EE101: ADC and DAC circuits

> M. B. Patil
> mbpatil@ee.iitb.ac.in
> www.ee.iitb.ac.in/ ${ }^{\sim}$ sequel

Department of Electrical Engineering
Indian Institute of Technology Bombay

Introduction

Introduction

* Real signals (e.g., a voltage measured with a thermocouple or a speech signal recorded with a microphone) are analog quantities, varying continuously with time.

Introduction

* Real signals (e.g., a voltage measured with a thermocouple or a speech signal recorded with a microphone) are analog quantities, varying continuously with time.
* Digital format offers several advantages: digital signal processing, storage, use of computers, robust transmission, etc.
* Real signals (e.g., a voltage measured with a thermocouple or a speech signal recorded with a microphone) are analog quantities, varying continuously with time.
* Digital format offers several advantages: digital signal processing, storage, use of computers, robust transmission, etc.
* An ADC (Analog-to-Digital Converter) is used to convert an analog signal to the digital format.
* Real signals (e.g., a voltage measured with a thermocouple or a speech signal recorded with a microphone) are analog quantities, varying continuously with time.
* Digital format offers several advantages: digital signal processing, storage, use of computers, robust transmission, etc.
* An ADC (Analog-to-Digital Converter) is used to convert an analog signal to the digital format.
* The reverse conversion (from digital to analog) is also required. For example, music stored in a DVD in digital format must be converted to an analog voltage for playing out on a speaker.
* Real signals (e.g., a voltage measured with a thermocouple or a speech signal recorded with a microphone) are analog quantities, varying continuously with time.
* Digital format offers several advantages: digital signal processing, storage, use of computers, robust transmission, etc.
* An ADC (Analog-to-Digital Converter) is used to convert an analog signal to the digital format.
* The reverse conversion (from digital to analog) is also required. For example, music stored in a DVD in digital format must be converted to an analog voltage for playing out on a speaker.
* A DAC (Digital-to-Analog Converter) is used to convert a digital signal to the analog format.

DAC

DAC

* For a 4-bit DAC, with input $S_{3} S_{2} S_{1} S_{0}$, the output voltage is $V_{A}=K\left[\left(S_{3} \times 2^{3}\right)+\left(S_{2} \times 2^{2}\right)+\left(S_{1} \times 2^{1}\right)+\left(S_{0} \times 2^{0}\right)\right]$. In general, $V_{A}=K \sum_{0}^{N-1} S_{k} 2^{k}$.

DAC

* For a 4-bit DAC, with input $S_{3} S_{2} S_{1} S_{0}$, the output voltage is $V_{A}=K\left[\left(S_{3} \times 2^{3}\right)+\left(S_{2} \times 2^{2}\right)+\left(S_{1} \times 2^{1}\right)+\left(S_{0} \times 2^{0}\right)\right]$. In general, $V_{A}=K \sum_{0}^{N-1} S_{k} 2^{k}$.

DAC

* For a 4-bit DAC, with input $S_{3} S_{2} S_{1} S_{0}$, the output voltage is $V_{A}=K\left[\left(S_{3} \times 2^{3}\right)+\left(S_{2} \times 2^{2}\right)+\left(S_{1} \times 2^{1}\right)+\left(S_{0} \times 2^{0}\right)\right]$. In general, $V_{A}=K \sum_{0}^{N-1} S_{k} 2^{k}$.
* K is proportional to the reference voltage V_{R}. Its value depends on how the DAC is implemented.

DAC using binary-weighted resistors

DAC using binary-weighted resistors

* If the input bit S_{k} is $1, A_{k}$ gets connected to V_{R}; else, it gets connected to ground.

DAC using binary-weighted resistors

* If the input bit S_{k} is $1, A_{k}$ gets connected to V_{R}; else, it gets connected to ground. $\rightarrow V\left(A_{k}\right)=S_{k} \times V_{R}$.

DAC using binary-weighted resistors

* If the input bit S_{k} is $1, A_{k}$ gets connected to V_{R}; else, it gets connected to ground. $\rightarrow V\left(A_{k}\right)=S_{k} \times V_{R}$.
* Since the inverting terminal of the Op Amp is at virtual ground, $I_{k}=\frac{V\left(A_{k}\right)-0}{R_{k}}=\frac{S_{k} V_{R}}{R_{k}}$.

DAC using binary-weighted resistors

* If the input bit S_{k} is $1, A_{k}$ gets connected to V_{R}; else, it gets connected to ground. $\rightarrow V\left(A_{k}\right)=S_{k} \times V_{R}$.
* Since the inverting terminal of the Op Amp is at virtual ground, $I_{k}=\frac{V\left(A_{k}\right)-0}{R_{k}}=\frac{S_{k} V_{R}}{R_{k}}$.
* Using $R_{k}=2^{N-1} R / 2^{k}$, we get $I=\frac{V_{R}}{2^{N-1} R} \sum_{0}^{N-1} S_{k} \times 2^{k}(N=4$ here $)$.

DAC using binary-weighted resistors

* If the input bit S_{k} is $1, A_{k}$ gets connected to V_{R}; else, it gets connected to ground.
$\rightarrow V\left(A_{k}\right)=S_{k} \times V_{R}$.
* Since the inverting terminal of the Op Amp is at virtual ground, $I_{k}=\frac{V\left(A_{k}\right)-0}{R_{k}}=\frac{S_{k} V_{R}}{R_{k}}$.
* Using $R_{k}=2^{N-1} R / 2^{k}$, we get $I=\frac{V_{R}}{2^{N-1} R} \sum_{0}^{N-1} S_{k} \times 2^{k}(N=4$ here $)$.
* The output voltage is $V_{o}=-R_{f} I=-V_{R} \frac{R_{f}}{2^{N-1} R} \sum_{0}^{N-1} S_{k} \times 2^{k}$.

DAC using binary-weighted resistors: Example (from Gopalan)

DAC using binary-weighted resistors: Example (from Gopalan)

* Consider an 8-bit DAC with $V_{R}=5 \mathrm{~V}$. What is the smallest value of R which will limit the current drawn from the supply $\left(V_{R}\right)$ to 10 mA ?

DAC using binary-weighted resistors: Example (from Gopalan)

* Consider an 8-bit DAC with $V_{R}=5 \mathrm{~V}$. What is the smallest value of R which will limit the current drawn from the supply $\left(V_{R}\right)$ to 10 mA ?
Maximum current is drawn from V_{R} when the input is 11111111.

DAC using binary-weighted resistors: Example (from Gopalan)

* Consider an 8-bit DAC with $V_{R}=5 \mathrm{~V}$. What is the smallest value of R which will limit the current drawn from the supply $\left(V_{R}\right)$ to 10 mA ?
Maximum current is drawn from V_{R} when the input is 11111111.
\rightarrow All nodes A_{0} to A_{7} get connected to V_{R}.

DAC using binary-weighted resistors: Example (from Gopalan)

* Consider an 8-bit DAC with $V_{R}=5 \mathrm{~V}$. What is the smallest value of R which will limit the current drawn from the supply $\left(V_{R}\right)$ to 10 mA ?
Maximum current is drawn from V_{R} when the input is 11111111.
\rightarrow All nodes A_{0} to A_{7} get connected to V_{R}.

$$
\begin{aligned}
\rightarrow & 10 \mathrm{~mA}=\frac{V_{R}}{R}+\frac{V_{R}}{2 R}+\cdots+\frac{V_{R}}{2^{7} R}=\frac{1}{2^{7}} \frac{V_{R}}{R}\left(2^{0}+2^{1}+\cdots+2^{7}\right) \\
& =\frac{1}{2^{7}} \frac{V_{R}}{R}\left(2^{8}-1\right)=\frac{255}{128} \frac{V_{R}}{R}
\end{aligned}
$$

DAC using binary-weighted resistors: Example (from Gopalan)

* Consider an 8-bit DAC with $V_{R}=5 \mathrm{~V}$. What is the smallest value of R which will limit the current drawn from the supply $\left(V_{R}\right)$ to 10 mA ?
Maximum current is drawn from V_{R} when the input is 11111111.
\rightarrow All nodes A_{0} to A_{7} get connected to V_{R}.
$\rightarrow 10 \mathrm{~mA}=\frac{V_{R}}{R}+\frac{V_{R}}{2 R}+\cdots+\frac{V_{R}}{2^{7} R}=\frac{1}{2^{7}} \frac{V_{R}}{R}\left(2^{0}+2^{1}+\cdots+2^{7}\right)$
$=\frac{1}{2^{7}} \frac{V_{R}}{R}\left(2^{8}-1\right)=\frac{255}{128} \frac{V_{R}}{R}$
$\rightarrow R_{\min }=\frac{5 \mathrm{~V}}{10 \mathrm{~mA}} \times \frac{255}{128}=996 \Omega$.

DAC using binary-weighted resistors: Example (from Gopalan)

DAC using binary-weighted resistors: Example (from Gopalan)

* If $R_{f}=R$, what is the resolution (i.e., ΔV_{A} corresponding to the input LSB changing from 0 to 1 with other input bits constant)?

DAC using binary-weighted resistors: Example (from Gopalan)

* If $R_{f}=R$, what is the resolution (i.e., ΔV_{A} corresponding to the input LSB changing from 0 to 1 with other input bits constant)?

$$
V_{A}=-V_{R} \frac{R_{f}}{2^{N-1} R}\left[S_{7} 2^{7}+\cdots+S_{1} 2^{1}+S_{0} 2^{0}\right]
$$

DAC using binary-weighted resistors: Example (from Gopalan)

* If $R_{f}=R$, what is the resolution (i.e., ΔV_{A} corresponding to the input LSB changing from 0 to 1 with other input bits constant)?

$$
\begin{aligned}
& V_{A}=-V_{R} \frac{R_{f}}{2^{N-1} R}\left[S_{7} 2^{7}+\cdots+S_{1} 2^{1}+S_{0} 2^{0}\right] \\
& \rightarrow \Delta V_{A}=\frac{V_{R}}{2^{N-1}} \frac{R_{f}}{R}=\frac{5 \mathrm{~V}}{2^{8-1}} \times 1=\frac{5}{128}=0.0391 \mathrm{~V}
\end{aligned}
$$

DAC using binary-weighted resistors: Example (from Gopalan)

DAC using binary-weighted resistors: Example (from Gopalan)

* What is the maximum output voltage (in magnitude)?

DAC using binary-weighted resistors: Example (from Gopalan)

* What is the maximum output voltage (in magnitude)?

$$
V_{A}=-\frac{V_{R}}{2^{N-1}} \frac{R_{f}}{R}\left[S_{7} 2^{7}+\cdots+S_{1} 2^{1}+S_{0} 2^{0}\right] .
$$

DAC using binary-weighted resistors: Example (from Gopalan)

* What is the maximum output voltage (in magnitude)?
$V_{A}=-\frac{V_{R}}{2^{N-1}} \frac{R_{f}}{R}\left[S_{7} 2^{7}+\cdots+S_{1} 2^{1}+S_{0} 2^{0}\right]$.
Maximum V_{A} (in magnitude) is obtained when the input is 11111111.

DAC using binary-weighted resistors: Example (from Gopalan)

* What is the maximum output voltage (in magnitude)?
$V_{A}=-\frac{V_{R}}{2^{N-1}} \frac{R_{f}}{R}\left[S_{7} 2^{7}+\cdots+S_{1} 2^{1}+S_{0} 2^{0}\right]$.
Maximum V_{A} (in magnitude) is obtained when the input is 11111111.
$\left|V_{A}\right|^{\max }=\frac{5}{128} \times 1 \times\left[2^{0}+2^{1}+\cdots+2^{7}\right]=\frac{5}{128} \times\left(2^{8}-1\right)=5 \times \frac{255}{128}=9.961 \mathrm{~V}$.

DAC using binary-weighted resistors: Example (from Gopalan)

DAC using binary-weighted resistors: Example (from Gopalan)

* Find the output voltage corresponding to the input 10101101.

DAC using binary-weighted resistors: Example (from Gopalan)

* Find the output voltage corresponding to the input 10101101.
$V_{A}=-\frac{V_{R}}{2^{N-1}} \frac{R_{f}}{R}\left[S_{7} 2^{7}+\cdots+S_{1} 2^{1}+S_{0} 2^{0}\right]$.

DAC using binary-weighted resistors: Example (from Gopalan)

* Find the output voltage corresponding to the input 10101101.

$$
\begin{aligned}
V_{A} & =-\frac{V_{R}}{2^{N-1}} \frac{R_{f}}{R}\left[S_{7} 2^{7}+\cdots+S_{1} 2^{1}+S_{0} 2^{0}\right] . \\
& =-\frac{5}{128} \times 1 \times\left[2^{7}+2^{5}+2^{3}+2^{2}+2^{0}\right]=-5 \times \frac{173}{128}=-6.758 \mathrm{~V} .
\end{aligned}
$$

DAC using binary-weighted resistors: Example (from Gopalan)

DAC using binary-weighted resistors: Example (from Gopalan)

* If the resistors are specified to have a tolerance of 1%, what is the range of $\left|V_{A}\right|$ corresponding to input 1111 1111?

DAC using binary-weighted resistors: Example (from Gopalan)

* If the resistors are specified to have a tolerance of 1%, what is the range of $\left|V_{A}\right|$ corresponding to input 1111 1111?
$\left|V_{A}\right|$ is maximum when (a) currents I_{0}, I_{1}, etc. assume their maximum values, with $R_{k}=R_{k}^{0} \times(1-0.01)$ and (b) R_{f} is maximum, $R_{f}=R_{f}^{0} \times(1+0.01)$.
(The superscript ' 0 ' denotes nominal value.)

DAC using binary-weighted resistors: Example (from Gopalan)

* If the resistors are specified to have a tolerance of 1%, what is the range of $\left|V_{A}\right|$ corresponding to input 1111 1111?
$\left|V_{A}\right|$ is maximum when (a) currents I_{0}, I_{1}, etc. assume their maximum values, with $R_{k}=R_{k}^{0} \times(1-0.01)$ and (b) R_{f} is maximum, $R_{f}=R_{f}^{0} \times(1+0.01)$.
(The superscript ' 0 ' denotes nominal value.)
$\rightarrow\left|V_{A}\right|_{11111111}^{\max }=V_{R} \times \frac{255}{128} \times\left.\frac{R_{f}}{R}\right|^{\max }=5 \times \frac{255}{128} \times \frac{1.01}{0.99}=10.162 \mathrm{~V}$.

DAC using binary-weighted resistors: Example (from Gopalan)

* If the resistors are specified to have a tolerance of 1%, what is the range of $\left|V_{A}\right|$ corresponding to input 1111 1111?
$\left|V_{A}\right|$ is maximum when (a) currents I_{0}, I_{1}, etc. assume their maximum values, with $R_{k}=R_{k}^{0} \times(1-0.01)$ and (b) R_{f} is maximum, $R_{f}=R_{f}^{0} \times(1+0.01)$.
(The superscript ' 0 ' denotes nominal value.)
$\rightarrow\left|V_{A}\right|_{11111111}^{\max }=V_{R} \times \frac{255}{128} \times\left.\frac{R_{f}}{R}\right|^{\max }=5 \times \frac{255}{128} \times \frac{1.01}{0.99}=10.162 \mathrm{~V}$.
Similarly, $\left|V_{A}\right|_{11111111}^{\min }=5 \times \frac{255}{128} \times \frac{0.99}{1.01}=9.764 \mathrm{~V}$.

DAC using binary-weighted resistors: Example (from Gopalan)

DAC using binary-weighted resistors: Example (from Gopalan)

* ΔV_{A} for input $11111111=10.162-9.764 \approx 0.4 \mathrm{~V}$ which is larger than the resolution $(0.039 \mathrm{~V})$ of the DAC. This situation is not acceptable.

DAC using binary-weighted resistors: Example (from Gopalan)

* ΔV_{A} for input $11111111=10.162-9.764 \approx 0.4 \mathrm{~V}$ which is larger than the resolution $(0.039 \mathrm{~V})$ of the DAC. This situation is not acceptable.
* The output voltage variation can be reduced by using resistors with a smaller tolerance. However, it is difficult to fabricate an IC with widely varying resistance values (from R to $2^{N-1} R$) and each with a small enough tolerance.

DAC using binary-weighted resistors: Example (from Gopalan)

* ΔV_{A} for input $11111111=10.162-9.764 \approx 0.4 \mathrm{~V}$ which is larger than the resolution $(0.039 \mathrm{~V})$ of the DAC. This situation is not acceptable.
* The output voltage variation can be reduced by using resistors with a smaller tolerance. However, it is difficult to fabricate an IC with widely varying resistance values (from R to $2^{N-1} R$) and each with a small enough tolerance.
\rightarrow use $R-2 R$ ladder network instead.

R-2R ladder network

Node A_{k} is connected to V_{R} if input bit S_{k} is 1 ; else, it is connected to ground.

R-2R ladder network

Node A_{k} is connected to V_{R} if input bit S_{k} is 1 ; else, it is connected to ground.

The original network is equivalent to

R-2R ladder network: Thevenin resistance

R-2R ladder network: $V_{T h}$ for $S_{0}=1$

R-2R ladder network: $V_{\text {Th }}$ for $S_{0}=1$

R-2R ladder network: $V_{T h}$ for $S_{1}=1$

R-2R ladder network: $V_{T h}$ for $S_{2}=1$

R-2R ladder network: $V_{T h}$ for $S_{3}=1$

R-2R ladder network: $R_{T h}$ and $V_{T h}$

R-2R ladder network: $R_{T h}$ and $V_{T h}$

* $R_{T h}=R$.

R-2R ladder network: $R_{T h}$ and $V_{T h}$

* $R_{T h}=R$.
* $V_{T h}=V_{T h}^{(S 0)}+V_{T h}^{(S 1)}+V_{T h}^{(S 2)}+V_{T h}^{(S 3)}$

$$
=\frac{V_{R}}{16}\left[S_{0} 2^{0}+S_{1} 2^{1}+S_{2} 2^{2}+S_{3} 2^{3}\right] .
$$

R-2R ladder network: $R_{T h}$ and $V_{T h}$

* $R_{T h}=R$.
* $V_{T h}=V_{T h}^{(S 0)}+V_{T h}^{(S 1)}+V_{T h}^{(S 2)}+V_{T h}^{(S 3)}$

$$
=\frac{V_{R}}{16}\left[S_{0} 2^{0}+S_{1} 2^{1}+S_{2} 2^{2}+S_{3} 2^{3}\right]
$$

* We can use the $R-2 R$ ladder network and an Op Amp to make up a DAC \rightarrow next slide.

DAC with R-2R ladder

* 6- to 20-bit DACs based on the R-2R ladder network are commercially available in monolithic form (single chip).

DAC with R-2R ladder

* $V_{o}=-\frac{R_{f}}{R_{T h}} V_{T h}=-\frac{R_{f}}{R_{T h}} \frac{V_{R}}{16}\left[S_{0} 2^{0}+S_{1} 2^{1}+S_{2} 2^{2}+S_{3} 2^{3}\right]$.
* For an N-bit DAC, $V_{o}=-\frac{R_{f}}{R_{T h}} V_{T h}=-\frac{R_{f}}{R_{T h}} \frac{V_{R}}{2^{N}} \sum_{0}^{N-1} S_{k} 2^{k}$.
* 6- to 20-bit DACs based on the R-2R ladder network are commercially available in monolithic form (single chip).
* Bipolar, CMOS, or BiCMOS technology is used for these DACs.

Combination of weighted-resistor and R-2R ladder networks

Combination of weighted-resistor and $R-2 R$ ladder networks

* Find the valur of r for the circuit to work as a regular (i.e., binary to analog) DAC.

Combination of weighted-resistor and $R-2 R$ ladder networks

* Find the valur of r for the circuit to work as a regular (i.e., binary to analog) DAC.
* Find the valur of r for the circuit to work as a BCD to analog DAC.

DAC: settling time

DAC: settling time

* When there is a change in the input binary number, the output V_{A} takes a finite time to settle to the new value.

DAC: settling time

* When there is a change in the input binary number, the output V_{A} takes a finite time to settle to the new value.
* The finite settling time arises because of stray capacitances and switching delays of the semiconductor devices used within the DAC chip.

DAC: settling time

* When there is a change in the input binary number, the output V_{A} takes a finite time to settle to the new value.
* The finite settling time arises because of stray capacitances and switching delays of the semiconductor devices used within the DAC chip.
* Example: 500 ns to 0.2% of full scale.

ADC: introduction

ADC: introduction

* If the input V_{A} is in the range $V_{R}^{k}<V_{A}<V_{R}^{k+1}$, the output is the binary number corresponding to the integer k. For example, for $V_{A}=V_{A}^{\prime}$, the output is 100.

ADC: introduction

* If the input V_{A} is in the range $V_{R}^{k}<V_{A}<V_{R}^{k+1}$, the output is the binary number corresponding to the integer k. For example, for $V_{A}=V_{A}^{\prime}$, the output is 100.
* We may think of each voltage interval (corresponding to 000, 001, etc.) as a "bin." In the above example, the input voltage V_{A}^{\prime} falls in the 100 bin ; therefore, the output of the ADC would be 100 .

ADC: introduction

* If the input V_{A} is in the range $V_{R}^{k}<V_{A}<V_{R}^{k+1}$, the output is the binary number corresponding to the integer k. For example, for $V_{A}=V_{A}^{\prime}$, the output is 100.
* We may think of each voltage interval (corresponding to 000, 001, etc.) as a "bin." In the above example, the input voltage V_{A}^{\prime} falls in the 100 bin ; therefore, the output of the ADC would be 100.
* Note that, for an N-bit ADC, there would be 2^{N} bins.

ADC: introduction

ADC: introduction

* The basic idea behind an ADC is simple:

ADC: introduction

* The basic idea behind an ADC is simple:
- Generate reference voltages V_{R}^{1}, V_{R}^{2}, etc.

ADC: introduction

* The basic idea behind an ADC is simple:
- Generate reference voltages V_{R}^{1}, V_{R}^{2}, etc.
- Compare the input V_{A} with each of V_{R}^{i} to figure out which bin it belongs to.

ADC: introduction

* The basic idea behind an ADC is simple:
- Generate reference voltages V_{R}^{1}, V_{R}^{2}, etc.
- Compare the input V_{A} with each of V_{R}^{i} to figure out which bin it belongs to.
- If V_{A} belongs to bin k (i.e., $V_{R}^{k}<V_{A}<V_{R}^{k+1}$), convert k to the binary format.

ADC: introduction

* The basic idea behind an ADC is simple:
- Generate reference voltages V_{R}^{1}, V_{R}^{2}, etc.
- Compare the input V_{A} with each of V_{R}^{i} to figure out which bin it belongs to.
- If V_{A} belongs to bin k (i.e., $V_{R}^{k}<V_{A}<V_{R}^{k+1}$), convert k to the binary format.
* A "parallel" ADC does exactly that \rightarrow next slide.

3-bit parallel (flash) ADC

M. B. Patil, IIT Bombay

3-bit parallel (flash) ADC

3-bit parallel (flash) ADC

* Practical difficulty: As the input changes, the comparator outputs (C_{0}, C_{1}, etc.) may not settle to their new values at the same time.
\rightarrow ADC output will depend on when we sample it.

3-bit parallel (flash) ADC

* Practical difficulty: As the input changes, the comparator outputs (C_{0}, C_{1}, etc.) may not settle to their new values at the same time.
\rightarrow ADC output will depend on when we sample it.
* Add D flip-flops. Allow sifficient time (between the change in V_{A} and the active clock edge) so that the comprator outputs have already settled to their new values before they get latched in.

3-bit parallel (flash) ADC

* Practical difficulty: As the input changes, the comparator outputs (C_{0}, C_{1}, etc.) may not settle to their new values at the same time.
\rightarrow ADC output will depend on when we sample it.
* Add D flip-flops. Allow sifficient time (between the change in V_{A} and the active clock edge) so that the comprator outputs have already settled to their new values before they get latched in.

Parallel (flash) ADC

* In the parallel (flash) ADC, the conversion gets done "in parallel," since all comparators operate on the same input voltage.

Parallel (flash) ADC

* In the parallel (flash) ADC, the conversion gets done "in parallel," since all comparators operate on the same input voltage.
* Conversion time is governed only by the comparator response time \rightarrow fast conversion (hence the name "flash" converter).

Parallel (flash) ADC

* In the parallel (flash) ADC, the conversion gets done "in parallel," since all comparators operate on the same input voltage.
* Conversion time is governed only by the comparator response time \rightarrow fast conversion (hence the name "flash" converter).
* Flash ADCs to handle 500 million analog samples per second are commercially available.

Parallel (flash) ADC

* In the parallel (flash) ADC, the conversion gets done "in parallel," since all comparators operate on the same input voltage.
* Conversion time is governed only by the comparator response time \rightarrow fast conversion (hence the name "flash" converter).
* Flash ADCs to handle 500 million analog samples per second are commercially available.
* 2^{N} comparators are required for N -bit ADC \rightarrow generally limited to 8 bits.

ADC: sampling of input signal

ADC: sampling of input signal

* An ADC typically operates on a "sampled" input signal $\left(V_{s}(t)\right.$ in the figure) which is derived from the continuously varying input signal ($V_{a}(t)$ in the figure) with a "sample-and-hold" (S/H) circuit.

ADC: sampling of input signal

* An ADC typically operates on a "sampled" input signal $\left(V_{s}(t)\right.$ in the figure) which is derived from the continuously varying input signal ($V_{a}(t)$ in the figure) with a "sample-and-hold" (S/H) circuit.
* The S / H circuit samples the input signal $V_{a}(t)$ at uniform intervals of duration T_{c}, the clock period.

ADC: sampling of input signal

* An ADC typically operates on a "sampled" input signal $\left(V_{s}(t)\right.$ in the figure) which is derived from the continuously varying input signal ($V_{a}(t)$ in the figure) with a "sample-and-hold" (S/H) circuit.
* The S / H circuit samples the input signal $V_{a}(t)$ at uniform intervals of duration T_{c}, the clock period.
* When the clock goes high, switch S (e.g., a FET or a CMOS pass gate) is closed, and the capacitor C gets charged to the signal voltage at that time. When the clock goes low, switch S is turned off, and C holds the voltage constant, as desired.

ADC: sampling of input signal

* An ADC typically operates on a "sampled" input signal $\left(V_{s}(t)\right.$ in the figure) which is derived from the continuously varying input signal ($V_{a}(t)$ in the figure) with a "sample-and-hold" (S/H) circuit.
* The S / H circuit samples the input signal $V_{a}(t)$ at uniform intervals of duration T_{c}, the clock period.
* When the clock goes high, switch S (e.g., a FET or a CMOS pass gate) is closed, and the capacitor C gets charged to the signal voltage at that time. When the clock goes low, switch S is turned off, and C holds the voltage constant, as desired.
* Op Amp buffers can be used to minimise loading effects.

Successive Approximation ADC

Successive Approximation ADC

* Suppose we have a 4-bit DAC. We can use it to perform A-to-D conversion by successively setting the four bits as follows.

Successive Approximation ADC

* Suppose we have a 4-bit DAC. We can use it to perform A-to-D conversion by successively setting the four bits as follows.
- Start with $D_{3} D_{2} D_{1} D_{0}=0000, I=3$.

Successive Approximation ADC

* Suppose we have a 4-bit DAC. We can use it to perform A-to-D conversion by successively setting the four bits as follows.
- Start with $D_{3} D_{2} D_{1} D_{0}=0000, I=3$.
- Set $D[I]=1$ (keep other bits unchanged).

Successive Approximation ADC

* Suppose we have a 4-bit DAC. We can use it to perform A-to-D conversion by successively setting the four bits as follows.
- Start with $D_{3} D_{2} D_{1} D_{0}=0000, I=3$.
- Set $D[\mathrm{I}]=1$ (keep other bits unchanged).
- If $V_{o}^{D A C}>V_{A}$ (i.e., $C=0$), set $D[I]=0$; else, keep $D[I]=1$.

Successive Approximation ADC

* Suppose we have a 4-bit DAC. We can use it to perform A-to-D conversion by successively setting the four bits as follows.
- Start with $D_{3} D_{2} D_{1} D_{0}=0000, I=3$.
- Set $D[\mathrm{I}]=1$ (keep other bits unchanged).
- If $V_{o}^{D A C}>V_{A}$ (i.e., $C=0$), set $D[I]=0$; else, keep $D[I]=1$.
- $\mathrm{I} \leftarrow \mathrm{I}-1$; go to step 1 .

Successive Approximation ADC

* Suppose we have a 4-bit DAC. We can use it to perform A-to-D conversion by successively setting the four bits as follows.
- Start with $D_{3} D_{2} D_{1} D_{0}=0000, I=3$.
- Set $D[\mathrm{I}]=1$ (keep other bits unchanged).
- If $V_{o}^{D A C}>V_{A}$ (i.e., $C=0$), set $D[I]=0$; else, keep $D[I]=1$.
- I $\leftarrow \mathrm{I}-1$; go to step 1 .
* At the end of four steps, the digital output is given by $D_{3} D_{2} D_{1} D_{0}$. Example \rightarrow next slide.

Successive Approximation ADC

Successive Approximation ADC

* At the end of the $5^{\text {th }}$ step, we know that the input voltage corresponds to 10110.

Successive Approximation ADC

* At the end of the $5^{\text {th }}$ step, we know that the input voltage corresponds to 10110.
* For the digital representation to be accurate up to $\pm \frac{1}{2} \mathrm{LSB}, \Delta V$ corresponding to $\frac{1}{2}$ LSB is added to V_{A} (see [Taub]).

* Each step (setting SAR bits, comparison of V_{A} and $V_{o}^{D A C}$) is performed in one clock cycle \rightarrow conversion time is N cycles, irrespective of the input voltage value V_{A}.

Successive Approximation ADC

* Each step (setting SAR bits, comparison of V_{A} and $V_{o}^{D A C}$) is performed in one clock cycle \rightarrow conversion time is N cycles, irrespective of the input voltage value V_{A}.
* S. A. ADCs with built-in or external S/H (sample-and-hold) are available for 8- to 16 -bit resolution and conversion times of a few $\mu \mathrm{sec}$ to tens of $\mu \mathrm{sec}$.

Successive Approximation ADC

* Each step (setting SAR bits, comparison of V_{A} and $V_{o}^{D A C}$) is performed in one clock cycle \rightarrow conversion time is N cycles, irrespective of the input voltage value V_{A}.
* S. A. ADCs with built-in or external S/H (sample-and-hold) are available for 8- to 16 -bit resolution and conversion times of a few $\mu \mathrm{sec}$ to tens of $\mu \mathrm{sec}$.
* Useful for medium-speed applications such as speech transmission with PCM.

Counting ADC

Counting ADC

* The "start conversion" signal clears the counter; counting begins, and $V_{o}^{D A C}$ increases with each clock cycle.

Counting ADC

* The "start conversion" signal clears the counter; counting begins, and $V_{o}^{D A C}$ increases with each clock cycle.
* When $V_{o}^{D A C}$ exceeds V_{A}, C becomes 0 , and counting stops.

Counting ADC

* The "start conversion" signal clears the counter; counting begins, and $V_{o}^{D A C}$ increases with each clock cycle.
* When $V_{o}^{D A C}$ exceeds V_{A}, C becomes 0 , and counting stops.
* Simple scheme, but (a) conversion time depends on V_{A}, (b) slow (takes 2^{N} clock cycles in the worst case) \rightarrow tracking ADC (next slide)

Tracking ADC

Tracking ADC

* The counter counts up if $V_{o}^{D A C}<V_{A}$; else, it counts down.

Tracking ADC

* The counter counts up if $V_{o}^{D A C}<V_{A}$; else, it counts down.
* If V_{A} changes, the counter does not need to start from $000 \cdots 0$, so the conversion time is less than that required by a counting ADC.

Tracking ADC

* The counter counts up if $V_{o}^{D A C}<V_{A}$; else, it counts down.
* If V_{A} changes, the counter does not need to start from $000 \cdots 0$, so the conversion time is less than that required by a counting ADC.
* used in low-cost, low-speed applications, e.g., measuring output from a temperature sensor or a strain gauge

Dual-slope ADC

Dual-slope ADC

* $t=0$: reset integrator output V_{o} to 0 V by closing S momentarily.

Dual-slope ADC

* $t=0$: reset integrator output V_{o} to 0 V by closing S momentarily.
* Integrate V_{A} (voltage to be converted to digital format, assumed to be positive) for a fixed interval T_{1}.

Dual-slope ADC

* $t=0$: reset integrator output V_{o} to 0 V by closing S momentarily.
* Integrate V_{A} (voltage to be converted to digital format, assumed to be positive) for a fixed interval T_{1}.
* At $t=T_{1}$, integrator output reaches $-V_{1}=-V_{A} \frac{T_{1}}{R C}$.

Dual-slope ADC

* $t=0$: reset integrator output V_{o} to 0 V by closing S momentarily.
* Integrate V_{A} (voltage to be converted to digital format, assumed to be positive) for a fixed interval T_{1}.
* At $t=T_{1}$, integrator output reaches $-V_{1}=-V_{A} \frac{T_{1}}{R C}$.
* Now apply a reference voltage V_{R} (assumed to be negative, with $\left|V_{R}\right|>V_{A}$), and integrate until V_{o} reaches 0 V .

Dual-slope ADC

* $t=0$: reset integrator output V_{o} to 0 V by closing S momentarily.
* Integrate V_{A} (voltage to be converted to digital format, assumed to be positive) for a fixed interval T_{1}.
* At $t=T_{1}$, integrator output reaches $-V_{1}=-V_{A} \frac{T_{1}}{R C}$.
* Now apply a reference voltage V_{R} (assumed to be negative, with $\left|V_{R}\right|>V_{A}$), and integrate until V_{0} reaches 0 V .
* Since $V_{1}=V_{A} \frac{T_{1}}{R C}=\left|V_{R}\right| \frac{T_{2}}{R C}$, we have $T_{2}=T_{1} \frac{V_{A}}{\left|V_{R}\right|} \rightarrow T_{2}$ gives a measure of V_{A}.

Dual-slope ADC

* $t=0$: reset integrator output V_{o} to 0 V by closing S momentarily.
* Integrate V_{A} (voltage to be converted to digital format, assumed to be positive) for a fixed interval T_{1}.
* At $t=T_{1}$, integrator output reaches $-V_{1}=-V_{A} \frac{T_{1}}{R C}$.
* Now apply a reference voltage V_{R} (assumed to be negative, with $\left|V_{R}\right|>V_{A}$), and integrate until V_{0} reaches 0 V .
* Since $V_{1}=V_{A} \frac{T_{1}}{R C}=\left|V_{R}\right| \frac{T_{2}}{R C}$, we have $T_{2}=T_{1} \frac{V_{A}}{\left|V_{R}\right|} \rightarrow T_{2}$ gives a measure of V_{A}.
* In the dual-slope ADC, a counter output - which is proportional to T_{2} - provides the desired digital output.

Dual-slope ADC

Dual-slope ADC

* Start: counter reset to 000 $\cdots 0$, SPDT in position A.

Dual-slope ADC

* Start: counter reset to 000 $\cdots 0$, SPDT in position A.
* Counter counts up to 2^{N} at which point the overflow flag becomes 1, and SPDT switches to position $\mathrm{B} \rightarrow T_{1}=2^{N} T_{c}$ where T_{c} is the clock period.

Dual-slope ADC

* Start: counter reset to 000 $\cdots 0$, SPDT in position A.
* Counter counts up to 2^{N} at which point the overflow flag becomes 1 , and SPDT switches to position $\mathrm{B} \rightarrow T_{1}=2^{N} T_{c}$ where T_{c} is the clock period.
* The counter starts counting again from $000 \cdots 0$, and stops counting when V_{o} crosses 0 V . The counter output gives T_{2} in binary format.

References

* K. Gopalan, Introduction to Digital Microelectronic Circuits, Tata McGraw-Hill, New Delhi, 1978.
* H. Taub and D. Schilling, Digital Integrated Electronics, McGraw-Hill, 1977.

