H = \pi/2 \).

Asymptote 3: For \(z/10 < \omega < 10z \), \(\angle H \) is assumed to vary linearly with \(\log \omega \rightarrow \) at \(\omega = z \), \(\angle H = \pi/4 \) (which is also the actual value of \(\angle H \)).
Contribution of K (constant), s, and s^2

For $H(s) = K$, $20 \log|H| = 20 \log K$ (a constant), and $\angle H = 0$.
Contribution of K (constant), s, and s^2

For $H(s) = K$, $20 \log |H| = 20 \log K$ (a constant), and $\angle H = 0$.
Contribution of K (constant), s, and s^2

For $H(s) = K$, $20 \log |H| = 20 \log K$ (a constant), and $\angle H = 0$.

For $H(s) = s$, i.e., $H(j\omega) = j\omega$, $|H| = \omega$.
Contribution of \(K \) (constant), \(s \), and \(s^2 \)

For \(H(s) = K \), \(20 \log |H| = 20 \log K \) (a constant), and \(\angle H = 0 \).

For \(H(s) = s \), i.e., \(H(j\omega) = j\omega \), \(|H| = \omega \).
\[\rightarrow 20 \log |H| = 20 \log \omega, \]
Contribution of K (constant), s, and s^2

For $H(s) = K$, $20 \log |H| = 20 \log K$ (a constant), and $\angle H = 0$.

For $H(s) = s$, i.e., $H(j\omega) = j\omega$, $|H| = \omega$.

$\rightarrow 20 \log |H| = 20 \log \omega$,
i.e., a straight line in the $|H|$ (dB)-log ω plane with a slope of 20 dB/decade, passing through $(1, 0)$.
Contribution of K (constant), s, and s^2

For $H(s) = K$, $20 \log |H| = 20 \log K$ (a constant), and $\angle H = 0$.

For $H(s) = s$, i.e., $H(j\omega) = j\omega$, $|H| = \omega$.

$\rightarrow 20 \log |H| = 20 \log \omega$,
i.e., a straight line in the $|H|$ (dB)-log ω plane with a slope of 20 dB/decade,
passing through (1, 0).
$\angle H = \pi/2$ (irrespective of ω).
Contribution of K (constant), s, and s^2

For $H(s) = K$, $20 \log |H| = 20 \log K$ (a constant), and $\angle H = 0$.

For $H(s) = s$, i.e., $H(j\omega) = j\omega$, $|H| = \omega$.
$\rightarrow 20 \log |H| = 20 \log \omega$,
i.e., a straight line in the $|H|$ (dB)-log ω plane with a slope of 20 dB/decade,
passing through (1, 0).
$\angle H = \pi/2$ (irrespective of ω).

For $H(s) = s^2$, i.e., $H(j\omega) = -\omega^2$, $|H| = \omega^2$.
Contribution of K (constant), s, and s^2

For $H(s) = K$, $20 \log |H| = 20 \log K$ (a constant), and $\angle H = 0$.

For $H(s) = s$, i.e., $H(j\omega) = j\omega$, $|H| = \omega$.

$\rightarrow 20 \log |H| = 20 \log \omega$,
i.e., a straight line in the $|H|$ (dB)-log ω plane with a slope of 20 dB/decade,
passing through $(1, 0)$.
$\angle H = \pi/2$ (irrespective of ω).

For $H(s) = s^2$, i.e., $H(j\omega) = -\omega^2$, $|H| = \omega^2$.

$\rightarrow 20 \log |H| = 40 \log \omega$,
Contribution of \(K \) (constant), \(s \), and \(s^2 \)

For \(H(s) = K \), \(20 \log |H| = 20 \log K \) (a constant), and \(\angle H = 0 \).

For \(H(s) = s \), i.e., \(H(j\omega) = j\omega \), \(|H| = \omega \).
\[\rightarrow 20 \log |H| = 20 \log \omega, \]
i.e., a straight line in the \(|H|(\text{dB})\)-log \(\omega \) plane with a slope of 20 dB/decade, passing through \((1, 0)\).
\[\angle H = \pi/2 \] (irrespective of \(\omega \)).

For \(H(s) = s^2 \), i.e., \(H(j\omega) = -\omega^2 \), \(|H| = \omega^2 \).
\[\rightarrow 20 \log |H| = 40 \log \omega, \]
i.e., a straight line in the \(|H|(\text{dB})\)-log \(\omega \) plane with a slope of 40 dB/decade, passing through \((1, 0)\).
Contribution of K (constant), s, and s^2

For $H(s) = K$, $20 \log |H| = 20 \log K$ (a constant), and $\angle H = 0$.

For $H(s) = s$, i.e., $H(j\omega) = j\omega$, $|H| = \omega$.
$\rightarrow 20 \log |H| = 20 \log \omega$,
i.e., a straight line in the $|H|$ (dB)-log ω plane with a slope of 20 dB/decade,
passing through $(1, 0)$.
$\angle H = \pi/2$ (irrespective of ω).

For $H(s) = s^2$, i.e., $H(j\omega) = -\omega^2$, $|H| = \omega^2$.
$\rightarrow 20 \log |H| = 40 \log \omega$,
i.e., a straight line in the $|H|$ (dB)-log ω plane with a slope of 40 dB/decade,
passing through $(1, 0)$.
$\angle H = \pi$ (irrespective of ω).
Combining different terms

Consider $H(s) = H_1(s) \times H_2(s)$.

Magnitude: $|H(j\omega)| = |H_1(j\omega)| \times |H_2(j\omega)|$.

Phase: $\angle H_1(j\omega) + \angle H_2(j\omega)$.

In the Bode magnitude plot, the contributions due to $H_1(s)$ and $H_2(s)$ simply get added.

Phase: $\angle H(s) = \angle H_1(s) + \angle H_2(s)$.

In the Bode phase plot, the contributions due to $H_1(s)$ and $H_2(s)$ also get added.

The same reasoning applies to more than two terms as well.
Combining different terms

Consider $H(s) = H_1(s) \times H_2(s)$.

Magnitude:

$|H(j\omega)| = |H_1(j\omega)| \times |H_2(j\omega)|$.

$20 \log |H| = 20 \log |H_1| + 20 \log |H_2|$.
Combining different terms

Consider $H(s) = H_1(s) \times H_2(s)$.

Magnitude:

$$|H(j\omega)| = |H_1(j\omega)| \times |H_2(j\omega)|.$$

$$20 \log |H| = 20 \log |H_1| + 20 \log |H_2|.$$

→ In the Bode magnitude plot, the contributions due to H_1 and H_2 simply get added.
Combining different terms

Consider $H(s) = H_1(s) \times H_2(s)$.

Magnitude:

$$|H(j\omega)| = |H_1(j\omega)| \times |H_2(j\omega)|.$$
$$20 \log |H| = 20 \log |H_1| + 20 \log |H_2|.$$
\rightarrow In the Bode magnitude plot, the contributions due to H_1 and H_2 simply get added.

Phase:

$H_1(j\omega)$ and $H_2(j\omega)$ are complex numbers.

At a given ω, let $H_1 = K_1 \angle \alpha = K_1 e^{j\alpha}$, and $H_2 = K_2 \angle \beta = K_2 e^{j\beta}$.

Then, $H_1 H_2 = K_1 K_2 e^{j(\alpha+\beta)} = K_1 K_2 \angle (\alpha + \beta)$.

i.e., $\angle H = \angle H_1 + \angle H_2$.

M. B. Patil, IIT Bombay
Combining different terms

Consider \(H(s) = H_1(s) \times H_2(s) \).

Magnitude:

\[|H(j\omega)| = |H_1(j\omega)| \times |H_2(j\omega)|. \]

\[20 \log |H| = 20 \log |H_1| + 20 \log |H_2|. \]

→ In the Bode magnitude plot, the contributions due to \(H_1 \) and \(H_2 \) simply get added.

Phase:

\(H_1(j\omega) \) and \(H_2(j\omega) \) are complex numbers.

At a given \(\omega \), let \(H_1 = K_1 \angle \alpha = K_1 e^{j\alpha} \), and \(H_2 = K_2 \angle \beta = K_2 e^{j\beta} \).

Then, \(H_1 H_2 = K_1 K_2 e^{j(\alpha+\beta)} = K_1 K_2 \angle (\alpha + \beta) \).

i.e., \(\angle H = \angle H_1 + \angle H_2 \).

In the Bode phase plot, the contributions due to \(H_1 \) and \(H_2 \) also get added.
Combining different terms

Consider \(H(s) = H_1(s) \times H_2(s) \).

Magnitude:

\[
|H(j\omega)| = |H_1(j\omega)| \times |H_2(j\omega)|.
\]

\[
20 \log |H| = 20 \log |H_1| + 20 \log |H_2|.
\]

→ In the Bode magnitude plot, the contributions due to \(H_1 \) and \(H_2 \) simply get added.

Phase:

\(H_1(j\omega) \) and \(H_2(j\omega) \) are complex numbers.

At a given \(\omega \), let \(H_1 = K_1 \angle \alpha = K_1 e^{j\alpha} \), and \(H_2 = K_2 \angle \beta = K_2 e^{j\beta} \).

Then, \(H_1 H_2 = K_1 K_2 e^{j(\alpha+\beta)} = K_1 K_2 \angle (\alpha + \beta) \).

i.e., \(\angle H = \angle H_1 + \angle H_2 \).

In the Bode phase plot, the contributions due to \(H_1 \) and \(H_2 \) also get added.

The same reasoning applies to more than two terms as well.
Combining different terms: example

Consider \(H(s) = \frac{10s}{(1 + s/10^2)(1 + s/10^5)} \).
Combining different terms: example

Consider \(H(s) = \frac{10s}{(1 + s/10^2)(1 + s/10^5)} \).

Let \(H(s) = H_1(s) H_2(s) H_3(s) H_4(s) \), where

\(H_1(s) = 10 \),
\(H_2(s) = s \),
\(H_3(s) = \frac{1}{1 + s/p_1} \), \(p_1 = 10^2 \text{ rad/s} \),
\(H_4(s) = \frac{1}{1 + s/p_2} \), \(p_2 = 10^5 \text{ rad/s} \).
Combining different terms: example

Consider \(H(s) = \frac{10s}{(1 + s/10^2)(1 + s/10^5)} \).

Let \(H(s) = H_1(s) H_2(s) H_3(s) H_4(s) \), where

\(H_1(s) = 10 \),
\(H_2(s) = s \),
\(H_3(s) = \frac{1}{1 + s/p_1} \), \(p_1 = 10^2 \text{ rad/s} \),
\(H_4(s) = \frac{1}{1 + s/p_2} \), \(p_2 = 10^5 \text{ rad/s} \).

We can now plot the magnitude and phase of \(H_1, H_2, H_3, H_4 \) individually versus \(\omega \) and then simply add them to obtain \(|H| \) and \(\angle H \).
Magnitude plot ($|H|$ in dB)

$H_1(s) = 10$

$H(s) = 10 s (1 + s/10^2) (1 + s/10^5)$
Magnitude plot ($|H|$ in dB)

\[
H_1(s) = 10
\]

\[
H_2(s) = s
\]

\[
H_3(s) = 1 + \frac{s}{10^2}
\]

\[
H_4(s) = 1 + \frac{s}{10^5}
\]
Magnitude plot ($|H|$ in dB)

$p_{\text{approx.}} = 10 \times s \left(1 + \frac{s}{10^2} \right) \left(1 + \frac{s}{10^5} \right)$
Magnitude plot ($|H|$ in dB)

$H_1(s) = 10$

$H_2(s) = s$

$H_3(s) = \frac{1}{1 + s/10^2}$

$H_4(s) = \frac{1}{1 + s/10^5}$

M. B. Patil, IIT Bombay
Magnitude plot ($|H|$ in dB)

$H_1(s) = 10$

$H_2(s) = s$

$H_3(s) = \frac{1}{1 + s/10^2}$

$H_4(s) = \frac{1}{1 + s/10^5}$

$H(s) = \frac{10s}{(1 + s/10^2)(1 + s/10^5)}$
Phase plot

\[H_1(s) = 10 \]

\[H_2(s) = s \]

\[H_3(s) = \frac{1}{1 + \frac{s}{10^2}} \]

\[H_4(s) = \frac{1}{1 + \frac{s}{10^5}} \]

M. B. Patil, IIT Bombay
Phase plot

\[H_1(s) = 10 \]

\[H_2(s) = s \]
Phase plot

\begin{align*}
H_1(s) &= 10 \\
H_2(s) &= s \\
H_3(s) &= \frac{1}{1 + s/10^2}
\end{align*}

M. B. Patil, IIT Bombay
Phase plot

$H_1(s) = 10$

$H_2(s) = s$

$H_3(s) = \frac{1}{1 + \frac{s}{10^2}}$

$H_4(s) = \frac{1}{1 + \frac{s}{10^5}}$

M. B. Patil, IIT Bombay
Phase plot

\[H_1(s) = 10 \]

\[H_2(s) = s \]

\[H_3(s) = \frac{1}{1 + s/10^2} \]

\[H_4(s) = \frac{1}{1 + s/10^5} \]

\[H(s) = \frac{10s}{(1 + s/10^2)(1 + s/10^5)} \]
How good are the approximations?

* As we have seen, the contribution of a pole to the magnitude and phase plots is well represented by the asymptotes when $\omega \ll p$ or $\omega \gg p$ (similarly for a zero).
How good are the approximations?

* As we have seen, the contribution of a pole to the magnitude and phase plots is well represented by the asymptotes when \(\omega \ll p \) or \(\omega \gg p \) (similarly for a zero).

* Near \(\omega = p \) (or \(\omega = z \)), there is some error.
How good are the approximations?

* As we have seen, the contribution of a pole to the magnitude and phase plots is well represented by the asymptotes when \(\omega \ll p \) or \(\omega \gg p \) (similarly for a zero).

* Near \(\omega = p \) (or \(\omega = z \)), there is some error.

* If two poles \(p_1 \) and \(p_2 \) are close to each other (say, separated by less than a decade in \(\omega \)), the error becomes larger (next slide).
How good are the approximations?

* As we have seen, the contribution of a pole to the magnitude and phase plots is well represented by the asymptotes when \(\omega \ll p \) or \(\omega \gg p \) (similarly for a zero).

* Near \(\omega = p \) (or \(\omega = z \)), there is some error.

* If two poles \(p_1 \) and \(p_2 \) are close to each other (say, separated by less than a decade in \(\omega \)), the error becomes larger (next slide).

* When the poles and zeros are not sufficiently separated, the Bode approximation should be used only for a rough estimate, followed by a numerical calculation. However, even in such cases, it does give a good idea of the asymptotic magnitude and phase plots, which is valuable in amplifier design.
How good are the approximations?

Consider \(H(s) = \frac{10s}{(1 + s/p_1)(1 + s/p_2)} \).
How good are the approximations?

Consider

\[H(s) = \frac{10s}{(1 + s/p_1)(1 + s/p_2)}. \]
How good are the approximations?

Consider \(H(s) = \frac{10s}{(1 + s/p_1)(1 + s/p_2)} \).
How good are the approximations?

Consider \(H(s) = \frac{10s}{(1 + s/p_1)(1 + s/p_2)} \).
How good are the approximations?

Consider $H(s) = \frac{10s}{(1 + s/p_1)(1 + s/p_2)}$.

\[
\begin{array}{c|c|c|c|c|c|c|c}
\text{Frequency (rad/s)} & 0 & -45 & -90 & 45 & 90 \\
\hline
p_1 = 10^2 & & & & & \\
p_2 = 10^4 & & & & & \\
\hline
p_1 = 10^2 & & & & & \\
p_2 = 5 \times 10^2 & & & & & \\
\end{array}
\]
How good are the approximations?

Consider \(H(s) = \frac{10s}{(1+s/p_1)(1+s/p_2)} \).