
EE101: Digital circuits (Part 3)

M. B. Patil
mbpatil@ee.iitb.ac.in

www.ee.iitb.ac.in/~sequel

Department of Electrical Engineering
Indian Institute of Technology Bombay

M. B. Patil, IIT Bombay

Binary numbers

3 1 7 = 3× 102 + 1× 101 + 7× 100

101102 100

Decimal (base 10) system

* Digits: 0,1,2,..,9

* example: 4 1 5 3

most significant
digit

least significant
digit

Binary (base 2) system

1 0 1 1 1 = 1× 24 + 0× 23 + 1 × 22 + 1× 21 + 1× 20

21 20

222324

= 23 (in decimal)

* Bits: 0,1

* example: 1 0 0 1 1 0

most significant

bit (MSB)

least significant

bit (LSB)

M. B. Patil, IIT Bombay

Binary numbers

3 1 7 = 3× 102 + 1× 101 + 7× 100

101102 100

Decimal (base 10) system

* Digits: 0,1,2,..,9

* example: 4 1 5 3

most significant
digit

least significant
digit

Binary (base 2) system

1 0 1 1 1 = 1× 24 + 0× 23 + 1 × 22 + 1× 21 + 1× 20

21 20

222324

= 23 (in decimal)

* Bits: 0,1

* example: 1 0 0 1 1 0

most significant

bit (MSB)

least significant

bit (LSB)

M. B. Patil, IIT Bombay

Binary numbers

3 1 7 = 3× 102 + 1× 101 + 7× 100

101102 100

Decimal (base 10) system

* Digits: 0,1,2,..,9

* example: 4 1 5 3

most significant
digit

least significant
digit

Binary (base 2) system

1 0 1 1 1 = 1× 24 + 0× 23 + 1 × 22 + 1× 21 + 1× 20

21 20

222324

= 23 (in decimal)

* Bits: 0,1

* example: 1 0 0 1 1 0

most significant

bit (MSB)

least significant

bit (LSB)

M. B. Patil, IIT Bombay

Binary numbers

3 1 7 = 3× 102 + 1× 101 + 7× 100

101102 100

Decimal (base 10) system

* Digits: 0,1,2,..,9

* example: 4 1 5 3

most significant
digit

least significant
digit

Binary (base 2) system

1 0 1 1 1 = 1× 24 + 0× 23 + 1 × 22 + 1× 21 + 1× 20

21 20

222324

= 23 (in decimal)

* Bits: 0,1

* example: 1 0 0 1 1 0

most significant

bit (MSB)

least significant

bit (LSB)

M. B. Patil, IIT Bombay

Addition of binary numbers

49111

9

5

7

1

1

1

0

3

8

weight

first number

second number

carry

sum

1

104 103 102 101 100

Decimal (base 10) system

1

1

weight

carry

1 0 1 1

1 1 0

1

11 0 0 1

first number (dec. 11)

sum (dec. 25)

second number (dec. 14)

1

2021222324

Binary (base 2) system

* 0 + 1 = 1 + 0 = 1→ S = 1, C = 0

* 1 + 1 = 10 (dec. 2)→ S = 0, C = 1

* 1 + 1 + 1 = 11 (dec. 3)→ S = 1, C = 1

M. B. Patil, IIT Bombay

Addition of binary numbers

49111

9

5

7

1

1

1

0

3

8

weight

first number

second number

carry

sum

1

104 103 102 101 100

Decimal (base 10) system

1

1

weight

carry

1 0 1 1

1 1 0

1

11 0 0 1

first number (dec. 11)

sum (dec. 25)

second number (dec. 14)

1

2021222324

Binary (base 2) system

* 0 + 1 = 1 + 0 = 1→ S = 1, C = 0

* 1 + 1 = 10 (dec. 2)→ S = 0, C = 1

* 1 + 1 + 1 = 11 (dec. 3)→ S = 1, C = 1

M. B. Patil, IIT Bombay

Addition of binary numbers

49111

9

5

7

1

1

1

0

3

8

weight

first number

second number

carry

sum

1

104 103 102 101 100

Decimal (base 10) system

1

1

weight

carry

1 0 1 1

1 1 0

1

11 0 0 1

first number (dec. 11)

sum (dec. 25)

second number (dec. 14)

1

2021222324

Binary (base 2) system

* 0 + 1 = 1 + 0 = 1→ S = 1, C = 0

* 1 + 1 = 10 (dec. 2)→ S = 0, C = 1

* 1 + 1 + 1 = 11 (dec. 3)→ S = 1, C = 1

M. B. Patil, IIT Bombay

Addition of binary numbers

49111

9

5

7

1

1

1

0

3

8

weight

first number

second number

carry

sum

1

104 103 102 101 100

Decimal (base 10) system

1

1

weight

carry

1 0 1 1

1 1 0

1

11 0 0 1

first number (dec. 11)

sum (dec. 25)

second number (dec. 14)

1

2021222324

Binary (base 2) system

* 0 + 1 = 1 + 0 = 1→ S = 1, C = 0

* 1 + 1 = 10 (dec. 2)→ S = 0, C = 1

* 1 + 1 + 1 = 11 (dec. 3)→ S = 1, C = 1

M. B. Patil, IIT Bombay

Addition of binary numbers

49111

9

5

7

1

1

1

0

3

8

weight

first number

second number

carry

sum

1

104 103 102 101 100

Decimal (base 10) system

1

1

weight

carry

1 0 1 1

1 1 0

1

11 0 0 1

first number (dec. 11)

sum (dec. 25)

second number (dec. 14)

1

2021222324

Binary (base 2) system

* 0 + 1 = 1 + 0 = 1→ S = 1, C = 0

* 1 + 1 = 10 (dec. 2)→ S = 0, C = 1

* 1 + 1 + 1 = 11 (dec. 3)→ S = 1, C = 1

M. B. Patil, IIT Bombay

Addition of binary numbers

1

1

weight

carry

1 0 1 1

1 1 0

1

11 0 0 1

1

first number

second number

sum

example

2021222324

weight

first number

second number

carry

sum

general procedure

CN

20

AN

BN

CN−1

2122

A2

B2

C1

S2 S1

C0

B1

A1

2N

A0

B0

S0SN

· · ·

· · ·

· · ·

A

B

S

FA

A

B

S

FA

A

B

S

HA

A

B

S

FA

Co CiCo Ci CoCo CiCN

BNAN

CN−1

B2A2

S2

C1

A1 B1

S1

C0

B0A0

S0SN

* The rightmost block (corresponding to the LSB) adds two bits A0 and B0; there is no input
carry. This block is called a “half adder.”

* Each of the subsequent blocks adds three bits (Ai , Bi , Ci−1) and is called a “full adder.”

M. B. Patil, IIT Bombay

Addition of binary numbers

1

1

weight

carry

1 0 1 1

1 1 0

1

11 0 0 1

1

first number

second number

sum

example

2021222324 weight

first number

second number

carry

sum

general procedure

CN

20

AN

BN

CN−1

2122

A2

B2

C1

S2 S1

C0

B1

A1

2N

A0

B0

S0SN

· · ·

· · ·

· · ·

A

B

S

FA

A

B

S

FA

A

B

S

HA

A

B

S

FA

Co CiCo Ci CoCo CiCN

BNAN

CN−1

B2A2

S2

C1

A1 B1

S1

C0

B0A0

S0SN

* The rightmost block (corresponding to the LSB) adds two bits A0 and B0; there is no input
carry. This block is called a “half adder.”

* Each of the subsequent blocks adds three bits (Ai , Bi , Ci−1) and is called a “full adder.”

M. B. Patil, IIT Bombay

Addition of binary numbers

1

1

weight

carry

1 0 1 1

1 1 0

1

11 0 0 1

1

first number

second number

sum

example

2021222324 weight

first number

second number

carry

sum

general procedure

CN

20

AN

BN

CN−1

2122

A2

B2

C1

S2 S1

C0

B1

A1

2N

A0

B0

S0SN

· · ·

· · ·

· · ·

A

B

S

FA

A

B

S

FA

A

B

S

HA

A

B

S

FA

Co CiCo Ci CoCo CiCN

BNAN

CN−1

B2A2

S2

C1

A1 B1

S1

C0

B0A0

S0SN

* The rightmost block (corresponding to the LSB) adds two bits A0 and B0; there is no input
carry. This block is called a “half adder.”

* Each of the subsequent blocks adds three bits (Ai , Bi , Ci−1) and is called a “full adder.”

M. B. Patil, IIT Bombay

Addition of binary numbers

1

1

weight

carry

1 0 1 1

1 1 0

1

11 0 0 1

1

first number

second number

sum

example

2021222324 weight

first number

second number

carry

sum

general procedure

CN

20

AN

BN

CN−1

2122

A2

B2

C1

S2 S1

C0

B1

A1

2N

A0

B0

S0SN

· · ·

· · ·

· · ·

A

B

S

FA

A

B

S

FA

A

B

S

HA

A

B

S

FA

Co CiCo Ci CoCo CiCN

BNAN

CN−1

B2A2

S2

C1

A1 B1

S1

C0

B0A0

S0SN

* The rightmost block (corresponding to the LSB) adds two bits A0 and B0; there is no input
carry. This block is called a “half adder.”

* Each of the subsequent blocks adds three bits (Ai , Bi , Ci−1) and is called a “full adder.”

M. B. Patil, IIT Bombay

Addition of binary numbers

1

1

weight

carry

1 0 1 1

1 1 0

1

11 0 0 1

1

first number

second number

sum

example

2021222324 weight

first number

second number

carry

sum

general procedure

CN

20

AN

BN

CN−1

2122

A2

B2

C1

S2 S1

C0

B1

A1

2N

A0

B0

S0SN

· · ·

· · ·

· · ·

A

B

S

FA

A

B

S

FA

A

B

S

HA

A

B

S

FA

Co CiCo Ci CoCo CiCN

BNAN

CN−1

B2A2

S2

C1

A1 B1

S1

C0

B0A0

S0SN

* The rightmost block (corresponding to the LSB) adds two bits A0 and B0; there is no input
carry. This block is called a “half adder.”

* Each of the subsequent blocks adds three bits (Ai , Bi , Ci−1) and is called a “full adder.”

M. B. Patil, IIT Bombay

Half adder implementation

A

B

S

HA

Co

BA S Co

C0

S0

B0

A0

1

0

1 0

1

0 0

1

0

0

0

1

1

1

0

0

S = A B + A B = A⊕ B

Co = A B

Implementation 1

Co

A B

A B

A

B

A

B

S

Implementation 2

Co

A + B

A B

S

A

B

M. B. Patil, IIT Bombay

Half adder implementation

A

B

S

HA

Co

BA S Co

C0

S0

B0

A0

1

0

1 0

1

0 0

1

0

0

0

1

1

1

0

0

S = A B + A B = A⊕ B

Co = A B

Implementation 1

Co

A B

A B

A

B

A

B

S

Implementation 2

Co

A + B

A B

S

A

B

M. B. Patil, IIT Bombay

Half adder implementation

A

B

S

HA

Co

BA S Co

C0

S0

B0

A0

1

0

1 0

1

0 0

1

0

0

0

1

1

1

0

0

S = A B + A B = A⊕ B

Co = A B

Implementation 1

Co

A B

A B

A

B

A

B

S

Implementation 2

Co

A + B

A B

S

A

B

M. B. Patil, IIT Bombay

Half adder implementation

A

B

S

HA

Co

BA S Co

C0

S0

B0

A0

1

0

1 0

1

0 0

1

0

0

0

1

1

1

0

0

S = A B + A B = A⊕ B

Co = A B

Implementation 1

Co

A B

A B

A

B

A

B

S

Implementation 2

Co

A + B

A B

S

A

B

M. B. Patil, IIT Bombay

Full adder implementation

A

B

S

FA

Ci CoB

Co Ci

A S

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

AB
00 01 11 10Ci

S:
1

1

1

1

1

S = A B Ci + A B Ci + A B Ci + A B Ci

0

0

0

0

0

C :o

AB
00 01 11 10Ci

1 1

1

1 1

Co = AB + B Ci + A Ci

00 0 0

0

M. B. Patil, IIT Bombay

Full adder implementation

A

B

S

FA

Ci CoB

Co Ci

A S

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

AB
00 01 11 10Ci

S:
1

1

1

1

1

S = A B Ci + A B Ci + A B Ci + A B Ci

0

0

0

0

0

C :o

AB
00 01 11 10Ci

1 1

1

1 1

Co = AB + B Ci + A Ci

00 0 0

0

M. B. Patil, IIT Bombay

Full adder implementation

A

B

S

FA

Ci CoB

Co Ci

A S

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

AB
00 01 11 10Ci

S:
1

1

1

1

1

S = A B Ci + A B Ci + A B Ci + A B Ci

0

0

0

0

0

C :o

AB
00 01 11 10Ci

1 1

1

1 1

Co = AB + B Ci + A Ci

00 0 0

0

M. B. Patil, IIT Bombay

Implementation of functions with only NAND gates

The NOT, AND, OR operations can be realised by using only NAND gates:

NOT

A

A = A · A

A

AND

A B

A · B = A · B

A

B

OR

A + B

A

B

A + B = A · B

M. B. Patil, IIT Bombay

Implementation of functions with only NAND gates

The NOT, AND, OR operations can be realised by using only NAND gates:

NOT

A

A = A · A

A

AND

A B

A · B = A · B

A

B

OR

A + B

A

B

A + B = A · B

M. B. Patil, IIT Bombay

Implementation of functions with only NAND gates

The NOT, AND, OR operations can be realised by using only NAND gates:

NOT

A

A = A · A

A

AND

A B

A · B = A · B

A

B

OR

A + B

A

B

A + B = A · B

M. B. Patil, IIT Bombay

Implementation of functions with only NAND gates

The NOT, AND, OR operations can be realised by using only NAND gates:

NOT

A

A = A · A

A

AND

A B

A · B = A · B

A

B

OR

A + B

A

B

A + B = A · B

M. B. Patil, IIT Bombay

Implementation of functions with only NAND gates

Implement Y = A B + B C D + A D using only NAND gates.

A · B = A · B

A = A · A

A + B = A · B

Y = A B · B C D · A D

B C D

A B

Y

A D

A

B
B
C

D

A

D

M. B. Patil, IIT Bombay

Implementation of functions with only NAND gates

Implement Y = A B + B C D + A D using only NAND gates.

A · B = A · B

A = A · A

A + B = A · B

Y = A B · B C D · A D

B C D

A B

Y

A D

A

B
B
C

D

A

D

M. B. Patil, IIT Bombay

Implementation of functions with only NAND gates

Implement Y = A B + B C D + A D using only NAND gates.

A · B = A · B

A = A · A

A + B = A · B

Y = A B · B C D · A D

B C D

A B

Y

A D

A

B
B
C

D

A

D

M. B. Patil, IIT Bombay

Implementation of functions with only NAND gates

Implement Y = A B + B C D + A D using only NAND gates.

A · B = A · B

A = A · A

A + B = A · B

Y = A B · B C D · A D

B C D

A B

Y

A D

A

B
B
C

D

A

D

M. B. Patil, IIT Bombay

Implementation of functions with only NAND gates

Implement Y = A B + B C D + A D using only NAND gates.

A · B = A · B

A = A · A

A + B = A · B

Y = A B · B C D · A D

B C D

A B

Y

A D

A

B

B
C

D

A

D

M. B. Patil, IIT Bombay

Implementation of functions with only NAND gates

Implement Y = A B + B C D + A D using only NAND gates.

A · B = A · B

A = A · A

A + B = A · B

Y = A B · B C D · A D

B C D

A B

Y

A D

A

B
B
C

D

A

D

M. B. Patil, IIT Bombay

Implementation of functions with only NAND gates

Implement Y = A B + B C D + A D using only NAND gates.

A · B = A · B

A = A · A

A + B = A · B

Y = A B · B C D · A D

B C D

A B

Y

A D

A

B
B
C

D

A

D

M. B. Patil, IIT Bombay

Implementation of functions with only NAND gates

Implement Y = A + B + C using only 2-input NAND gates.

A · B = A · B

A = A · A

A + B = A · B

Y = (A + B) + C

= (A + B) · C

Y

A + B

CC

= A · B · C

A + B

A A

BB

M. B. Patil, IIT Bombay

Implementation of functions with only NAND gates

Implement Y = A + B + C using only 2-input NAND gates.

A · B = A · B

A = A · A

A + B = A · B

Y = (A + B) + C

= (A + B) · C

Y

A + B

CC

= A · B · C

A + B

A A

BB

M. B. Patil, IIT Bombay

Implementation of functions with only NAND gates

Implement Y = A + B + C using only 2-input NAND gates.

A · B = A · B

A = A · A

A + B = A · B

Y = (A + B) + C

= (A + B) · C

Y

A + B

CC

= A · B · C

A + B

A A

BB

M. B. Patil, IIT Bombay

Implementation of functions with only NAND gates

Implement Y = A + B + C using only 2-input NAND gates.

A · B = A · B

A = A · A

A + B = A · B

Y = (A + B) + C

= (A + B) · C

Y

A + B

C

C

= A · B · C

A + B

A A

BB

M. B. Patil, IIT Bombay

Implementation of functions with only NAND gates

Implement Y = A + B + C using only 2-input NAND gates.

A · B = A · B

A = A · A

A + B = A · B

Y = (A + B) + C

= (A + B) · C

Y

A + B

CC

= A · B · C

A + B

A A

BB

M. B. Patil, IIT Bombay

Implementation of functions with only NAND gates

Implement Y = A + B + C using only 2-input NAND gates.

A · B = A · B

A = A · A

A + B = A · B

Y = (A + B) + C

= (A + B) · C

Y

A + B

CC

= A · B · C

A + B

A A

BB

M. B. Patil, IIT Bombay

Implementation of functions with only NAND gates

Implement Y = A + B + C using only 2-input NAND gates.

A · B = A · B

A = A · A

A + B = A · B

Y = (A + B) + C

= (A + B) · C

Y

A + B

CC

= A · B · C

A + B

A A

BB

M. B. Patil, IIT Bombay

Implementation of functions with only NAND gates

Implement Y = A + B + C using only 2-input NAND gates.

A · B = A · B

A = A · A

A + B = A · B

Y = (A + B) + C

= (A + B) · C

Y

A + B

CC

= A · B · C

A + B

A A

BB

M. B. Patil, IIT Bombay

Implementation of functions with only NOR gates

The NOT, AND, OR operations can be realised by using only NOR gates:

NOT

A = A + A

AA

AND

A B

A

B

A · B = A + B

OR

A + B

A + B = A + B

A

B

Implementation of functions with only NOR (or only NAND) gates is more than a theoretical

curiosity. There are chips which provide a “sea of gates” (say, NOR gates) which can be

configured by the user (through programming) to implement functions.

M. B. Patil, IIT Bombay

Implementation of functions with only NOR gates

The NOT, AND, OR operations can be realised by using only NOR gates:

NOT

A = A + A

AA

AND

A B

A

B

A · B = A + B

OR

A + B

A + B = A + B

A

B

Implementation of functions with only NOR (or only NAND) gates is more than a theoretical

curiosity. There are chips which provide a “sea of gates” (say, NOR gates) which can be

configured by the user (through programming) to implement functions.

M. B. Patil, IIT Bombay

Implementation of functions with only NOR gates

The NOT, AND, OR operations can be realised by using only NOR gates:

NOT

A = A + A

AA

AND

A B

A

B

A · B = A + B

OR

A + B

A + B = A + B

A

B

Implementation of functions with only NOR (or only NAND) gates is more than a theoretical

curiosity. There are chips which provide a “sea of gates” (say, NOR gates) which can be

configured by the user (through programming) to implement functions.

M. B. Patil, IIT Bombay

Implementation of functions with only NOR gates

The NOT, AND, OR operations can be realised by using only NOR gates:

NOT

A = A + A

AA

AND

A B

A

B

A · B = A + B

OR

A + B

A + B = A + B

A

B

Implementation of functions with only NOR (or only NAND) gates is more than a theoretical

curiosity. There are chips which provide a “sea of gates” (say, NOR gates) which can be

configured by the user (through programming) to implement functions.

M. B. Patil, IIT Bombay

Implementation of functions with only NOR gates

The NOT, AND, OR operations can be realised by using only NOR gates:

NOT

A = A + A

AA

AND

A B

A

B

A · B = A + B

OR

A + B

A + B = A + B

A

B

Implementation of functions with only NOR (or only NAND) gates is more than a theoretical

curiosity. There are chips which provide a “sea of gates” (say, NOR gates) which can be

configured by the user (through programming) to implement functions.

M. B. Patil, IIT Bombay

Implementation of functions with only NOR gates

Implement Y = A B + B C D + A D using only NOR gates.

A + B = A + B

A = A + A

A · B = A + B

Y = A B + B C D + A D

Y

A B

B C D

A D

= (A + B) + (B + C + D) + (A + D)

A

B

A

B

C

D

C

D

A

D

M. B. Patil, IIT Bombay

Implementation of functions with only NOR gates

Implement Y = A B + B C D + A D using only NOR gates.

A + B = A + B

A = A + A

A · B = A + B

Y = A B + B C D + A D

Y

A B

B C D

A D

= (A + B) + (B + C + D) + (A + D)

A

B

A

B

C

D

C

D

A

D

M. B. Patil, IIT Bombay

Implementation of functions with only NOR gates

Implement Y = A B + B C D + A D using only NOR gates.

A + B = A + B

A = A + A

A · B = A + B

Y = A B + B C D + A D

Y

A B

B C D

A D

= (A + B) + (B + C + D) + (A + D)

A

B

A

B

C

D

C

D

A

D

M. B. Patil, IIT Bombay

Implementation of functions with only NOR gates

Implement Y = A B + B C D + A D using only NOR gates.

A + B = A + B

A = A + A

A · B = A + B

Y = A B + B C D + A D

Y

A B

B C D

A D

= (A + B) + (B + C + D) + (A + D)

A

B

A

B

C

D

C

D

A

D

M. B. Patil, IIT Bombay

Implementation of functions with only NOR gates

Implement Y = A B + B C D + A D using only NOR gates.

A + B = A + B

A = A + A

A · B = A + B

Y = A B + B C D + A D

Y

A B

B C D

A D

= (A + B) + (B + C + D) + (A + D)

A

B

A

B

C

D

C

D

A

D

M. B. Patil, IIT Bombay

Implementation of functions with only NOR gates

Implement Y = A B + B C D + A D using only NOR gates.

A + B = A + B

A = A + A

A · B = A + B

Y = A B + B C D + A D

Y

A B

B C D

A D

= (A + B) + (B + C + D) + (A + D)

A

B

A

B

C

D

C

D

A

D

M. B. Patil, IIT Bombay

Implementation of functions with only NOR gates

Implement Y = A B + B C D + A D using only NOR gates.

A + B = A + B

A = A + A

A · B = A + B

Y = A B + B C D + A D

Y

A B

B C D

A D

= (A + B) + (B + C + D) + (A + D)

A

B

A

B

C

D

C

D

A

D

M. B. Patil, IIT Bombay

Implementation of functions with only NOR gates

Implement Y = A B + B C D + A D using only NOR gates.

A + B = A + B

A = A + A

A · B = A + B

Y = A B + B C D + A D

Y

A B

B C D

A D

= (A + B) + (B + C + D) + (A + D)

A

B

A

B

C

D

C

D

A

D

M. B. Patil, IIT Bombay

Multiplexers

I0

I1

I2

I3

Z

S1 S0

S0S1 Z

1

0

1 0

1

0 0

1

I0

I1

I2

I3

I0

I1

I2

I3

S1 S0

Z

SW0

SW1

SW2

SW3

* A multiplexer or data selector (MUX in short) selects one of the 2N input lines, i.e., it makes
the ouput Z equal to one of the input lines. In other words, a MUX routes one of the input
lines to the output.

* Conceptually, a MUX may be thought of as 2N switches. For a given combination of the
select inputs, only one of the switches closes (makes contact), and the others are open.

M. B. Patil, IIT Bombay

Multiplexers

I0

I1

I2

I3

Z

S1 S0

S0S1 Z

1

0

1 0

1

0 0

1

I0

I1

I2

I3

I0

I1

I2

I3

S1 S0

Z

SW0

SW1

SW2

SW3

* A multiplexer or data selector (MUX in short) selects one of the 2N input lines, i.e., it makes
the ouput Z equal to one of the input lines. In other words, a MUX routes one of the input
lines to the output.

* Conceptually, a MUX may be thought of as 2N switches. For a given combination of the
select inputs, only one of the switches closes (makes contact), and the others are open.

M. B. Patil, IIT Bombay

Multiplexers

I0

I1

I2

I3

Z

S1 S0

S0S1 Z

1

0

1 0

1

0 0

1

I0

I1

I2

I3

I0

I1

I2

I3

S1 S0

Z

SW0

SW1

SW2

SW3

* A multiplexer or data selector (MUX in short) selects one of the 2N input lines, i.e., it makes
the ouput Z equal to one of the input lines. In other words, a MUX routes one of the input
lines to the output.

* Conceptually, a MUX may be thought of as 2N switches. For a given combination of the
select inputs, only one of the switches closes (makes contact), and the others are open.

M. B. Patil, IIT Bombay

Multiplexers

I0

I1

I2

I3

Z

S1 S0

S0S1 Z

1

0

1 0

1

0 0

1

I0

I1

I2

I3

I0

I1

I2

I3

S1 S0

Z

SW0

SW1

SW2

SW3

* A multiplexer or data selector (MUX in short) selects one of the 2N input lines, i.e., it makes
the ouput Z equal to one of the input lines. In other words, a MUX routes one of the input
lines to the output.

* Conceptually, a MUX may be thought of as 2N switches. For a given combination of the
select inputs, only one of the switches closes (makes contact), and the others are open.

M. B. Patil, IIT Bombay

Multiplexers

I0

I1

I2

I3

Z

S1 S0

I0

I1

I2

I3

Z

S1 S0

S0S1 Z

1

0

1 0

1

0 0

1

I0

I1

I2

I3

* A 4-to-1 MUX can be implemented as,

Z = I0 S1 S0 + I1 S1 S0 + I2 S1 S0 + I3 S1 S0.

For a given combination of S1 and S0, only one of the terms survives (the others being 0).
For example, with S1 = 0, S0 = 1, we have Z = I1.

* Multiplexers are available as ICs, e.g., 74151 is an 8-to-1 MUX.

* ICs with arrays of multiplexers (and other digital blocks) are also available. These blocks
can be configured (“wired”) by the user in a programmable manner to realise the
functionality of interest.

M. B. Patil, IIT Bombay

Multiplexers

I0

I1

I2

I3

Z

S1 S0

I0

I1

I2

I3

Z

S1 S0

S0S1 Z

1

0

1 0

1

0 0

1

I0

I1

I2

I3

* A 4-to-1 MUX can be implemented as,

Z = I0 S1 S0 + I1 S1 S0 + I2 S1 S0 + I3 S1 S0.

For a given combination of S1 and S0, only one of the terms survives (the others being 0).
For example, with S1 = 0, S0 = 1, we have Z = I1.

* Multiplexers are available as ICs, e.g., 74151 is an 8-to-1 MUX.

* ICs with arrays of multiplexers (and other digital blocks) are also available. These blocks
can be configured (“wired”) by the user in a programmable manner to realise the
functionality of interest.

M. B. Patil, IIT Bombay

Multiplexers

I0

I1

I2

I3

Z

S1 S0

I0

I1

I2

I3

Z

S1 S0

S0S1 Z

1

0

1 0

1

0 0

1

I0

I1

I2

I3

* A 4-to-1 MUX can be implemented as,

Z = I0 S1 S0 + I1 S1 S0 + I2 S1 S0 + I3 S1 S0.

For a given combination of S1 and S0, only one of the terms survives (the others being 0).
For example, with S1 = 0, S0 = 1, we have Z = I1.

* Multiplexers are available as ICs, e.g., 74151 is an 8-to-1 MUX.

* ICs with arrays of multiplexers (and other digital blocks) are also available. These blocks
can be configured (“wired”) by the user in a programmable manner to realise the
functionality of interest.

M. B. Patil, IIT Bombay

Multiplexers

I0

I1

I2

I3

Z

S1 S0

I0

I1

I2

I3

Z

S1 S0

S0S1 Z

1

0

1 0

1

0 0

1

I0

I1

I2

I3

* A 4-to-1 MUX can be implemented as,

Z = I0 S1 S0 + I1 S1 S0 + I2 S1 S0 + I3 S1 S0.

For a given combination of S1 and S0, only one of the terms survives (the others being 0).
For example, with S1 = 0, S0 = 1, we have Z = I1.

* Multiplexers are available as ICs, e.g., 74151 is an 8-to-1 MUX.

* ICs with arrays of multiplexers (and other digital blocks) are also available. These blocks
can be configured (“wired”) by the user in a programmable manner to realise the
functionality of interest.

M. B. Patil, IIT Bombay

Active high and active low inputs/outputs

I0

I1

I2

I3

Z

S1 S0
Select inputs are active high.

S0S1 Z

1

0

1 0

1

0 0

1

I0

I1

I2

I3

I0

I1

I2

I3

Z

S1 S0
Select inputs are active low.

S0 ZS1

11

1

0

0

1

00

I0

I1

I2

I3

M. B. Patil, IIT Bombay

Active high and active low inputs/outputs

I0

I1

I2

I3

Z

S1 S0
Select inputs are active high.

S0S1 Z

1

0

1 0

1

0 0

1

I0

I1

I2

I3

I0

I1

I2

I3

Z

S1 S0
Select inputs are active low.

S0 ZS1

11

1

0

0

1

00

I0

I1

I2

I3

M. B. Patil, IIT Bombay

Enable (E) pin

inputs outputs

E

inputs outputs

E

Active low enable pin.Active high enable pin.

* Many digital ICs have an “Enable” (E) pin. If the Enable pin is active, the IC
functions as desired; else, it is “disabled,” i.e., the outputs are set to some
default values.

* The Enable pin can be active high or active low.

* If the Enable pin is active low, it is denoted by Enable or E. When E = 0, the IC
functions normally; else, it is disabled.

M. B. Patil, IIT Bombay

Enable (E) pin

inputs outputs

E

inputs outputs

E

Active low enable pin.Active high enable pin.

* Many digital ICs have an “Enable” (E) pin. If the Enable pin is active, the IC
functions as desired; else, it is “disabled,” i.e., the outputs are set to some
default values.

* The Enable pin can be active high or active low.

* If the Enable pin is active low, it is denoted by Enable or E. When E = 0, the IC
functions normally; else, it is disabled.

M. B. Patil, IIT Bombay

Enable (E) pin

inputs outputs

E

inputs outputs

E

Active low enable pin.Active high enable pin.

* Many digital ICs have an “Enable” (E) pin. If the Enable pin is active, the IC
functions as desired; else, it is “disabled,” i.e., the outputs are set to some
default values.

* The Enable pin can be active high or active low.

* If the Enable pin is active low, it is denoted by Enable or E. When E = 0, the IC
functions normally; else, it is disabled.

M. B. Patil, IIT Bombay

Enable (E) pin

inputs outputs

E

inputs outputs

E

Active low enable pin.Active high enable pin.

* Many digital ICs have an “Enable” (E) pin. If the Enable pin is active, the IC
functions as desired; else, it is “disabled,” i.e., the outputs are set to some
default values.

* The Enable pin can be active high or active low.

* If the Enable pin is active low, it is denoted by Enable or E. When E = 0, the IC
functions normally; else, it is disabled.

M. B. Patil, IIT Bombay

Using two 8-to-1 MUXs to make a 16-to-1 MUX

S2 S1 S0

I0
I1
I2
I3
I4
I5
I6
I7

E

Z74151

S2 S1 S0

I0
I1
I2
I3
I4
I5
I6
I7

E

Z74151

S2 S1S3 S0

D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0

X1

X2

X

S0 XS1S2S3

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

D1

D2

D3

D5

D9

D11

D15

0

0

1

1

1

1

0

0

0

0

1

1

1

D0

D4

D6

D7

D8

D10

D12

D13

D14

* When S3 is 0, the upper MUX is enabled, and the lower MUX is disabled (i.e., X2 = 0).

* When S3 is 1, the lower MUX is enabled, and the upper MUX is disabled (i.e., X1 = 0).

M. B. Patil, IIT Bombay

Using two 8-to-1 MUXs to make a 16-to-1 MUX

S2 S1 S0

I0
I1
I2
I3
I4
I5
I6
I7

E

Z74151

S2 S1 S0

I0
I1
I2
I3
I4
I5
I6
I7

E

Z74151

S2 S1S3 S0

D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0

X1

X2

X

S0 XS1S2S3

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

D1

D2

D3

D5

D9

D11

D15

0

0

1

1

1

1

0

0

0

0

1

1

1

D0

D4

D6

D7

D8

D10

D12

D13

D14

* When S3 is 0, the upper MUX is enabled, and the lower MUX is disabled (i.e., X2 = 0).

* When S3 is 1, the lower MUX is enabled, and the upper MUX is disabled (i.e., X1 = 0).

M. B. Patil, IIT Bombay

Using two 8-to-1 MUXs to make a 16-to-1 MUX

S2 S1 S0

I0
I1
I2
I3
I4
I5
I6
I7

E

Z74151

S2 S1 S0

I0
I1
I2
I3
I4
I5
I6
I7

E

Z74151

S2 S1S3 S0

D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0

X1

X2

X

S0 XS1S2S3

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

D1

D2

D3

D5

D9

D11

D15

0

0

1

1

1

1

0

0

0

0

1

1

1

D0

D4

D6

D7

D8

D10

D12

D13

D14

* When S3 is 0, the upper MUX is enabled, and the lower MUX is disabled (i.e., X2 = 0).

* When S3 is 1, the lower MUX is enabled, and the upper MUX is disabled (i.e., X1 = 0).

M. B. Patil, IIT Bombay

Using MUXs to implement logical functions

Implement X = A B C D + A B C D using a 16-to-1 MUX.

S2S3 S1 S0

I0
I1
I2
I3
I4
I5
I6
I7
I8
I9
I10
I11
I12
I13
I14
I15

MUX

B C DA

Z X

D XCBA

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

1

0

0

0
0

0

0
0
0
0

0
0
0
0
0

* When A B C D = 1, we want X = 1.

A B C D = 1→ A = 1, B = 0, C = 0, D = 1,
i.e., the input line corresponding to 1001 (I9)
gets selected.
→ Make I9 = 1.

* Similarly, when A B C D = 1, we want X = 1.
→ Make I4 = 1.

* In all other cases, X should be 0.
→ connect all other pins to 0.

* In this example, since the truth table is
organized in terms of ABCD, with A as the
MSB and D as the LSB (the same order in
which A, B, C , D are connected to the select
pins), the design is simple: The expected output
for 0000, 0001, 0010, etc. is applied to pins I0,
I1, I2, etc., respectively.

M. B. Patil, IIT Bombay

Using MUXs to implement logical functions

Implement X = A B C D + A B C D using a 16-to-1 MUX.

S2S3 S1 S0

I0
I1
I2
I3
I4
I5
I6
I7
I8
I9
I10
I11
I12
I13
I14
I15

MUX

B C DA

Z X

D XCBA

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

1

0

0

0
0

0

0
0
0
0

0
0
0
0
0

* When A B C D = 1, we want X = 1.

A B C D = 1→ A = 1, B = 0, C = 0, D = 1,
i.e., the input line corresponding to 1001 (I9)
gets selected.
→ Make I9 = 1.

* Similarly, when A B C D = 1, we want X = 1.
→ Make I4 = 1.

* In all other cases, X should be 0.
→ connect all other pins to 0.

* In this example, since the truth table is
organized in terms of ABCD, with A as the
MSB and D as the LSB (the same order in
which A, B, C , D are connected to the select
pins), the design is simple: The expected output
for 0000, 0001, 0010, etc. is applied to pins I0,
I1, I2, etc., respectively.

M. B. Patil, IIT Bombay

Using MUXs to implement logical functions

Implement X = A B C D + A B C D using a 16-to-1 MUX.

S2S3 S1 S0

I0
I1
I2
I3
I4
I5
I6
I7
I8
I9
I10
I11
I12
I13
I14
I15

MUX

B C DA

Z X

D XCBA

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

1

0

0

0
0

0

0
0
0
0

0
0
0
0
0

* When A B C D = 1, we want X = 1.

A B C D = 1→ A = 1, B = 0, C = 0, D = 1,
i.e., the input line corresponding to 1001 (I9)
gets selected.
→ Make I9 = 1.

* Similarly, when A B C D = 1, we want X = 1.
→ Make I4 = 1.

* In all other cases, X should be 0.
→ connect all other pins to 0.

* In this example, since the truth table is
organized in terms of ABCD, with A as the
MSB and D as the LSB (the same order in
which A, B, C , D are connected to the select
pins), the design is simple: The expected output
for 0000, 0001, 0010, etc. is applied to pins I0,
I1, I2, etc., respectively.

M. B. Patil, IIT Bombay

Using MUXs to implement logical functions

Implement X = A B C D + A B C D using a 16-to-1 MUX.

S2S3 S1 S0

I0
I1
I2
I3
I4
I5
I6
I7
I8
I9
I10
I11
I12
I13
I14
I15

MUX

B C DA

Z X

D XCBA

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

1

0

0

0
0

0

0
0
0
0

0
0
0
0
0

* When A B C D = 1, we want X = 1.

A B C D = 1→ A = 1, B = 0, C = 0, D = 1,
i.e., the input line corresponding to 1001 (I9)
gets selected.
→ Make I9 = 1.

* Similarly, when A B C D = 1, we want X = 1.
→ Make I4 = 1.

* In all other cases, X should be 0.
→ connect all other pins to 0.

* In this example, since the truth table is
organized in terms of ABCD, with A as the
MSB and D as the LSB (the same order in
which A, B, C , D are connected to the select
pins), the design is simple: The expected output
for 0000, 0001, 0010, etc. is applied to pins I0,
I1, I2, etc., respectively.

M. B. Patil, IIT Bombay

Using MUXs to implement logical functions

Implement X = A B C D + A B C D using a 16-to-1 MUX.

S2S3 S1 S0

I0
I1
I2
I3
I4
I5
I6
I7
I8
I9
I10
I11
I12
I13
I14
I15

MUX

B C DA

Z X

D XCBA

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

1

0

0

0
0

0

0
0
0
0

0
0
0
0
0

* When A B C D = 1, we want X = 1.

A B C D = 1→ A = 1, B = 0, C = 0, D = 1,
i.e., the input line corresponding to 1001 (I9)
gets selected.
→ Make I9 = 1.

* Similarly, when A B C D = 1, we want X = 1.
→ Make I4 = 1.

* In all other cases, X should be 0.
→ connect all other pins to 0.

* In this example, since the truth table is
organized in terms of ABCD, with A as the
MSB and D as the LSB (the same order in
which A, B, C , D are connected to the select
pins), the design is simple: The expected output
for 0000, 0001, 0010, etc. is applied to pins I0,
I1, I2, etc., respectively.

M. B. Patil, IIT Bombay

Using MUXs to implement logical functions

Implement X = A B C D + A B C D using a 16-to-1 MUX.

S2S3 S1 S0

I0
I1
I2
I3
I4
I5
I6
I7
I8
I9
I10
I11
I12
I13
I14
I15

MUX

B C DA

Z X

D XCBA

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

1

0

0

0
0

0

0
0
0
0

0
0
0
0
0

* When A B C D = 1, we want X = 1.

A B C D = 1→ A = 1, B = 0, C = 0, D = 1,
i.e., the input line corresponding to 1001 (I9)
gets selected.
→ Make I9 = 1.

* Similarly, when A B C D = 1, we want X = 1.
→ Make I4 = 1.

* In all other cases, X should be 0.
→ connect all other pins to 0.

* In this example, since the truth table is
organized in terms of ABCD, with A as the
MSB and D as the LSB (the same order in
which A, B, C , D are connected to the select
pins), the design is simple: The expected output
for 0000, 0001, 0010, etc. is applied to pins I0,
I1, I2, etc., respectively.

M. B. Patil, IIT Bombay

Using MUXs to implement logical functions

Implement X = A B C D + A B C D using a 16-to-1 MUX.

S2S3 S1 S0

I0
I1
I2
I3
I4
I5
I6
I7
I8
I9
I10
I11
I12
I13
I14
I15

MUX

B C DA

Z X

D XCBA

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

1

0

0

0
0

0

0
0
0
0

0
0
0
0
0

* When A B C D = 1, we want X = 1.

A B C D = 1→ A = 1, B = 0, C = 0, D = 1,
i.e., the input line corresponding to 1001 (I9)
gets selected.
→ Make I9 = 1.

* Similarly, when A B C D = 1, we want X = 1.
→ Make I4 = 1.

* In all other cases, X should be 0.
→ connect all other pins to 0.

* In this example, since the truth table is
organized in terms of ABCD, with A as the
MSB and D as the LSB (the same order in
which A, B, C , D are connected to the select
pins), the design is simple: The expected output
for 0000, 0001, 0010, etc. is applied to pins I0,
I1, I2, etc., respectively.

M. B. Patil, IIT Bombay

Using MUXs to implement logical functions

Implement X = A B C D + A B C D using a 16-to-1 MUX.

S2S3 S1 S0

I0
I1
I2
I3
I4
I5
I6
I7
I8
I9
I10
I11
I12
I13
I14
I15

MUX

B C DA

Z X

D XCBA

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

1

0

0

0
0

0

0
0
0
0

0
0
0
0
0

* When A B C D = 1, we want X = 1.

A B C D = 1→ A = 1, B = 0, C = 0, D = 1,
i.e., the input line corresponding to 1001 (I9)
gets selected.
→ Make I9 = 1.

* Similarly, when A B C D = 1, we want X = 1.
→ Make I4 = 1.

* In all other cases, X should be 0.
→ connect all other pins to 0.

* In this example, since the truth table is
organized in terms of ABCD, with A as the
MSB and D as the LSB (the same order in
which A, B, C , D are connected to the select
pins), the design is simple: The expected output
for 0000, 0001, 0010, etc. is applied to pins I0,
I1, I2, etc., respectively.

M. B. Patil, IIT Bombay

Using MUXs to implement logical functions

Implement X = A B C D + A B C D using a 16-to-1 MUX.

S2S3 S1 S0

I0
I1
I2
I3
I4
I5
I6
I7
I8
I9
I10
I11
I12
I13
I14
I15

MUX

B C DA

Z X

D XCBA

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

1

0

0

0
0

0

0
0
0
0

0
0
0
0
0

* When A B C D = 1, we want X = 1.

A B C D = 1→ A = 1, B = 0, C = 0, D = 1,
i.e., the input line corresponding to 1001 (I9)
gets selected.
→ Make I9 = 1.

* Similarly, when A B C D = 1, we want X = 1.
→ Make I4 = 1.

* In all other cases, X should be 0.
→ connect all other pins to 0.

* In this example, since the truth table is
organized in terms of ABCD, with A as the
MSB and D as the LSB (the same order in
which A, B, C , D are connected to the select
pins), the design is simple: The expected output
for 0000, 0001, 0010, etc. is applied to pins I0,
I1, I2, etc., respectively.

M. B. Patil, IIT Bombay

Using MUXs to implement logical functions

Implement X = A B C D + A B C D using an 8-to-1 MUX.

D

D

Z X

I7

I6

I5

I4

I3

I2

I1

I0

S2

MUX

S1 S0

A B C

C XBA

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0

0

1

1

1

1

D

D

0

0

0

0

0

0

* When A B C = 1, i.e., A = 1, B = 0, C = 0, we have X = D.
→ connect the input line corresponding to 100 (I4) to D.

* When A B C = 1, i.e., A = 0, B = 1, C = 0, we have X = D.
→ connect the input line corresponding to 010 (I2) to D.

* In all other cases, X should be 0.
→ connect all other pins to 0.

* Home work: Implement the same function (X) with S2 = B, S1 = C , S0 = D.

M. B. Patil, IIT Bombay

Using MUXs to implement logical functions

Implement X = A B C D + A B C D using an 8-to-1 MUX.

D

D

Z X

I7

I6

I5

I4

I3

I2

I1

I0

S2

MUX

S1 S0

A B C

C XBA

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0

0

1

1

1

1

D

D

0

0

0

0

0

0

* When A B C = 1, i.e., A = 1, B = 0, C = 0, we have X = D.
→ connect the input line corresponding to 100 (I4) to D.

* When A B C = 1, i.e., A = 0, B = 1, C = 0, we have X = D.
→ connect the input line corresponding to 010 (I2) to D.

* In all other cases, X should be 0.
→ connect all other pins to 0.

* Home work: Implement the same function (X) with S2 = B, S1 = C , S0 = D.

M. B. Patil, IIT Bombay

Using MUXs to implement logical functions

Implement X = A B C D + A B C D using an 8-to-1 MUX.

D

D

Z X

I7

I6

I5

I4

I3

I2

I1

I0

S2

MUX

S1 S0

A B C

C XBA

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0

0

1

1

1

1

D

D

0

0

0

0

0

0

* When A B C = 1, i.e., A = 1, B = 0, C = 0, we have X = D.
→ connect the input line corresponding to 100 (I4) to D.

* When A B C = 1, i.e., A = 0, B = 1, C = 0, we have X = D.
→ connect the input line corresponding to 010 (I2) to D.

* In all other cases, X should be 0.
→ connect all other pins to 0.

* Home work: Implement the same function (X) with S2 = B, S1 = C , S0 = D.

M. B. Patil, IIT Bombay

Using MUXs to implement logical functions

Implement X = A B C D + A B C D using an 8-to-1 MUX.

D

D

Z X

I7

I6

I5

I4

I3

I2

I1

I0

S2

MUX

S1 S0

A B C

C XBA

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0

0

1

1

1

1

D

D

0

0

0

0

0

0

* When A B C = 1, i.e., A = 1, B = 0, C = 0, we have X = D.
→ connect the input line corresponding to 100 (I4) to D.

* When A B C = 1, i.e., A = 0, B = 1, C = 0, we have X = D.
→ connect the input line corresponding to 010 (I2) to D.

* In all other cases, X should be 0.
→ connect all other pins to 0.

* Home work: Implement the same function (X) with S2 = B, S1 = C , S0 = D.

M. B. Patil, IIT Bombay

Using MUXs to implement logical functions

Implement X = A B C D + A B C D using an 8-to-1 MUX.

D

D

Z X

I7

I6

I5

I4

I3

I2

I1

I0

S2

MUX

S1 S0

A B C

C XBA

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0

0

1

1

1

1

D

D

0

0

0

0

0

0

* When A B C = 1, i.e., A = 1, B = 0, C = 0, we have X = D.
→ connect the input line corresponding to 100 (I4) to D.

* When A B C = 1, i.e., A = 0, B = 1, C = 0, we have X = D.
→ connect the input line corresponding to 010 (I2) to D.

* In all other cases, X should be 0.
→ connect all other pins to 0.

* Home work: Implement the same function (X) with S2 = B, S1 = C , S0 = D.

M. B. Patil, IIT Bombay

Using MUXs to implement logical functions

Implement X = A B C D + A B C D using an 8-to-1 MUX.

D

D

Z X

I7

I6

I5

I4

I3

I2

I1

I0

S2

MUX

S1 S0

A B C

C XBA

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0

0

1

1

1

1

D

D

0

0

0

0

0

0

* When A B C = 1, i.e., A = 1, B = 0, C = 0, we have X = D.
→ connect the input line corresponding to 100 (I4) to D.

* When A B C = 1, i.e., A = 0, B = 1, C = 0, we have X = D.
→ connect the input line corresponding to 010 (I2) to D.

* In all other cases, X should be 0.
→ connect all other pins to 0.

* Home work: Implement the same function (X) with S2 = B, S1 = C , S0 = D.

M. B. Patil, IIT Bombay

Using MUXs to implement logical functions

Implement X = A B C D + A B C D using an 8-to-1 MUX.

D

D

Z X

I7

I6

I5

I4

I3

I2

I1

I0

S2

MUX

S1 S0

A B C

C XBA

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0

0

1

1

1

1

D

D

0

0

0

0

0

0

* When A B C = 1, i.e., A = 1, B = 0, C = 0, we have X = D.
→ connect the input line corresponding to 100 (I4) to D.

* When A B C = 1, i.e., A = 0, B = 1, C = 0, we have X = D.
→ connect the input line corresponding to 010 (I2) to D.

* In all other cases, X should be 0.
→ connect all other pins to 0.

* Home work: Implement the same function (X) with S2 = B, S1 = C , S0 = D.

M. B. Patil, IIT Bombay

Using MUXs to implement logical functions

Implement X = A B C D + A B C D using an 8-to-1 MUX.

D

D

Z X

I7

I6

I5

I4

I3

I2

I1

I0

S2

MUX

S1 S0

A B C

C XBA

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0

0

1

1

1

1

D

D

0

0

0

0

0

0

* When A B C = 1, i.e., A = 1, B = 0, C = 0, we have X = D.
→ connect the input line corresponding to 100 (I4) to D.

* When A B C = 1, i.e., A = 0, B = 1, C = 0, we have X = D.
→ connect the input line corresponding to 010 (I2) to D.

* In all other cases, X should be 0.
→ connect all other pins to 0.

* Home work: Implement the same function (X) with S2 = B, S1 = C , S0 = D.

M. B. Patil, IIT Bombay

Using MUXs to implement logical functions

Implement X = A B C D + A B C D using an 8-to-1 MUX.

D

D

Z X

I7

I6

I5

I4

I3

I2

I1

I0

S2

MUX

S1 S0

A B C

C XBA

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0

0

1

1

1

1

D

D

0

0

0

0

0

0

* When A B C = 1, i.e., A = 1, B = 0, C = 0, we have X = D.
→ connect the input line corresponding to 100 (I4) to D.

* When A B C = 1, i.e., A = 0, B = 1, C = 0, we have X = D.
→ connect the input line corresponding to 010 (I2) to D.

* In all other cases, X should be 0.
→ connect all other pins to 0.

* Home work: Implement the same function (X) with S2 = B, S1 = C , S0 = D.

M. B. Patil, IIT Bombay

Using MUXs to implement logical functions

Implement the function X with the following truth table using an 8-to-1 MUX.

D XCBA

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

00

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

0

0

0

1

1

1

0

1

1

1

1

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

Z X

I7

I6

I5

I4

I3

I2

I1

I0

S2

MUX

S1 S0

A B C

1

0

D

1

1

1

0

D

D

1

0

0

0

0

0

1

1

0

1

1

0

0

0

0

* When ABC = 000, X = D → I0 = D.

* When ABC = 001, X = 1→ I1 = 1, and so on.

* Home work: repeat with S2 = B, S1 = C , S0 = D.

M. B. Patil, IIT Bombay

Using MUXs to implement logical functions

Implement the function X with the following truth table using an 8-to-1 MUX.

D XCBA

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

00

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

0

0

0

1

1

1

0

1

1

1

1

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

Z X

I7

I6

I5

I4

I3

I2

I1

I0

S2

MUX

S1 S0

A B C

1

0

D

1

1

1

0

D

D

1

0

0

0

0

0

1

1

0

1

1

0

0

0

0

* When ABC = 000, X = D → I0 = D.

* When ABC = 001, X = 1→ I1 = 1, and so on.

* Home work: repeat with S2 = B, S1 = C , S0 = D.

M. B. Patil, IIT Bombay

Using MUXs to implement logical functions

Implement the function X with the following truth table using an 8-to-1 MUX.

D XCBA

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

00

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

0

0

0

1

1

1

0

1

1

1

1

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

Z X

I7

I6

I5

I4

I3

I2

I1

I0

S2

MUX

S1 S0

A B C

1

0

D

1

1

1

0

D

D

1

0

0

0

0

0

1

1

0

1

1

0

0

0

0

* When ABC = 000, X = D → I0 = D.

* When ABC = 001, X = 1→ I1 = 1, and so on.

* Home work: repeat with S2 = B, S1 = C , S0 = D.

M. B. Patil, IIT Bombay

Using MUXs to implement logical functions

Implement the function X with the following truth table using an 8-to-1 MUX.

D XCBA

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

00

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

0

0

0

1

1

1

0

1

1

1

1

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

Z X

I7

I6

I5

I4

I3

I2

I1

I0

S2

MUX

S1 S0

A B C

1

0

D

1

1

1

0

D

D

1

0

0

0

0

0

1

1

0

1

1

0

0

0

0

* When ABC = 000, X = D → I0 = D.

* When ABC = 001, X = 1→ I1 = 1, and so on.

* Home work: repeat with S2 = B, S1 = C , S0 = D.

M. B. Patil, IIT Bombay

Using MUXs to implement logical functions

Implement the function X with the following truth table using an 8-to-1 MUX.

D XCBA

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

00

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

0

0

0

1

1

1

0

1

1

1

1

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

Z X

I7

I6

I5

I4

I3

I2

I1

I0

S2

MUX

S1 S0

A B C

1

0

D

1

1

1

0

D

D

1

0

0

0

0

0

1

1

0

1

1

0

0

0

0

* When ABC = 000, X = D → I0 = D.

* When ABC = 001, X = 1→ I1 = 1, and so on.

* Home work: repeat with S2 = B, S1 = C , S0 = D.

M. B. Patil, IIT Bombay

Using MUXs to implement logical functions

Implement the function X with the following truth table using an 8-to-1 MUX.

D XCBA

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

00

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

0

0

0

1

1

1

0

1

1

1

1

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

Z X

I7

I6

I5

I4

I3

I2

I1

I0

S2

MUX

S1 S0

A B C

1

0

D

1

1

1

0

D

D

1

0

0

0

0

0

1

1

0

1

1

0

0

0

0

* When ABC = 000, X = D → I0 = D.

* When ABC = 001, X = 1→ I1 = 1, and so on.

* Home work: repeat with S2 = B, S1 = C , S0 = D.

M. B. Patil, IIT Bombay

Using MUXs to implement logical functions

Implement the function X with the following truth table using an 8-to-1 MUX.

D XCBA

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

00

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

0

0

0

1

1

1

0

1

1

1

1

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

Z X

I7

I6

I5

I4

I3

I2

I1

I0

S2

MUX

S1 S0

A B C

1

0

D

1

1

1

0

D

D

1

0

0

0

0

0

1

1

0

1

1

0

0

0

0

* When ABC = 000, X = D → I0 = D.

* When ABC = 001, X = 1→ I1 = 1, and so on.

* Home work: repeat with S2 = B, S1 = C , S0 = D.

M. B. Patil, IIT Bombay

Using MUXs to implement logical functions

Implement the function X with the following truth table using an 8-to-1 MUX.

D XCBA

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

00

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

0

0

0

1

1

1

0

1

1

1

1

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

Z X

I7

I6

I5

I4

I3

I2

I1

I0

S2

MUX

S1 S0

A B C

1

0

D

1

1

1

0

D

D

1

0

0

0

0

0

1

1

0

1

1

0

0

0

0

* When ABC = 000, X = D → I0 = D.

* When ABC = 001, X = 1→ I1 = 1, and so on.

* Home work: repeat with S2 = B, S1 = C , S0 = D.

M. B. Patil, IIT Bombay

Using MUXs to implement logical functions

Implement the function X with the following truth table using an 8-to-1 MUX.

D XCBA

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

00

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

0

0

0

1

1

1

0

1

1

1

1

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

Z X

I7

I6

I5

I4

I3

I2

I1

I0

S2

MUX

S1 S0

A B C

1

0

D

1

1

1

0

D

D

1

0

0

0

0

0

1

1

0

1

1

0

0

0

0

* When ABC = 000, X = D → I0 = D.

* When ABC = 001, X = 1→ I1 = 1, and so on.

* Home work: repeat with S2 = B, S1 = C , S0 = D.

M. B. Patil, IIT Bombay

Using MUXs to implement logical functions

Implement the function X with the following truth table using an 8-to-1 MUX.

D XCBA

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

00

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

0

0

0

1

1

1

0

1

1

1

1

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

Z X

I7

I6

I5

I4

I3

I2

I1

I0

S2

MUX

S1 S0

A B C

1

0

D

1

1

1

0

D

D

1

0

0

0

0

0

1

1

0

1

1

0

0

0

0

* When ABC = 000, X = D → I0 = D.

* When ABC = 001, X = 1→ I1 = 1, and so on.

* Home work: repeat with S2 = B, S1 = C , S0 = D.

M. B. Patil, IIT Bombay

Demultiplexers

O0

O1

O2

O3

O4

O5

O6

O7

S2 S1 S0

I

S2

O0

O1

O2

O3

O4

O5

O6

O7S1 S0

DEMUXI

S0 O0 O1 O2 O3 O4 O5 O6 O7S1S2

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0 0

0

0

0

0

0

0

I

0

0

0

0

0

0

I

0

0

0

0

0

0

0

I

0

0

0

0

0

0

0

0

I

0

0

0

0

0

0

0

I

0

0

0

0

0

0

0

I

0

0

0

0

0

0

0

I

0

0

0

0

0

0

I

0

0

0

1

1

1

1

* A demultiplexer takes a single input (I) and routes it to one of the output lines
(O0, O1,· · ·).

* For N Select inputs (S0, S1,· · ·), the number of output lines is 2N .

* Conceptually, a DEMUX can be thought of as 2N switches. For a given combination of the
Select inputs, only one of the switches is closed, all others being open.

M. B. Patil, IIT Bombay

Demultiplexers

O0

O1

O2

O3

O4

O5

O6

O7

S2 S1 S0

I

S2

O0

O1

O2

O3

O4

O5

O6

O7S1 S0

DEMUXI

S0 O0 O1 O2 O3 O4 O5 O6 O7S1S2

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0 0

0

0

0

0

0

0

I

0

0

0

0

0

0

I

0

0

0

0

0

0

0

I

0

0

0

0

0

0

0

0

I

0

0

0

0

0

0

0

I

0

0

0

0

0

0

0

I

0

0

0

0

0

0

0

I

0

0

0

0

0

0

I

0

0

0

1

1

1

1

* A demultiplexer takes a single input (I) and routes it to one of the output lines
(O0, O1,· · ·).

* For N Select inputs (S0, S1,· · ·), the number of output lines is 2N .

* Conceptually, a DEMUX can be thought of as 2N switches. For a given combination of the
Select inputs, only one of the switches is closed, all others being open.

M. B. Patil, IIT Bombay

Demultiplexers

O0

O1

O2

O3

O4

O5

O6

O7

S2 S1 S0

I

S2

O0

O1

O2

O3

O4

O5

O6

O7S1 S0

DEMUXI

S0 O0 O1 O2 O3 O4 O5 O6 O7S1S2

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0 0

0

0

0

0

0

0

I

0

0

0

0

0

0

I

0

0

0

0

0

0

0

I

0

0

0

0

0

0

0

0

I

0

0

0

0

0

0

0

I

0

0

0

0

0

0

0

I

0

0

0

0

0

0

0

I

0

0

0

0

0

0

I

0

0

0

1

1

1

1

* A demultiplexer takes a single input (I) and routes it to one of the output lines
(O0, O1,· · ·).

* For N Select inputs (S0, S1,· · ·), the number of output lines is 2N .

* Conceptually, a DEMUX can be thought of as 2N switches. For a given combination of the
Select inputs, only one of the switches is closed, all others being open.

M. B. Patil, IIT Bombay

Demultiplexers

O0

O1

O2

O3

O4

O5

O6

O7

S2 S1 S0

I

S2

O0

O1

O2

O3

O4

O5

O6

O7S1 S0

DEMUXI

S0 O0 O1 O2 O3 O4 O5 O6 O7S1S2

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0 0

0

0

0

0

0

0

I

0

0

0

0

0

0

I

0

0

0

0

0

0

0

I

0

0

0

0

0

0

0

0

I

0

0

0

0

0

0

0

I

0

0

0

0

0

0

0

I

0

0

0

0

0

0

0

I

0

0

0

0

0

0

I

0

0

0

1

1

1

1

* A demultiplexer takes a single input (I) and routes it to one of the output lines
(O0, O1,· · ·).

* For N Select inputs (S0, S1,· · ·), the number of output lines is 2N .

* Conceptually, a DEMUX can be thought of as 2N switches. For a given combination of the
Select inputs, only one of the switches is closed, all others being open.

M. B. Patil, IIT Bombay

Demultiplexer: gate-level diagram

O0

S2 S1 S0

I

O1

O2

O3

O4

O5

O6

O7

S2

O0

O1

O2

O3

O4

O5

O6

O7S1 S0

DEMUXI

M. B. Patil, IIT Bombay

Decoders

M outputsN inputs Decoder

A0

A1

O0

O1

OM−1AN−1

* For each input combination, only one output line is active (which means 0 or 1,
depending on whether the outputs are active low or active high).

* Since there are 2N input combinations, there could be 2N output lines, i.e.,
M = 2N . However, there are decoders with M < 2N as well.

M. B. Patil, IIT Bombay

Decoders

M outputsN inputs Decoder

A0

A1

O0

O1

OM−1AN−1

* For each input combination, only one output line is active (which means 0 or 1,
depending on whether the outputs are active low or active high).

* Since there are 2N input combinations, there could be 2N output lines, i.e.,
M = 2N . However, there are decoders with M < 2N as well.

M. B. Patil, IIT Bombay

Decoders

M outputsN inputs Decoder

A0

A1

O0

O1

OM−1AN−1

* For each input combination, only one output line is active (which means 0 or 1,
depending on whether the outputs are active low or active high).

* Since there are 2N input combinations, there could be 2N output lines, i.e.,
M = 2N . However, there are decoders with M < 2N as well.

M. B. Patil, IIT Bombay

3-to-8 decoder (1-of-8 decoder)

O0

O1

O2

O3

O4

O5

O6

O7

A1

A0

A2

Decoder

A0 O7O6O5O4O3O2O1O0A1A2

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

1

1

1

1

M. B. Patil, IIT Bombay

BCD-to-decimal decoder

7442

none

none

none

none

none

none

Active output

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

0

0

1

1

1

1

0

0

0

0

1

1

1

O0

O1

O2

O3

O4

O5

O6

O7

O8

O9

O0

O1

O2

O3

O4

O5

O6

O7

O8

O9

A0

A1

A2

A3

A0A1A2A3

* Note that the combinations A3A2A1A0 = 1010 onwards are “don’t care” conditions since a
BCD (binary coded decimal) number is expected to be less than 1010 (i.e., decimal 10).

M. B. Patil, IIT Bombay

BCD-to-decimal decoder

7442

none

none

none

none

none

none

Active output

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

0

0

1

1

1

1

0

0

0

0

1

1

1

O0

O1

O2

O3

O4

O5

O6

O7

O8

O9

O0

O1

O2

O3

O4

O5

O6

O7

O8

O9

A0

A1

A2

A3

A0A1A2A3

* Note that the combinations A3A2A1A0 = 1010 onwards are “don’t care” conditions since a
BCD (binary coded decimal) number is expected to be less than 1010 (i.e., decimal 10).

M. B. Patil, IIT Bombay

BCD-to-7 segment decoder

D

C

B

A

a

b

ce

d

f

g

7446

common
anode

MSB

LSB

a

b

c

d

e

f

g

VCC

0001 0010 0011 0100 0101 0110 0111 10000000 1001 1010 1011 1100 1101 1110 1111

* The resistors serve to limit the diode current. For VCC = 5 V , VD = 2 V , and
ID = 10 mA, R = 300 Ω.

* Home work: Write the truth table for c (in terms of D, C , B, A). Obtain a
minimized expression for c using a K map.

M. B. Patil, IIT Bombay

BCD-to-7 segment decoder

D

C

B

A

a

b

ce

d

f

g

7446

common
anode

MSB

LSB

a

b

c

d

e

f

g

VCC

0001 0010 0011 0100 0101 0110 0111 10000000 1001 1010 1011 1100 1101 1110 1111

* The resistors serve to limit the diode current. For VCC = 5 V , VD = 2 V , and
ID = 10 mA, R = 300 Ω.

* Home work: Write the truth table for c (in terms of D, C , B, A). Obtain a
minimized expression for c using a K map.

M. B. Patil, IIT Bombay

BCD-to-7 segment decoder

D

C

B

A

a

b

ce

d

f

g

7446

common
anode

MSB

LSB

a

b

c

d

e

f

g

VCC

0001 0010 0011 0100 0101 0110 0111 10000000 1001 1010 1011 1100 1101 1110 1111

* The resistors serve to limit the diode current. For VCC = 5 V , VD = 2 V , and
ID = 10 mA, R = 300 Ω.

* Home work: Write the truth table for c (in terms of D, C , B, A). Obtain a
minimized expression for c using a K map.

M. B. Patil, IIT Bombay

Encoders

M inputs N outputsEncoder

A0

A1

O0

O1

AM−1 ON−1

* Only one input line is assumed to be active. The (unique) binary number
corresponding to the active input line appears at the output pins.

* The N output lines can represent 2N binary numbers, each corresponding to one
of the M input lines, i.e., we can have M = 2N . Some encoders have M < 2N .

* As an example, for N = 3, we can have a maximum of 23 = 8 input lines.

M. B. Patil, IIT Bombay

Encoders

M inputs N outputsEncoder

A0

A1

O0

O1

AM−1 ON−1

* Only one input line is assumed to be active. The (unique) binary number
corresponding to the active input line appears at the output pins.

* The N output lines can represent 2N binary numbers, each corresponding to one
of the M input lines, i.e., we can have M = 2N . Some encoders have M < 2N .

* As an example, for N = 3, we can have a maximum of 23 = 8 input lines.

M. B. Patil, IIT Bombay

Encoders

M inputs N outputsEncoder

A0

A1

O0

O1

AM−1 ON−1

* Only one input line is assumed to be active. The (unique) binary number
corresponding to the active input line appears at the output pins.

* The N output lines can represent 2N binary numbers, each corresponding to one
of the M input lines, i.e., we can have M = 2N . Some encoders have M < 2N .

* As an example, for N = 3, we can have a maximum of 23 = 8 input lines.

M. B. Patil, IIT Bombay

Encoders

M inputs N outputsEncoder

A0

A1

O0

O1

AM−1 ON−1

* Only one input line is assumed to be active. The (unique) binary number
corresponding to the active input line appears at the output pins.

* The N output lines can represent 2N binary numbers, each corresponding to one
of the M input lines, i.e., we can have M = 2N . Some encoders have M < 2N .

* As an example, for N = 3, we can have a maximum of 23 = 8 input lines.

M. B. Patil, IIT Bombay

Encoders

O0

O1

O2

A0

A1

A2

A3

A4

A5

A6

A7

Encoder

8−to−3 encoder example A0 A1 A2 A3 A4 A5 A6 A7 O0O1O2

1 0 0 0 0 0 0 0 000

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0

00000

0

0

0

0

0

0

0

0

0 0 0 0

00

0

0 0 0 0

0

0

0

0

00

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

* Note that only one of the input lines is assumed to be active.

* What if two input lines become simultaneously active?
→ There are “priority encoders” which assign a priority to each of the input lines.

M. B. Patil, IIT Bombay

Encoders

O0

O1

O2

A0

A1

A2

A3

A4

A5

A6

A7

Encoder

8−to−3 encoder example A0 A1 A2 A3 A4 A5 A6 A7 O0O1O2

1 0 0 0 0 0 0 0 000

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0

00000

0

0

0

0

0

0

0

0

0 0 0 0

00

0

0 0 0 0

0

0

0

0

00

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

* Note that only one of the input lines is assumed to be active.

* What if two input lines become simultaneously active?
→ There are “priority encoders” which assign a priority to each of the input lines.

M. B. Patil, IIT Bombay

Encoders

O0

O1

O2

A0

A1

A2

A3

A4

A5

A6

A7

Encoder

8−to−3 encoder example A0 A1 A2 A3 A4 A5 A6 A7 O0O1O2

1 0 0 0 0 0 0 0 000

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0

00000

0

0

0

0

0

0

0

0

0 0 0 0

00

0

0 0 0 0

0

0

0

0

00

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

* Note that only one of the input lines is assumed to be active.

* What if two input lines become simultaneously active?
→ There are “priority encoders” which assign a priority to each of the input lines.

M. B. Patil, IIT Bombay

74147 decimal-to-BCD priority encoder

74147

A9A8A7A6A5A4A3A2A1 O3 O2 O1 O0

1 1 1 1 1 1 1 1 1

X X 0

0

0

0

0

0

0

0

0

X X X X X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1 1 1 1

0 01 1

0 111

01 00

1 0 0 1

1 0 01

1 0 1 1

1

1

1

1

1

1 1 0

0 1

0 0

O0

O1

O2

O3

A1

A2

A3

A4

A5

A6

A7

A8

A9

* Note that the higher input lines get priority over the lower ones.

For example, A7 gets priority over A1, A2, A3, A4, A5, A6. If A7 is active (low),
the binary output is 1000 (i.e., 0111 inverted bit-by-bit) which corresponds to
decimal 7, irrespective of

A1, A2, A3, A4, A5, A6.

* The lower input lines are therefore shown as “don’t care” (X) conditions.

M. B. Patil, IIT Bombay

74147 decimal-to-BCD priority encoder

74147

A9A8A7A6A5A4A3A2A1 O3 O2 O1 O0

1 1 1 1 1 1 1 1 1

X X 0

0

0

0

0

0

0

0

0

X X X X X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1 1 1 1

0 01 1

0 111

01 00

1 0 0 1

1 0 01

1 0 1 1

1

1

1

1

1

1 1 0

0 1

0 0

O0

O1

O2

O3

A1

A2

A3

A4

A5

A6

A7

A8

A9

* Note that the higher input lines get priority over the lower ones.

For example, A7 gets priority over A1, A2, A3, A4, A5, A6. If A7 is active (low),
the binary output is 1000 (i.e., 0111 inverted bit-by-bit) which corresponds to
decimal 7, irrespective of

A1, A2, A3, A4, A5, A6.

* The lower input lines are therefore shown as “don’t care” (X) conditions.

M. B. Patil, IIT Bombay

74147 decimal-to-BCD priority encoder

74147

A9A8A7A6A5A4A3A2A1 O3 O2 O1 O0

1 1 1 1 1 1 1 1 1

X X 0

0

0

0

0

0

0

0

0

X X X X X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1 1 1 1

0 01 1

0 111

01 00

1 0 0 1

1 0 01

1 0 1 1

1

1

1

1

1

1 1 0

0 1

0 0

O0

O1

O2

O3

A1

A2

A3

A4

A5

A6

A7

A8

A9

* Note that the higher input lines get priority over the lower ones.

For example, A7 gets priority over A1, A2, A3, A4, A5, A6. If A7 is active (low),
the binary output is 1000 (i.e., 0111 inverted bit-by-bit) which corresponds to
decimal 7, irrespective of

A1, A2, A3, A4, A5, A6.

* The lower input lines are therefore shown as “don’t care” (X) conditions.

M. B. Patil, IIT Bombay

