
EE101: Digital circuits (Part 4)

M. B. Patil
mbpatil@ee.iitb.ac.in

www.ee.iitb.ac.in/~sequel

Department of Electrical Engineering
Indian Institute of Technology Bombay

M. B. Patil, IIT Bombay

Sequential circuits

* The digital circuits we have seen so far (gates, multiplexer, demultiplexer,
encoders, decoders) are combinatorial in nature, i.e., the output(s) depends only
on the present values of the inputs and not on their past values.

* In sequential circuits, the “state” of the circuit is crucial in determining the
output values. For a given input combination, a sequential circuit may produce
different output values, depending on its previous state.

* In other words, a sequential circuit has a memory (of its past state) whereas a
combinatorial circuit has no memory.

* Sequential circuits (together with combinatorial circuits) make it possible to
build several useful applications, such as counters, registers, arithmetic/logic unit
(ALU), all the way to microprocessors.

M. B. Patil, IIT Bombay

Sequential circuits

* The digital circuits we have seen so far (gates, multiplexer, demultiplexer,
encoders, decoders) are combinatorial in nature, i.e., the output(s) depends only
on the present values of the inputs and not on their past values.

* In sequential circuits, the “state” of the circuit is crucial in determining the
output values. For a given input combination, a sequential circuit may produce
different output values, depending on its previous state.

* In other words, a sequential circuit has a memory (of its past state) whereas a
combinatorial circuit has no memory.

* Sequential circuits (together with combinatorial circuits) make it possible to
build several useful applications, such as counters, registers, arithmetic/logic unit
(ALU), all the way to microprocessors.

M. B. Patil, IIT Bombay

Sequential circuits

* The digital circuits we have seen so far (gates, multiplexer, demultiplexer,
encoders, decoders) are combinatorial in nature, i.e., the output(s) depends only
on the present values of the inputs and not on their past values.

* In sequential circuits, the “state” of the circuit is crucial in determining the
output values. For a given input combination, a sequential circuit may produce
different output values, depending on its previous state.

* In other words, a sequential circuit has a memory (of its past state) whereas a
combinatorial circuit has no memory.

* Sequential circuits (together with combinatorial circuits) make it possible to
build several useful applications, such as counters, registers, arithmetic/logic unit
(ALU), all the way to microprocessors.

M. B. Patil, IIT Bombay

Sequential circuits

* The digital circuits we have seen so far (gates, multiplexer, demultiplexer,
encoders, decoders) are combinatorial in nature, i.e., the output(s) depends only
on the present values of the inputs and not on their past values.

* In sequential circuits, the “state” of the circuit is crucial in determining the
output values. For a given input combination, a sequential circuit may produce
different output values, depending on its previous state.

* In other words, a sequential circuit has a memory (of its past state) whereas a
combinatorial circuit has no memory.

* Sequential circuits (together with combinatorial circuits) make it possible to
build several useful applications, such as counters, registers, arithmetic/logic unit
(ALU), all the way to microprocessors.

M. B. Patil, IIT Bombay

Sequential circuits

* The digital circuits we have seen so far (gates, multiplexer, demultiplexer,
encoders, decoders) are combinatorial in nature, i.e., the output(s) depends only
on the present values of the inputs and not on their past values.

* In sequential circuits, the “state” of the circuit is crucial in determining the
output values. For a given input combination, a sequential circuit may produce
different output values, depending on its previous state.

* In other words, a sequential circuit has a memory (of its past state) whereas a
combinatorial circuit has no memory.

* Sequential circuits (together with combinatorial circuits) make it possible to
build several useful applications, such as counters, registers, arithmetic/logic unit
(ALU), all the way to microprocessors.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A

B

A B X2X1

X1

X2

1 0 0 1

10 01

previous1 1

1 10 0

* A, B: inputs, X1, X2: outputs

* Consider A = 1, B = 0.

B = 0 ⇒ X2 = 1 ⇒ X1 = AX2 = 1 · 1 = 0.
Overall, we have X1 = 0, X2 = 1.

* Consider A = 0, B = 1.
Show that X1 = 1, X2 = 0.

* Consider A = B = 1.

X1 = AX2 = X2, X2 = B X1 = X1 ⇒ X1 = X2

If X1 = 1, X2 = 0 previously, the circuit continues to “hold” that state.
Similarly, if X1 = 0, X2 = 1 previously, the circuit continues to “hold” that state.
The circuit has “latched in” the previous state.

* For A = B = 0, X1 and X2 are both 1. This combination of A and B is not
allowed for reasons that will become clear later.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A

B

A B X2X1

X1

X2

1 0 0 1

10 01

previous1 1

1 10 0

* A, B: inputs, X1, X2: outputs

* Consider A = 1, B = 0.

B = 0 ⇒ X2 = 1 ⇒ X1 = A X2 = 1 · 1 = 0.
Overall, we have X1 = 0, X2 = 1.

* Consider A = 0, B = 1.
Show that X1 = 1, X2 = 0.

* Consider A = B = 1.

X1 = AX2 = X2, X2 = B X1 = X1 ⇒ X1 = X2

If X1 = 1, X2 = 0 previously, the circuit continues to “hold” that state.
Similarly, if X1 = 0, X2 = 1 previously, the circuit continues to “hold” that state.
The circuit has “latched in” the previous state.

* For A = B = 0, X1 and X2 are both 1. This combination of A and B is not
allowed for reasons that will become clear later.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A

B

A B X2X1

X1

X2

1 0 0 1

10 01

previous1 1

1 10 0

* A, B: inputs, X1, X2: outputs

* Consider A = 1, B = 0.
B = 0 ⇒ X2 = 1 ⇒ X1 = AX2 = 1 · 1 = 0.

Overall, we have X1 = 0, X2 = 1.

* Consider A = 0, B = 1.
Show that X1 = 1, X2 = 0.

* Consider A = B = 1.

X1 = AX2 = X2, X2 = B X1 = X1 ⇒ X1 = X2

If X1 = 1, X2 = 0 previously, the circuit continues to “hold” that state.
Similarly, if X1 = 0, X2 = 1 previously, the circuit continues to “hold” that state.
The circuit has “latched in” the previous state.

* For A = B = 0, X1 and X2 are both 1. This combination of A and B is not
allowed for reasons that will become clear later.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A

B

A B X2X1

X1

X2

1 0 0 1

10 01

previous1 1

1 10 0

* A, B: inputs, X1, X2: outputs

* Consider A = 1, B = 0.
B = 0 ⇒ X2 = 1 ⇒ X1 = AX2 = 1 · 1 = 0.
Overall, we have X1 = 0, X2 = 1.

* Consider A = 0, B = 1.
Show that X1 = 1, X2 = 0.

* Consider A = B = 1.

X1 = AX2 = X2, X2 = B X1 = X1 ⇒ X1 = X2

If X1 = 1, X2 = 0 previously, the circuit continues to “hold” that state.
Similarly, if X1 = 0, X2 = 1 previously, the circuit continues to “hold” that state.
The circuit has “latched in” the previous state.

* For A = B = 0, X1 and X2 are both 1. This combination of A and B is not
allowed for reasons that will become clear later.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A

B

A B X2X1

X1

X2

1 0 0 1

10 01

previous1 1

1 10 0

* A, B: inputs, X1, X2: outputs

* Consider A = 1, B = 0.
B = 0 ⇒ X2 = 1 ⇒ X1 = AX2 = 1 · 1 = 0.
Overall, we have X1 = 0, X2 = 1.

* Consider A = 0, B = 1.
Show that X1 = 1, X2 = 0.

* Consider A = B = 1.

X1 = AX2 = X2, X2 = B X1 = X1 ⇒ X1 = X2

If X1 = 1, X2 = 0 previously, the circuit continues to “hold” that state.
Similarly, if X1 = 0, X2 = 1 previously, the circuit continues to “hold” that state.
The circuit has “latched in” the previous state.

* For A = B = 0, X1 and X2 are both 1. This combination of A and B is not
allowed for reasons that will become clear later.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A

B

A B X2X1

X1

X2

1 0 0 1

10 01

previous1 1

1 10 0

* A, B: inputs, X1, X2: outputs

* Consider A = 1, B = 0.
B = 0 ⇒ X2 = 1 ⇒ X1 = AX2 = 1 · 1 = 0.
Overall, we have X1 = 0, X2 = 1.

* Consider A = 0, B = 1.
Show that X1 = 1, X2 = 0.

* Consider A = B = 1.

X1 = AX2 = X2, X2 = B X1 = X1 ⇒ X1 = X2

If X1 = 1, X2 = 0 previously, the circuit continues to “hold” that state.
Similarly, if X1 = 0, X2 = 1 previously, the circuit continues to “hold” that state.
The circuit has “latched in” the previous state.

* For A = B = 0, X1 and X2 are both 1. This combination of A and B is not
allowed for reasons that will become clear later.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A

B

A B X2X1

X1

X2

1 0 0 1

10 01

previous1 1

1 10 0

* A, B: inputs, X1, X2: outputs

* Consider A = 1, B = 0.
B = 0 ⇒ X2 = 1 ⇒ X1 = AX2 = 1 · 1 = 0.
Overall, we have X1 = 0, X2 = 1.

* Consider A = 0, B = 1.
Show that X1 = 1, X2 = 0.

* Consider A = B = 1.

X1 = AX2 = X2, X2 = B X1 = X1 ⇒ X1 = X2

If X1 = 1, X2 = 0 previously, the circuit continues to “hold” that state.
Similarly, if X1 = 0, X2 = 1 previously, the circuit continues to “hold” that state.
The circuit has “latched in” the previous state.

* For A = B = 0, X1 and X2 are both 1. This combination of A and B is not
allowed for reasons that will become clear later.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A

B

A B X2X1

X1

X2

1 0 0 1

10 01

previous1 1

1 10 0

* A, B: inputs, X1, X2: outputs

* Consider A = 1, B = 0.
B = 0 ⇒ X2 = 1 ⇒ X1 = AX2 = 1 · 1 = 0.
Overall, we have X1 = 0, X2 = 1.

* Consider A = 0, B = 1.
Show that X1 = 1, X2 = 0.

* Consider A = B = 1.

X1 = A X2 = X2, X2 = B X1 = X1 ⇒ X1 = X2

If X1 = 1, X2 = 0 previously, the circuit continues to “hold” that state.
Similarly, if X1 = 0, X2 = 1 previously, the circuit continues to “hold” that state.
The circuit has “latched in” the previous state.

* For A = B = 0, X1 and X2 are both 1. This combination of A and B is not
allowed for reasons that will become clear later.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A

B

A B X2X1

X1

X2

1 0 0 1

10 01

previous1 1

1 10 0

* A, B: inputs, X1, X2: outputs

* Consider A = 1, B = 0.
B = 0 ⇒ X2 = 1 ⇒ X1 = AX2 = 1 · 1 = 0.
Overall, we have X1 = 0, X2 = 1.

* Consider A = 0, B = 1.
Show that X1 = 1, X2 = 0.

* Consider A = B = 1.

X1 = AX2 = X2, X2 = B X1 = X1 ⇒ X1 = X2

If X1 = 1, X2 = 0 previously, the circuit continues to “hold” that state.
Similarly, if X1 = 0, X2 = 1 previously, the circuit continues to “hold” that state.
The circuit has “latched in” the previous state.

* For A = B = 0, X1 and X2 are both 1. This combination of A and B is not
allowed for reasons that will become clear later.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A

B

A B X2X1

X1

X2

1 0 0 1

10 01

previous1 1

1 10 0

* A, B: inputs, X1, X2: outputs

* Consider A = 1, B = 0.
B = 0 ⇒ X2 = 1 ⇒ X1 = AX2 = 1 · 1 = 0.
Overall, we have X1 = 0, X2 = 1.

* Consider A = 0, B = 1.
Show that X1 = 1, X2 = 0.

* Consider A = B = 1.

X1 = AX2 = X2, X2 = B X1 = X1 ⇒ X1 = X2

If X1 = 1, X2 = 0 previously, the circuit continues to “hold” that state.
Similarly, if X1 = 0, X2 = 1 previously, the circuit continues to “hold” that state.

The circuit has “latched in” the previous state.

* For A = B = 0, X1 and X2 are both 1. This combination of A and B is not
allowed for reasons that will become clear later.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A

B

A B X2X1

X1

X2

1 0 0 1

10 01

previous1 1

1 10 0

* A, B: inputs, X1, X2: outputs

* Consider A = 1, B = 0.
B = 0 ⇒ X2 = 1 ⇒ X1 = AX2 = 1 · 1 = 0.
Overall, we have X1 = 0, X2 = 1.

* Consider A = 0, B = 1.
Show that X1 = 1, X2 = 0.

* Consider A = B = 1.

X1 = AX2 = X2, X2 = B X1 = X1 ⇒ X1 = X2

If X1 = 1, X2 = 0 previously, the circuit continues to “hold” that state.
Similarly, if X1 = 0, X2 = 1 previously, the circuit continues to “hold” that state.

The circuit has “latched in” the previous state.

* For A = B = 0, X1 and X2 are both 1. This combination of A and B is not
allowed for reasons that will become clear later.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A

B

A B X2X1

X1

X2

1 0 0 1

10 01

previous1 1

1 10 0

* A, B: inputs, X1, X2: outputs

* Consider A = 1, B = 0.
B = 0 ⇒ X2 = 1 ⇒ X1 = AX2 = 1 · 1 = 0.
Overall, we have X1 = 0, X2 = 1.

* Consider A = 0, B = 1.
Show that X1 = 1, X2 = 0.

* Consider A = B = 1.

X1 = AX2 = X2, X2 = B X1 = X1 ⇒ X1 = X2

If X1 = 1, X2 = 0 previously, the circuit continues to “hold” that state.
Similarly, if X1 = 0, X2 = 1 previously, the circuit continues to “hold” that state.
The circuit has “latched in” the previous state.

* For A = B = 0, X1 and X2 are both 1. This combination of A and B is not
allowed for reasons that will become clear later.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A

B

A B X2X1

X1

X2

1 0 0 1

10 01

previous1 1

1 10 0

* A, B: inputs, X1, X2: outputs

* Consider A = 1, B = 0.
B = 0 ⇒ X2 = 1 ⇒ X1 = AX2 = 1 · 1 = 0.
Overall, we have X1 = 0, X2 = 1.

* Consider A = 0, B = 1.
Show that X1 = 1, X2 = 0.

* Consider A = B = 1.

X1 = AX2 = X2, X2 = B X1 = X1 ⇒ X1 = X2

If X1 = 1, X2 = 0 previously, the circuit continues to “hold” that state.
Similarly, if X1 = 0, X2 = 1 previously, the circuit continues to “hold” that state.
The circuit has “latched in” the previous state.

* For A = B = 0, X1 and X2 are both 1. This combination of A and B is not
allowed for reasons that will become clear later.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A

B

A B X2X1

X1

X2

1 0 0 1

10 01

previous1 1

1 10 0

* A, B: inputs, X1, X2: outputs

* Consider A = 1, B = 0.
B = 0 ⇒ X2 = 1 ⇒ X1 = AX2 = 1 · 1 = 0.
Overall, we have X1 = 0, X2 = 1.

* Consider A = 0, B = 1.
Show that X1 = 1, X2 = 0.

* Consider A = B = 1.

X1 = AX2 = X2, X2 = B X1 = X1 ⇒ X1 = X2

If X1 = 1, X2 = 0 previously, the circuit continues to “hold” that state.
Similarly, if X1 = 0, X2 = 1 previously, the circuit continues to “hold” that state.
The circuit has “latched in” the previous state.

* For A = B = 0, X1 and X2 are both 1. This combination of A and B is not
allowed for reasons that will become clear later.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A BA

B

previous

invalid

X2X1

1

1

1 1

0

0

0

0

1

1

0 0

X1

X2

R S

previous

R

S invalid

1

1

1 1

0

0

0

0

1

1

0 0

QQ
Q

Q

* The combination A = 1, B = 0 serves to reset X1 to 0 (irrespective of the
previous state of the latch).

* The combination A = 0, B = 1 serves to set X1 to 1 (irrespective of the previous
state of the latch).

* In other words,
A = 1, B = 0 → latch gets reset to 0.
A = 0, B = 1 → latch gets set to 1.

* The A input is therefore called the RESET (R) input, and B is called the SET
(S) input of the latch.

* X1 is denoted by Q, and X2 (which is X1 in all cases except for A = B = 0) is
denoted by Q.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A BA

B

previous

invalid

X2X1

1

1

1 1

0

0

0

0

1

1

0 0

X1

X2

R S

previous

R

S invalid

1

1

1 1

0

0

0

0

1

1

0 0

QQ
Q

Q

* The combination A = 1, B = 0 serves to reset X1 to 0 (irrespective of the
previous state of the latch).

* The combination A = 0, B = 1 serves to set X1 to 1 (irrespective of the previous
state of the latch).

* In other words,
A = 1, B = 0 → latch gets reset to 0.
A = 0, B = 1 → latch gets set to 1.

* The A input is therefore called the RESET (R) input, and B is called the SET
(S) input of the latch.

* X1 is denoted by Q, and X2 (which is X1 in all cases except for A = B = 0) is
denoted by Q.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A BA

B

previous

invalid

X2X1

1

1

1 1

0

0

0

0

1

1

0 0

X1

X2

R S

previous

R

S invalid

1

1

1 1

0

0

0

0

1

1

0 0

QQ
Q

Q

* The combination A = 1, B = 0 serves to reset X1 to 0 (irrespective of the
previous state of the latch).

* The combination A = 0, B = 1 serves to set X1 to 1 (irrespective of the previous
state of the latch).

* In other words,
A = 1, B = 0 → latch gets reset to 0.
A = 0, B = 1 → latch gets set to 1.

* The A input is therefore called the RESET (R) input, and B is called the SET
(S) input of the latch.

* X1 is denoted by Q, and X2 (which is X1 in all cases except for A = B = 0) is
denoted by Q.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A BA

B

previous

invalid

X2X1

1

1

1 1

0

0

0

0

1

1

0 0

X1

X2

R S

previous

R

S invalid

1

1

1 1

0

0

0

0

1

1

0 0

QQ
Q

Q

* The combination A = 1, B = 0 serves to reset X1 to 0 (irrespective of the
previous state of the latch).

* The combination A = 0, B = 1 serves to set X1 to 1 (irrespective of the previous
state of the latch).

* In other words,
A = 1, B = 0 → latch gets reset to 0.
A = 0, B = 1 → latch gets set to 1.

* The A input is therefore called the RESET (R) input, and B is called the SET
(S) input of the latch.

* X1 is denoted by Q, and X2 (which is X1 in all cases except for A = B = 0) is
denoted by Q.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A BA

B

previous

invalid

X2X1

1

1

1 1

0

0

0

0

1

1

0 0

X1

X2

R S

previous

R

S invalid

1

1

1 1

0

0

0

0

1

1

0 0

QQ
Q

Q

* The combination A = 1, B = 0 serves to reset X1 to 0 (irrespective of the
previous state of the latch).

* The combination A = 0, B = 1 serves to set X1 to 1 (irrespective of the previous
state of the latch).

* In other words,
A = 1, B = 0 → latch gets reset to 0.
A = 0, B = 1 → latch gets set to 1.

* The A input is therefore called the RESET (R) input, and B is called the SET
(S) input of the latch.

* X1 is denoted by Q, and X2 (which is X1 in all cases except for A = B = 0) is
denoted by Q.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A BA

B

previous

invalid

X2X1

1

1

1 1

0

0

0

0

1

1

0 0

X1

X2

R S

previous

R

S invalid

1

1

1 1

0

0

0

0

1

1

0 0

QQ
Q

Q

* The combination A = 1, B = 0 serves to reset X1 to 0 (irrespective of the
previous state of the latch).

* The combination A = 0, B = 1 serves to set X1 to 1 (irrespective of the previous
state of the latch).

* In other words,
A = 1, B = 0 → latch gets reset to 0.
A = 0, B = 1 → latch gets set to 1.

* The A input is therefore called the RESET (R) input, and B is called the SET
(S) input of the latch.

* X1 is denoted by Q, and X2 (which is X1 in all cases except for A = B = 0) is
denoted by Q.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A BA

B

previous

invalid

X2X1

1

1

1 1

0

0

0

0

1

1

0 0

X1

X2

R S

previous

R

S invalid

1

1

1 1

0

0

0

0

1

1

0 0

QQ
Q

Q

* The combination A = 1, B = 0 serves to reset X1 to 0 (irrespective of the
previous state of the latch).

* The combination A = 0, B = 1 serves to set X1 to 1 (irrespective of the previous
state of the latch).

* In other words,
A = 1, B = 0 → latch gets reset to 0.
A = 0, B = 1 → latch gets set to 1.

* The A input is therefore called the RESET (R) input, and B is called the SET
(S) input of the latch.

* X1 is denoted by Q, and X2 (which is X1 in all cases except for A = B = 0) is
denoted by Q.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

R S

previous

R

S invalid

R

S

t

t

t

t
t2 t3t1

1

1

1 1

0

0

0

0

1

1

0 0

QQ
Q

Q
Q

Q

* Up to t = t1, R = 0, S = 1 → Q = 1.

* At t = t1, R goes high → R = S = 1, and the latch holds its previous state
→ no change at the output.

* At t = t2, S goes low → R = 1, S = 0 → Q = 0.

* At t = t3, S goes high → R = S = 1, and the latch holds its previous state
→ no change at the output.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

R S

previous

R

S invalid

R

S

t

t

t

t
t2 t3t1

1

1

1 1

0

0

0

0

1

1

0 0

QQ
Q

Q
Q

Q

* Up to t = t1, R = 0, S = 1 → Q = 1.

* At t = t1, R goes high → R = S = 1, and the latch holds its previous state
→ no change at the output.

* At t = t2, S goes low → R = 1, S = 0 → Q = 0.

* At t = t3, S goes high → R = S = 1, and the latch holds its previous state
→ no change at the output.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

R S

previous

R

S invalid

R

S

t

t

t

t
t2 t3t1

1

1

1 1

0

0

0

0

1

1

0 0

QQ
Q

Q
Q

Q

* Up to t = t1, R = 0, S = 1 → Q = 1.

* At t = t1, R goes high → R = S = 1, and the latch holds its previous state
→ no change at the output.

* At t = t2, S goes low → R = 1, S = 0 → Q = 0.

* At t = t3, S goes high → R = S = 1, and the latch holds its previous state
→ no change at the output.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

R S

previous

R

S invalid

R

S

t

t

t

t
t2 t3t1

1

1

1 1

0

0

0

0

1

1

0 0

QQ
Q

Q
Q

Q

* Up to t = t1, R = 0, S = 1 → Q = 1.

* At t = t1, R goes high → R = S = 1, and the latch holds its previous state
→ no change at the output.

* At t = t2, S goes low → R = 1, S = 0 → Q = 0.

* At t = t3, S goes high → R = S = 1, and the latch holds its previous state
→ no change at the output.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

R S

previous

R

S invalid

R

S

t

t

t

t
t2 t3t1

1

1

1 1

0

0

0

0

1

1

0 0

QQ
Q

Q
Q

Q

* Up to t = t1, R = 0, S = 1 → Q = 1.

* At t = t1, R goes high → R = S = 1, and the latch holds its previous state
→ no change at the output.

* At t = t2, S goes low → R = 1, S = 0 → Q = 0.

* At t = t3, S goes high → R = S = 1, and the latch holds its previous state
→ no change at the output.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

R

S

R S t

t

t

t

previous

R

S

t3t2t1

1

1

1 1

0

0

0

0

1

1

0 0 1 1

Q

QQ

Q

Q

Q

t4 t5

?

?

* Why not allow R = S = 0?

- It makes Q = Q = 1, i.e., Q and Q are not inverse of each other any more.

- More importantly, when R and S both become 1 simultaneously (starting

from R = S = 0), the final outputs Q and Q cannot be uniquely

determined. We could have Q = 0, Q = 1 or Q = 1, Q = 0, depending on

the delays associated with the two NAND gates.

* We surely don’t want any question marks in digital electronics!

M. B. Patil, IIT Bombay

NAND latch (RS latch)

R

S

R S t

t

t

t

previous

R

S

t3t2t1

1

1

1 1

0

0

0

0

1

1

0 0 1 1

Q

QQ

Q

Q

Q

t4 t5

?

?

* Why not allow R = S = 0?

- It makes Q = Q = 1, i.e., Q and Q are not inverse of each other any more.

- More importantly, when R and S both become 1 simultaneously (starting

from R = S = 0), the final outputs Q and Q cannot be uniquely

determined. We could have Q = 0, Q = 1 or Q = 1, Q = 0, depending on

the delays associated with the two NAND gates.

* We surely don’t want any question marks in digital electronics!

M. B. Patil, IIT Bombay

NAND latch (RS latch)

R

S

R S t

t

t

t

previous

R

S

t3t2t1

1

1

1 1

0

0

0

0

1

1

0 0 1 1

Q

QQ

Q

Q

Q

t4 t5

?

?

* Why not allow R = S = 0?

- It makes Q = Q = 1, i.e., Q and Q are not inverse of each other any more.

- More importantly, when R and S both become 1 simultaneously (starting

from R = S = 0), the final outputs Q and Q cannot be uniquely

determined. We could have Q = 0, Q = 1 or Q = 1, Q = 0, depending on

the delays associated with the two NAND gates.

* We surely don’t want any question marks in digital electronics!

M. B. Patil, IIT Bombay

NAND latch (RS latch)

R

S

R S t

t

t

t

previous

R

S

t3t2t1

1

1

1 1

0

0

0

0

1

1

0 0 1 1

Q

QQ

Q

Q

Q

t4 t5

?

?

* Why not allow R = S = 0?

- It makes Q = Q = 1, i.e., Q and Q are not inverse of each other any more.

- More importantly, when R and S both become 1 simultaneously (starting

from R = S = 0), the final outputs Q and Q cannot be uniquely

determined. We could have Q = 0, Q = 1 or Q = 1, Q = 0, depending on

the delays associated with the two NAND gates.

* We surely don’t want any question marks in digital electronics!

M. B. Patil, IIT Bombay

NAND latch (RS latch)

R

S

R S t

t

t

t

previous

R

S

t3t2t1

1

1

1 1

0

0

0

0

1

1

0 0 1 1

Q

QQ

Q

Q

Q

t4

t5

?

?

* Why not allow R = S = 0?

- It makes Q = Q = 1, i.e., Q and Q are not inverse of each other any more.

- More importantly, when R and S both become 1 simultaneously (starting

from R = S = 0), the final outputs Q and Q cannot be uniquely

determined. We could have Q = 0, Q = 1 or Q = 1, Q = 0, depending on

the delays associated with the two NAND gates.

* We surely don’t want any question marks in digital electronics!

M. B. Patil, IIT Bombay

NAND latch (RS latch)

R

S

R S t

t

t

t

previous

R

S

t3t2t1

1

1

1 1

0

0

0

0

1

1

0 0 1 1

Q

QQ

Q

Q

Q

t4

t5

?

?

* Why not allow R = S = 0?

- It makes Q = Q = 1, i.e., Q and Q are not inverse of each other any more.

- More importantly, when R and S both become 1 simultaneously (starting

from R = S = 0), the final outputs Q and Q cannot be uniquely

determined. We could have Q = 0, Q = 1 or Q = 1, Q = 0, depending on

the delays associated with the two NAND gates.

* We surely don’t want any question marks in digital electronics!

M. B. Patil, IIT Bombay

NAND latch (RS latch)

R

S

R S t

t

t

t

previous

R

S

t3t2t1

1

1

1 1

0

0

0

0

1

1

0 0 1 1

Q

QQ

Q

Q

Q

t4 t5

?

?

* Why not allow R = S = 0?

- It makes Q = Q = 1, i.e., Q and Q are not inverse of each other any more.

- More importantly, when R and S both become 1 simultaneously (starting

from R = S = 0), the final outputs Q and Q cannot be uniquely

determined. We could have Q = 0, Q = 1 or Q = 1, Q = 0, depending on

the delays associated with the two NAND gates.

* We surely don’t want any question marks in digital electronics!

M. B. Patil, IIT Bombay

NAND latch (RS latch)

R

S

R S t

t

t

t

previous

R

S

t3t2t1

1

1

1 1

0

0

0

0

1

1

0 0 1 1

Q

QQ

Q

Q

Q

t4 t5

?

?

* Why not allow R = S = 0?

- It makes Q = Q = 1, i.e., Q and Q are not inverse of each other any more.

- More importantly, when R and S both become 1 simultaneously (starting

from R = S = 0), the final outputs Q and Q cannot be uniquely

determined. We could have Q = 0, Q = 1 or Q = 1, Q = 0, depending on

the delays associated with the two NAND gates.

* We surely don’t want any question marks in digital electronics!

M. B. Patil, IIT Bombay

NAND latch (RS latch)

R

S

R S t

t

t

t

previous

R

S

t3t2t1

1

1

1 1

0

0

0

0

1

1

0 0 1 1

Q

QQ

Q

Q

Q

t4 t5

?

?

* Why not allow R = S = 0?

- It makes Q = Q = 1, i.e., Q and Q are not inverse of each other any more.

- More importantly, when R and S both become 1 simultaneously (starting

from R = S = 0), the final outputs Q and Q cannot be uniquely

determined. We could have Q = 0, Q = 1 or Q = 1, Q = 0, depending on

the delays associated with the two NAND gates.

* We surely don’t want any question marks in digital electronics!

M. B. Patil, IIT Bombay

NOR latch (RS latch)

R S

previous

invalid

R

S

1

1

0

0

0

0

1

1

1 1

00

QQ
Q

Q

* The NOR latch is similar to the NAND latch:
When R = 1, S = 0, the latch gets reset to Q = 0.
When R = 0, S = 1, the latch gets set to Q = 1.

* For R = S = 0, the latch retains its previous state (i.e., the previous values of Q
and Q).

* R = S = 1 is not allowed for reasons similar to those discussed in the context of
the NAND latch.

M. B. Patil, IIT Bombay

NOR latch (RS latch)

R S

previous

invalid

R

S

1

1

0

0

0

0

1

1

1 1

00

QQ
Q

Q

* The NOR latch is similar to the NAND latch:
When R = 1, S = 0, the latch gets reset to Q = 0.
When R = 0, S = 1, the latch gets set to Q = 1.

* For R = S = 0, the latch retains its previous state (i.e., the previous values of Q
and Q).

* R = S = 1 is not allowed for reasons similar to those discussed in the context of
the NAND latch.

M. B. Patil, IIT Bombay

NOR latch (RS latch)

R S

previous

invalid

R

S

1

1

0

0

0

0

1

1

1 1

00

QQ
Q

Q

* The NOR latch is similar to the NAND latch:
When R = 1, S = 0, the latch gets reset to Q = 0.
When R = 0, S = 1, the latch gets set to Q = 1.

* For R = S = 0, the latch retains its previous state (i.e., the previous values of Q
and Q).

* R = S = 1 is not allowed for reasons similar to those discussed in the context of
the NAND latch.

M. B. Patil, IIT Bombay

NOR latch (RS latch)

R S

previous

invalid

R

S

1

1

0

0

0

0

1

1

1 1

00

QQ
Q

Q

* The NOR latch is similar to the NAND latch:
When R = 1, S = 0, the latch gets reset to Q = 0.
When R = 0, S = 1, the latch gets set to Q = 1.

* For R = S = 0, the latch retains its previous state (i.e., the previous values of Q
and Q).

* R = S = 1 is not allowed for reasons similar to those discussed in the context of
the NAND latch.

M. B. Patil, IIT Bombay

Comparison of NAND and NOR latches

R S

previous

invalid

R

S

R S

previous

invalid

R

S

1

1

0

0

0

0

1

1

1 1

00

1

1

1 1

0

0

0

0

1

1

0 0

QQ
Q

Q

QQ
Q

Q

M. B. Patil, IIT Bombay

Chatter (bouncing) due to a mechanical switch

R

B

A

Vs Vo

t
expected

Vs

Vo

t

actual

Vs

Vo

* When the switch is thrown from A to B, Vo is expected to go from 0 V to Vs

(say, 5 V).

* However, mechanical switches suffer from “chatter” or “bouncing,” i.e., the
transition from A to B is not a single, clean one. As a result, Vo oscillates
between 0 V and 5 V before settling to its final value (5 V).

* In some applications, this chatter can cause malfunction → need a way to
remove the chatter.

M. B. Patil, IIT Bombay

Chatter (bouncing) due to a mechanical switch

R

B

A

Vs Vo

t
expected

Vs

Vo

t

actual

Vs

Vo

* When the switch is thrown from A to B, Vo is expected to go from 0 V to Vs

(say, 5 V).

* However, mechanical switches suffer from “chatter” or “bouncing,” i.e., the
transition from A to B is not a single, clean one. As a result, Vo oscillates
between 0 V and 5 V before settling to its final value (5 V).

* In some applications, this chatter can cause malfunction → need a way to
remove the chatter.

M. B. Patil, IIT Bombay

Chatter (bouncing) due to a mechanical switch

R

B

A

Vs Vo

t
expected

Vs

Vo

t

actual

Vs

Vo

* When the switch is thrown from A to B, Vo is expected to go from 0 V to Vs

(say, 5 V).

* However, mechanical switches suffer from “chatter” or “bouncing,” i.e., the
transition from A to B is not a single, clean one. As a result, Vo oscillates
between 0 V and 5 V before settling to its final value (5 V).

* In some applications, this chatter can cause malfunction → need a way to
remove the chatter.

M. B. Patil, IIT Bombay

Chatter (bouncing) due to a mechanical switch

R

B

A

Vs Vo

t
expected

Vs

Vo

t

actual

Vs

Vo

* When the switch is thrown from A to B, Vo is expected to go from 0 V to Vs

(say, 5 V).

* However, mechanical switches suffer from “chatter” or “bouncing,” i.e., the
transition from A to B is not a single, clean one. As a result, Vo oscillates
between 0 V and 5 V before settling to its final value (5 V).

* In some applications, this chatter can cause malfunction → need a way to
remove the chatter.

M. B. Patil, IIT Bombay

Chatter (bouncing) due to a mechanical switch

R

B

A

Vs Vo

t
expected

Vs

Vo

t

actual

Vs

Vo

* When the switch is thrown from A to B, Vo is expected to go from 0 V to Vs

(say, 5 V).

* However, mechanical switches suffer from “chatter” or “bouncing,” i.e., the
transition from A to B is not a single, clean one. As a result, Vo oscillates
between 0 V and 5 V before settling to its final value (5 V).

* In some applications, this chatter can cause malfunction → need a way to
remove the chatter.

M. B. Patil, IIT Bombay

Chatter (bouncing) due to a mechanical switch

R

B

A

Vs Vo

t
expected

Vs

Vo

t

actual

Vs

Vo

* When the switch is thrown from A to B, Vo is expected to go from 0 V to Vs

(say, 5 V).

* However, mechanical switches suffer from “chatter” or “bouncing,” i.e., the
transition from A to B is not a single, clean one. As a result, Vo oscillates
between 0 V and 5 V before settling to its final value (5 V).

* In some applications, this chatter can cause malfunction → need a way to
remove the chatter.

M. B. Patil, IIT Bombay

Chatter (bouncing) due to a mechanical switch

A

B
R

S

5 V

5 V

R S

previous

invalid

R

S

t

t

t
1

1

1 1

0

0

0

0

1

1

0 0

Q

QQ

Q

* Because of the chatter, the S and R inputs may have multiple transitions when
the switch is thrown from A to B.

* However, for S = R = 1, the previous value of Q is retained, causing a single
transition in Q, as desired.

M. B. Patil, IIT Bombay

Chatter (bouncing) due to a mechanical switch

A

B
R

S

5 V

5 V

R S

previous

invalid

R

S

t

t

t
1

1

1 1

0

0

0

0

1

1

0 0

Q

QQ

Q

* Because of the chatter, the S and R inputs may have multiple transitions when
the switch is thrown from A to B.

* However, for S = R = 1, the previous value of Q is retained, causing a single
transition in Q, as desired.

M. B. Patil, IIT Bombay

Chatter (bouncing) due to a mechanical switch

A

B
R

S

5 V

5 V

R S

previous

invalid

R

S

t

t

t
1

1

1 1

0

0

0

0

1

1

0 0

Q

QQ

Q

* Because of the chatter, the S and R inputs may have multiple transitions when
the switch is thrown from A to B.

* However, for S = R = 1, the previous value of Q is retained, causing a single
transition in Q, as desired.

M. B. Patil, IIT Bombay

The “clock”

* Complex digital circuits are generally designed for synchronous operation, i.e.,
transitions in the various signals are synchronised with the clock.

* Synchronous circuits are easier to design and troubleshoot because the voltages
at the nodes (both output nodes and internal nodes) can change only at specific
times.

* A clock is a periodic signal, with a positive-going transition and a negative-going
transition.

negative−going
transition

t0

1

positive−going
transition

T

* The clock frequency determines the overall speed of the circuit. For example, a
processor that operates with a 1 GHz clock is 10 times faster than one that
operates with a 100 MHz clock.

M. B. Patil, IIT Bombay

The “clock”

* Complex digital circuits are generally designed for synchronous operation, i.e.,
transitions in the various signals are synchronised with the clock.

* Synchronous circuits are easier to design and troubleshoot because the voltages
at the nodes (both output nodes and internal nodes) can change only at specific
times.

* A clock is a periodic signal, with a positive-going transition and a negative-going
transition.

negative−going
transition

t0

1

positive−going
transition

T

* The clock frequency determines the overall speed of the circuit. For example, a
processor that operates with a 1 GHz clock is 10 times faster than one that
operates with a 100 MHz clock.

M. B. Patil, IIT Bombay

The “clock”

* Complex digital circuits are generally designed for synchronous operation, i.e.,
transitions in the various signals are synchronised with the clock.

* Synchronous circuits are easier to design and troubleshoot because the voltages
at the nodes (both output nodes and internal nodes) can change only at specific
times.

* A clock is a periodic signal, with a positive-going transition and a negative-going
transition.

negative−going
transition

t0

1

positive−going
transition

T

* The clock frequency determines the overall speed of the circuit. For example, a
processor that operates with a 1 GHz clock is 10 times faster than one that
operates with a 100 MHz clock.

M. B. Patil, IIT Bombay

The “clock”

* Complex digital circuits are generally designed for synchronous operation, i.e.,
transitions in the various signals are synchronised with the clock.

* Synchronous circuits are easier to design and troubleshoot because the voltages
at the nodes (both output nodes and internal nodes) can change only at specific
times.

* A clock is a periodic signal, with a positive-going transition and a negative-going
transition.

negative−going
transition

t0

1

positive−going
transition

T

* The clock frequency determines the overall speed of the circuit. For example, a
processor that operates with a 1 GHz clock is 10 times faster than one that
operates with a 100 MHz clock.

M. B. Patil, IIT Bombay

Clocked RS latch

R

S

CLK

A

B

R SCLK

previous

invalid

previous A

B

A B

previous

invalid

Clocked RS latch NAND RS latch

1

1

0

0

0

0

1

1

0 0

11

1

1

1

1

0 X X
1

1

1 1

0

0

0

0

1

1

0 0

Q

Q

QQ

Q

Q

QQ

* When clock is inactive (0), A = B = 1, and the latch holds the previous state.

* When clock is active (1), A = S , B = R. Using the truth table for the NAND RS
latch (right), we can construct the truth table for the clocked RS latch.

* Note that the above table is sensitive to the level of the clock (i.e., whether CLK
is 0 or 1).

M. B. Patil, IIT Bombay

Clocked RS latch

R

S

CLK

A

B

R SCLK

previous

invalid

previous A

B

A B

previous

invalid

Clocked RS latch NAND RS latch

1

1

0

0

0

0

1

1

0 0

11

1

1

1

1

0 X X
1

1

1 1

0

0

0

0

1

1

0 0

Q

Q

QQ

Q

Q

QQ

* When clock is inactive (0), A = B = 1, and the latch holds the previous state.

* When clock is active (1), A = S , B = R. Using the truth table for the NAND RS
latch (right), we can construct the truth table for the clocked RS latch.

* Note that the above table is sensitive to the level of the clock (i.e., whether CLK
is 0 or 1).

M. B. Patil, IIT Bombay

Clocked RS latch

R

S

CLK

A

B

R SCLK

previous

invalid

previous A

B

A B

previous

invalid

Clocked RS latch NAND RS latch

1

1

0

0

0

0

1

1

0 0

11

1

1

1

1

0 X X
1

1

1 1

0

0

0

0

1

1

0 0

Q

Q

QQ

Q

Q

QQ

* When clock is inactive (0), A = B = 1, and the latch holds the previous state.

* When clock is active (1), A = S , B = R. Using the truth table for the NAND RS
latch (right), we can construct the truth table for the clocked RS latch.

* Note that the above table is sensitive to the level of the clock (i.e., whether CLK
is 0 or 1).

M. B. Patil, IIT Bombay

Clocked RS latch

R

S

CLK

A

B

R SCLK

previous

invalid

previous A

B

A B

previous

invalid

Clocked RS latch NAND RS latch

1

1

0

0

0

0

1

1

0 0

11

1

1

1

1

0 X X
1

1

1 1

0

0

0

0

1

1

0 0

Q

Q

QQ

Q

Q

QQ

* When clock is inactive (0), A = B = 1, and the latch holds the previous state.

* When clock is active (1), A = S , B = R. Using the truth table for the NAND RS
latch (right), we can construct the truth table for the clocked RS latch.

* Note that the above table is sensitive to the level of the clock (i.e., whether CLK
is 0 or 1).

M. B. Patil, IIT Bombay

Clocked RS latch

R

S

CLK

A

B

R SCLK

previous

invalid

previous

CLK

S

Q

R

(SEQUEL file: ee101_rs_1.sqproj)

time (msec)
 0 0.2 0.4 0.6 0.8

1

1

0

0

0

0

1

1

0 0

11

1

1

1

1

0 X XQ

Q

QQ

M. B. Patil, IIT Bombay

Edge-triggered flip-flops

* The clocked RS latch seen previously is level-sensitive, i.e., if the clock is active
(CLK = 1), the flip-flop output is allowed to change, depending on the R and S
inputs.

* In an edge-sensitive flip-flop, the output can change only at the active clock
edge (i.e., CLK transition from 0 to 1 or from 1 to 0).

* Edge-sensitive flip-flops are denoted by the following symbols:

R

CLK

S

positive edge−triggered flip−flop negative edge−triggered flip−flop

R

S

CLK

Q

Q

Q

Q

M. B. Patil, IIT Bombay

Edge-triggered flip-flops

* The clocked RS latch seen previously is level-sensitive, i.e., if the clock is active
(CLK = 1), the flip-flop output is allowed to change, depending on the R and S
inputs.

* In an edge-sensitive flip-flop, the output can change only at the active clock
edge (i.e., CLK transition from 0 to 1 or from 1 to 0).

* Edge-sensitive flip-flops are denoted by the following symbols:

R

CLK

S

positive edge−triggered flip−flop negative edge−triggered flip−flop

R

S

CLK

Q

Q

Q

Q

M. B. Patil, IIT Bombay

Edge-triggered flip-flops

* The clocked RS latch seen previously is level-sensitive, i.e., if the clock is active
(CLK = 1), the flip-flop output is allowed to change, depending on the R and S
inputs.

* In an edge-sensitive flip-flop, the output can change only at the active clock
edge (i.e., CLK transition from 0 to 1 or from 1 to 0).

* Edge-sensitive flip-flops are denoted by the following symbols:

R

CLK

S

positive edge−triggered flip−flop negative edge−triggered flip−flop

R

S

CLK

Q

Q

Q

Q

M. B. Patil, IIT Bombay

JK flip-flop

S

R

CLK

J

K
RS latch

R S

previous

invalid

Truth table for RS latch

1

1

1 1

0

0

0

0

1

1

0 0

Q

QQ

Q

CLK KJ

Truth table for JK flip−flop

0 XX previous (Qn)

Q (Qn+1)

1 0 0 previous (Qn)

1 10 0

* When CLK = 0, we have R = S = 1, and the RS latch holds the previous Q. In
other words, nothing happens as long as CLK = 0.

* When CLK = 1:

- J = K = 0 → R = S = 1, RS latch holds previous Q, i.e., Qn+1 = Qn, where
n denotes the nth clock pulse (This notation will become clear shortly).

- J = 0, K = 1 → R = 1, S = Qn.

Case (i): Qn = 0 → S = 1 (i.e., R = S = 1) → Qn+1 = Qn = 0.

Case (ii): Qn = 1 → S = 0 (i.e., R = 1, S = 0) → Qn+1 = 0.

In either case, Qn+1 = 0 → For J = 0, K = 1, Qn+1 = 0.

M. B. Patil, IIT Bombay

JK flip-flop

S

R

CLK

J

K
RS latch

R S

previous

invalid

Truth table for RS latch

1

1

1 1

0

0

0

0

1

1

0 0

Q

QQ

Q

CLK KJ

Truth table for JK flip−flop

0 XX previous (Qn)

Q (Qn+1)

1 0 0 previous (Qn)

1 10 0

* When CLK = 0, we have R = S = 1, and the RS latch holds the previous Q. In
other words, nothing happens as long as CLK = 0.

* When CLK = 1:

- J = K = 0 → R = S = 1, RS latch holds previous Q, i.e., Qn+1 = Qn, where
n denotes the nth clock pulse (This notation will become clear shortly).

- J = 0, K = 1 → R = 1, S = Qn.

Case (i): Qn = 0 → S = 1 (i.e., R = S = 1) → Qn+1 = Qn = 0.

Case (ii): Qn = 1 → S = 0 (i.e., R = 1, S = 0) → Qn+1 = 0.

In either case, Qn+1 = 0 → For J = 0, K = 1, Qn+1 = 0.

M. B. Patil, IIT Bombay

JK flip-flop

S

R

CLK

J

K
RS latch

R S

previous

invalid

Truth table for RS latch

1

1

1 1

0

0

0

0

1

1

0 0

Q

QQ

Q

CLK KJ

Truth table for JK flip−flop

0 XX previous (Qn)

Q (Qn+1)

1 0 0 previous (Qn)

1 10 0

* When CLK = 0, we have R = S = 1, and the RS latch holds the previous Q. In
other words, nothing happens as long as CLK = 0.

* When CLK = 1:

- J = K = 0 → R = S = 1, RS latch holds previous Q, i.e., Qn+1 = Qn, where
n denotes the nth clock pulse (This notation will become clear shortly).

- J = 0, K = 1 → R = 1, S = Qn.

Case (i): Qn = 0 → S = 1 (i.e., R = S = 1) → Qn+1 = Qn = 0.

Case (ii): Qn = 1 → S = 0 (i.e., R = 1, S = 0) → Qn+1 = 0.

In either case, Qn+1 = 0 → For J = 0, K = 1, Qn+1 = 0.

M. B. Patil, IIT Bombay

JK flip-flop

S

R

CLK

J

K
RS latch

R S

previous

invalid

Truth table for RS latch

1

1

1 1

0

0

0

0

1

1

0 0

Q

QQ

Q

CLK KJ

Truth table for JK flip−flop

0 XX previous (Qn)

Q (Qn+1)

1 0 0 previous (Qn)

1 10 0

* When CLK = 0, we have R = S = 1, and the RS latch holds the previous Q. In
other words, nothing happens as long as CLK = 0.

* When CLK = 1:

- J = K = 0 → R = S = 1, RS latch holds previous Q, i.e., Qn+1 = Qn, where
n denotes the nth clock pulse (This notation will become clear shortly).

- J = 0, K = 1 → R = 1, S = Qn.

Case (i): Qn = 0 → S = 1 (i.e., R = S = 1) → Qn+1 = Qn = 0.

Case (ii): Qn = 1 → S = 0 (i.e., R = 1, S = 0) → Qn+1 = 0.

In either case, Qn+1 = 0 → For J = 0, K = 1, Qn+1 = 0.

M. B. Patil, IIT Bombay

JK flip-flop

S

R

CLK

J

K
RS latch

R S

previous

invalid

Truth table for RS latch

1

1

1 1

0

0

0

0

1

1

0 0

Q

QQ

Q

CLK KJ

Truth table for JK flip−flop

0 XX previous (Qn)

Q (Qn+1)

1 0 0 previous (Qn)

1 10 0

* When CLK = 0, we have R = S = 1, and the RS latch holds the previous Q. In
other words, nothing happens as long as CLK = 0.

* When CLK = 1:

- J = K = 0 → R = S = 1, RS latch holds previous Q, i.e., Qn+1 = Qn, where
n denotes the nth clock pulse (This notation will become clear shortly).

- J = 0, K = 1 → R = 1, S = Qn.

Case (i): Qn = 0 → S = 1 (i.e., R = S = 1) → Qn+1 = Qn = 0.

Case (ii): Qn = 1 → S = 0 (i.e., R = 1, S = 0) → Qn+1 = 0.

In either case, Qn+1 = 0 → For J = 0, K = 1, Qn+1 = 0.

M. B. Patil, IIT Bombay

JK flip-flop

S

R

CLK

J

K
RS latch

R S

previous

invalid

Truth table for RS latch

1

1

1 1

0

0

0

0

1

1

0 0

Q

QQ

Q

CLK KJ

Truth table for JK flip−flop

0 XX previous (Qn)

Q (Qn+1)

1 0 0 previous (Qn)

1 10 0

* When CLK = 0, we have R = S = 1, and the RS latch holds the previous Q. In
other words, nothing happens as long as CLK = 0.

* When CLK = 1:

- J = K = 0 → R = S = 1, RS latch holds previous Q, i.e., Qn+1 = Qn, where
n denotes the nth clock pulse (This notation will become clear shortly).

- J = 0, K = 1 → R = 1, S = Qn.

Case (i): Qn = 0 → S = 1 (i.e., R = S = 1) → Qn+1 = Qn = 0.

Case (ii): Qn = 1 → S = 0 (i.e., R = 1, S = 0) → Qn+1 = 0.

In either case, Qn+1 = 0 → For J = 0, K = 1, Qn+1 = 0.

M. B. Patil, IIT Bombay

JK flip-flop

S

R

CLK

J

K
RS latch

R S

previous

invalid

Truth table for RS latch

1

1

1 1

0

0

0

0

1

1

0 0

Q

QQ

Q

CLK KJ

Truth table for JK flip−flop

0 XX previous (Qn)

Q (Qn+1)

1 0 0 previous (Qn)

1 10 0

* When CLK = 0, we have R = S = 1, and the RS latch holds the previous Q. In
other words, nothing happens as long as CLK = 0.

* When CLK = 1:

- J = K = 0 → R = S = 1, RS latch holds previous Q, i.e., Qn+1 = Qn, where
n denotes the nth clock pulse (This notation will become clear shortly).

- J = 0, K = 1 → R = 1, S = Qn.

Case (i): Qn = 0 → S = 1 (i.e., R = S = 1) → Qn+1 = Qn = 0.

Case (ii): Qn = 1 → S = 0 (i.e., R = 1, S = 0) → Qn+1 = 0.

In either case, Qn+1 = 0 → For J = 0, K = 1, Qn+1 = 0.

M. B. Patil, IIT Bombay

JK flip-flop

S

R

CLK

J

K
RS latch

R S

previous

invalid

Truth table for RS latch

1

1

1 1

0

0

0

0

1

1

0 0

Q

QQ

Q

CLK KJ

Truth table for JK flip−flop

0 XX previous (Qn)

Q (Qn+1)

1 0 0 previous (Qn)

1 10 0

* When CLK = 0, we have R = S = 1, and the RS latch holds the previous Q. In
other words, nothing happens as long as CLK = 0.

* When CLK = 1:

- J = K = 0 → R = S = 1, RS latch holds previous Q, i.e., Qn+1 = Qn, where
n denotes the nth clock pulse (This notation will become clear shortly).

- J = 0, K = 1 → R = 1, S = Qn.

Case (i): Qn = 0 → S = 1 (i.e., R = S = 1) → Qn+1 = Qn = 0.

Case (ii): Qn = 1 → S = 0 (i.e., R = 1, S = 0) → Qn+1 = 0.

In either case, Qn+1 = 0 → For J = 0, K = 1, Qn+1 = 0.

M. B. Patil, IIT Bombay

JK flip-flop

S

R

CLK

J

K
RS latch

R S

previous

invalid

Truth table for RS latch

1

1

1 1

0

0

0

0

1

1

0 0

Q

QQ

Q

CLK KJ

Truth table for JK flip−flop

0 XX previous (Qn)

Q (Qn+1)

1 0 0 previous (Qn)

1 10 0

* When CLK = 0, we have R = S = 1, and the RS latch holds the previous Q. In
other words, nothing happens as long as CLK = 0.

* When CLK = 1:

- J = K = 0 → R = S = 1, RS latch holds previous Q, i.e., Qn+1 = Qn, where
n denotes the nth clock pulse (This notation will become clear shortly).

- J = 0, K = 1 → R = 1, S = Qn.

Case (i): Qn = 0 → S = 1 (i.e., R = S = 1) → Qn+1 = Qn = 0.

Case (ii): Qn = 1 → S = 0 (i.e., R = 1, S = 0) → Qn+1 = 0.

In either case, Qn+1 = 0 → For J = 0, K = 1, Qn+1 = 0.

M. B. Patil, IIT Bombay

JK flip-flop

S

R

CLK

J

K
RS latch

R S

previous

invalid

Truth table for RS latch

1

1

1 1

0

0

0

0

1

1

0 0

Q

QQ

Q

CLK KJ

Truth table for JK flip−flop

0 XX previous (Qn)

Q (Qn+1)

1 0 0 previous (Qn)

1 10 0

* When CLK = 0, we have R = S = 1, and the RS latch holds the previous Q. In
other words, nothing happens as long as CLK = 0.

* When CLK = 1:

- J = K = 0 → R = S = 1, RS latch holds previous Q, i.e., Qn+1 = Qn, where
n denotes the nth clock pulse (This notation will become clear shortly).

- J = 0, K = 1 → R = 1, S = Qn.

Case (i): Qn = 0 → S = 1 (i.e., R = S = 1) → Qn+1 = Qn = 0.

Case (ii): Qn = 1 → S = 0 (i.e., R = 1, S = 0) → Qn+1 = 0.

In either case, Qn+1 = 0 → For J = 0, K = 1, Qn+1 = 0.

M. B. Patil, IIT Bombay

JK flip-flop

S

R

CLK

J

K
RS latch

R S

previous

invalid

Truth table for RS latch

1

1

1 1

0

0

0

0

1

1

0 0

Q

QQ

Q

CLK KJ

Truth table for JK flip−flop

0 XX previous (Qn)

Q (Qn+1)

1 0 0 previous (Qn)

1 10 0

* When CLK = 0, we have R = S = 1, and the RS latch holds the previous Q. In
other words, nothing happens as long as CLK = 0.

* When CLK = 1:

- J = K = 0 → R = S = 1, RS latch holds previous Q, i.e., Qn+1 = Qn, where
n denotes the nth clock pulse (This notation will become clear shortly).

- J = 0, K = 1 → R = 1, S = Qn.

Case (i): Qn = 0 → S = 1 (i.e., R = S = 1) → Qn+1 = Qn = 0.

Case (ii): Qn = 1 → S = 0 (i.e., R = 1, S = 0) → Qn+1 = 0.

In either case, Qn+1 = 0 → For J = 0, K = 1, Qn+1 = 0.

M. B. Patil, IIT Bombay

JK flip-flop

S

R

CLK

J

K
RS latch

R S

previous

invalid

CLK KJ

Truth table for JK flip−flopTruth table for RS latch

1

1

1 1

0

0

0

0

1

1

0 0

1 0 0

1 10 0

previous (Qn)

0 XX previous (Qn)
Q

QQ

Q (Qn+1)

Q

1 1 0 1

1 1 1 toggles (Qn)

* When CLK = 1:

- Consider J = 1, K = 0 → S = 1, R = Qn = Qn.

Case (i): Qn = 0 → R = 0 (i.e., R = 0, S = 1) → Qn+1 = 1.

Case (ii): Qn = 1 → R = 1 (i.e., R = 1, S = 1) → Qn+1 = Qn = 1.

→ For J = 1, K = 0, Qn+1 = 1.

- Consider J = 1, K = 1 → R = Qn, S = Qn.

Case (i): Qn = 0 → R = 0, S = 1 → Qn+1 = 1.

Case (ii): Qn = 1 → R = 1, S = 0 → Qn+1 = 0.

→ For J = 1, K = 1, Qn+1 = Qn.

M. B. Patil, IIT Bombay

JK flip-flop

S

R

CLK

J

K
RS latch

R S

previous

invalid

CLK KJ

Truth table for JK flip−flopTruth table for RS latch

1

1

1 1

0

0

0

0

1

1

0 0

1 0 0

1 10 0

previous (Qn)

0 XX previous (Qn)
Q

QQ

Q (Qn+1)

Q

1 1 0 1

1 1 1 toggles (Qn)

* When CLK = 1:

- Consider J = 1, K = 0 → S = 1, R = Qn = Qn.

Case (i): Qn = 0 → R = 0 (i.e., R = 0, S = 1) → Qn+1 = 1.

Case (ii): Qn = 1 → R = 1 (i.e., R = 1, S = 1) → Qn+1 = Qn = 1.

→ For J = 1, K = 0, Qn+1 = 1.

- Consider J = 1, K = 1 → R = Qn, S = Qn.

Case (i): Qn = 0 → R = 0, S = 1 → Qn+1 = 1.

Case (ii): Qn = 1 → R = 1, S = 0 → Qn+1 = 0.

→ For J = 1, K = 1, Qn+1 = Qn.

M. B. Patil, IIT Bombay

JK flip-flop

S

R

CLK

J

K
RS latch

R S

previous

invalid

CLK KJ

Truth table for JK flip−flopTruth table for RS latch

1

1

1 1

0

0

0

0

1

1

0 0

1 0 0

1 10 0

previous (Qn)

0 XX previous (Qn)
Q

QQ

Q (Qn+1)

Q

1 1 0 1

1 1 1 toggles (Qn)

* When CLK = 1:

- Consider J = 1, K = 0 → S = 1, R = Qn = Qn.

Case (i): Qn = 0 → R = 0 (i.e., R = 0, S = 1) → Qn+1 = 1.

Case (ii): Qn = 1 → R = 1 (i.e., R = 1, S = 1) → Qn+1 = Qn = 1.

→ For J = 1, K = 0, Qn+1 = 1.

- Consider J = 1, K = 1 → R = Qn, S = Qn.

Case (i): Qn = 0 → R = 0, S = 1 → Qn+1 = 1.

Case (ii): Qn = 1 → R = 1, S = 0 → Qn+1 = 0.

→ For J = 1, K = 1, Qn+1 = Qn.

M. B. Patil, IIT Bombay

JK flip-flop

S

R

CLK

J

K
RS latch

R S

previous

invalid

CLK KJ

Truth table for JK flip−flopTruth table for RS latch

1

1

1 1

0

0

0

0

1

1

0 0

1 0 0

1 10 0

previous (Qn)

0 XX previous (Qn)
Q

QQ

Q (Qn+1)

Q

1 1 0 1

1 1 1 toggles (Qn)

* When CLK = 1:

- Consider J = 1, K = 0 → S = 1, R = Qn = Qn.

Case (i): Qn = 0 → R = 0 (i.e., R = 0, S = 1) → Qn+1 = 1.

Case (ii): Qn = 1 → R = 1 (i.e., R = 1, S = 1) → Qn+1 = Qn = 1.

→ For J = 1, K = 0, Qn+1 = 1.

- Consider J = 1, K = 1 → R = Qn, S = Qn.

Case (i): Qn = 0 → R = 0, S = 1 → Qn+1 = 1.

Case (ii): Qn = 1 → R = 1, S = 0 → Qn+1 = 0.

→ For J = 1, K = 1, Qn+1 = Qn.

M. B. Patil, IIT Bombay

JK flip-flop

S

R

CLK

J

K
RS latch

R S

previous

invalid

CLK KJ

Truth table for JK flip−flopTruth table for RS latch

1

1

1 1

0

0

0

0

1

1

0 0

1 0 0

1 10 0

previous (Qn)

0 XX previous (Qn)
Q

QQ

Q (Qn+1)

Q

1 1 0 1

1 1 1 toggles (Qn)

* When CLK = 1:

- Consider J = 1, K = 0 → S = 1, R = Qn = Qn.

Case (i): Qn = 0 → R = 0 (i.e., R = 0, S = 1) → Qn+1 = 1.

Case (ii): Qn = 1 → R = 1 (i.e., R = 1, S = 1) → Qn+1 = Qn = 1.

→ For J = 1, K = 0, Qn+1 = 1.

- Consider J = 1, K = 1 → R = Qn, S = Qn.

Case (i): Qn = 0 → R = 0, S = 1 → Qn+1 = 1.

Case (ii): Qn = 1 → R = 1, S = 0 → Qn+1 = 0.

→ For J = 1, K = 1, Qn+1 = Qn.

M. B. Patil, IIT Bombay

JK flip-flop

S

R

CLK

J

K
RS latch

R S

previous

invalid

CLK KJ

Truth table for JK flip−flopTruth table for RS latch

1

1

1 1

0

0

0

0

1

1

0 0

1 0 0

1 10 0

previous (Qn)

0 XX previous (Qn)
Q

QQ

Q (Qn+1)

Q
1 1 0 1

1 1 1 toggles (Qn)

* When CLK = 1:

- Consider J = 1, K = 0 → S = 1, R = Qn = Qn.

Case (i): Qn = 0 → R = 0 (i.e., R = 0, S = 1) → Qn+1 = 1.

Case (ii): Qn = 1 → R = 1 (i.e., R = 1, S = 1) → Qn+1 = Qn = 1.

→ For J = 1, K = 0, Qn+1 = 1.

- Consider J = 1, K = 1 → R = Qn, S = Qn.

Case (i): Qn = 0 → R = 0, S = 1 → Qn+1 = 1.

Case (ii): Qn = 1 → R = 1, S = 0 → Qn+1 = 0.

→ For J = 1, K = 1, Qn+1 = Qn.

M. B. Patil, IIT Bombay

JK flip-flop

S

R

CLK

J

K
RS latch

R S

previous

invalid

CLK KJ

Truth table for JK flip−flopTruth table for RS latch

1

1

1 1

0

0

0

0

1

1

0 0

1 0 0

1 10 0

previous (Qn)

0 XX previous (Qn)
Q

QQ

Q (Qn+1)

Q
1 1 0 1

1 1 1 toggles (Qn)

* When CLK = 1:

- Consider J = 1, K = 0 → S = 1, R = Qn = Qn.

Case (i): Qn = 0 → R = 0 (i.e., R = 0, S = 1) → Qn+1 = 1.

Case (ii): Qn = 1 → R = 1 (i.e., R = 1, S = 1) → Qn+1 = Qn = 1.

→ For J = 1, K = 0, Qn+1 = 1.

- Consider J = 1, K = 1 → R = Qn, S = Qn.

Case (i): Qn = 0 → R = 0, S = 1 → Qn+1 = 1.

Case (ii): Qn = 1 → R = 1, S = 0 → Qn+1 = 0.

→ For J = 1, K = 1, Qn+1 = Qn.

M. B. Patil, IIT Bombay

JK flip-flop

S

R

CLK

J

K
RS latch

R S

previous

invalid

CLK KJ

Truth table for JK flip−flopTruth table for RS latch

1

1

1 1

0

0

0

0

1

1

0 0

1 0 0

1 10 0

previous (Qn)

0 XX previous (Qn)
Q

QQ

Q (Qn+1)

Q
1 1 0 1

1 1 1 toggles (Qn)

* When CLK = 1:

- Consider J = 1, K = 0 → S = 1, R = Qn = Qn.

Case (i): Qn = 0 → R = 0 (i.e., R = 0, S = 1) → Qn+1 = 1.

Case (ii): Qn = 1 → R = 1 (i.e., R = 1, S = 1) → Qn+1 = Qn = 1.

→ For J = 1, K = 0, Qn+1 = 1.

- Consider J = 1, K = 1 → R = Qn, S = Qn.

Case (i): Qn = 0 → R = 0, S = 1 → Qn+1 = 1.

Case (ii): Qn = 1 → R = 1, S = 0 → Qn+1 = 0.

→ For J = 1, K = 1, Qn+1 = Qn.

M. B. Patil, IIT Bombay

JK flip-flop

S

R

CLK

J

K
RS latch

R S

previous

invalid

CLK KJ

Truth table for JK flip−flopTruth table for RS latch

1

1

1 1

0

0

0

0

1

1

0 0

1 0 0

1 10 0

previous (Qn)

0 XX previous (Qn)
Q

QQ

Q (Qn+1)

Q
1 1 0 1

1 1 1 toggles (Qn)

* When CLK = 1:

- Consider J = 1, K = 0 → S = 1, R = Qn = Qn.

Case (i): Qn = 0 → R = 0 (i.e., R = 0, S = 1) → Qn+1 = 1.

Case (ii): Qn = 1 → R = 1 (i.e., R = 1, S = 1) → Qn+1 = Qn = 1.

→ For J = 1, K = 0, Qn+1 = 1.

- Consider J = 1, K = 1 → R = Qn, S = Qn.

Case (i): Qn = 0 → R = 0, S = 1 → Qn+1 = 1.

Case (ii): Qn = 1 → R = 1, S = 0 → Qn+1 = 0.

→ For J = 1, K = 1, Qn+1 = Qn.

M. B. Patil, IIT Bombay

JK flip-flop

S

R

CLK

J

K
RS latch

R S

previous

invalid

CLK KJ

Truth table for JK flip−flopTruth table for RS latch

1

1

1 1

0

0

0

0

1

1

0 0

1 0 0

1 10 0

previous (Qn)

0 XX previous (Qn)
Q

QQ

Q (Qn+1)

Q
1 1 0 1

1 1 1 toggles (Qn)

* When CLK = 1:

- Consider J = 1, K = 0 → S = 1, R = Qn = Qn.

Case (i): Qn = 0 → R = 0 (i.e., R = 0, S = 1) → Qn+1 = 1.

Case (ii): Qn = 1 → R = 1 (i.e., R = 1, S = 1) → Qn+1 = Qn = 1.

→ For J = 1, K = 0, Qn+1 = 1.

- Consider J = 1, K = 1 → R = Qn, S = Qn.

Case (i): Qn = 0 → R = 0, S = 1 → Qn+1 = 1.

Case (ii): Qn = 1 → R = 1, S = 0 → Qn+1 = 0.

→ For J = 1, K = 1, Qn+1 = Qn.

M. B. Patil, IIT Bombay

JK flip-flop

S

R

CLK

J

K
RS latch

R S

previous

invalid

CLK KJ

Truth table for JK flip−flopTruth table for RS latch

1

1

1 1

0

0

0

0

1

1

0 0

1 0 0

1 10 0

previous (Qn)

0 XX previous (Qn)
Q

QQ

Q (Qn+1)

Q
1 1 0 1

1 1 1 toggles (Qn)

* When CLK = 1:

- Consider J = 1, K = 0 → S = 1, R = Qn = Qn.

Case (i): Qn = 0 → R = 0 (i.e., R = 0, S = 1) → Qn+1 = 1.

Case (ii): Qn = 1 → R = 1 (i.e., R = 1, S = 1) → Qn+1 = Qn = 1.

→ For J = 1, K = 0, Qn+1 = 1.

- Consider J = 1, K = 1 → R = Qn, S = Qn.

Case (i): Qn = 0 → R = 0, S = 1 → Qn+1 = 1.

Case (ii): Qn = 1 → R = 1, S = 0 → Qn+1 = 0.

→ For J = 1, K = 1, Qn+1 = Qn.

M. B. Patil, IIT Bombay

JK flip-flop

S

R

CLK

J

K
RS latch

CLK KJ

Truth table for JK flip−flop

1 0 0

1 10

1 1 0

1 1 1

0

1

previous (Qn)

toggles (Qn)

0 XX previous (Qn)
Q

Q (Qn+1)

Q

Consider J = K = 1 and CLK = 1.

As long as CLK = 1, Q will keep toggling! (The frequency will depend on the delay
values of the various gates).

When CLK changes from 1 to 0, the toggling will stop. However, the final value of Q
is not known; it could be 0 or 1.

→ Use the “Master-slave” configuration.

M. B. Patil, IIT Bombay

JK flip-flop

S

R

CLK

J

K
RS latch

CLK KJ

Truth table for JK flip−flop

1 0 0

1 10

1 1 0

1 1 1

0

1

previous (Qn)

toggles (Qn)

0 XX previous (Qn)
Q

Q (Qn+1)

Q

Consider J = K = 1 and CLK = 1.

As long as CLK = 1, Q will keep toggling! (The frequency will depend on the delay
values of the various gates).

When CLK changes from 1 to 0, the toggling will stop. However, the final value of Q
is not known; it could be 0 or 1.

→ Use the “Master-slave” configuration.

M. B. Patil, IIT Bombay

JK flip-flop

S

R

CLK

J

K
RS latch

CLK KJ

Truth table for JK flip−flop

1 0 0

1 10

1 1 0

1 1 1

0

1

previous (Qn)

toggles (Qn)

0 XX previous (Qn)
Q

Q (Qn+1)

Q

Consider J = K = 1 and CLK = 1.

As long as CLK = 1, Q will keep toggling! (The frequency will depend on the delay
values of the various gates).

When CLK changes from 1 to 0, the toggling will stop. However, the final value of Q
is not known; it could be 0 or 1.

→ Use the “Master-slave” configuration.

M. B. Patil, IIT Bombay

JK flip-flop

S

R

CLK

J

K
RS latch

CLK KJ

Truth table for JK flip−flop

1 0 0

1 10

1 1 0

1 1 1

0

1

previous (Qn)

toggles (Qn)

0 XX previous (Qn)
Q

Q (Qn+1)

Q

Consider J = K = 1 and CLK = 1.

As long as CLK = 1, Q will keep toggling! (The frequency will depend on the delay
values of the various gates).

When CLK changes from 1 to 0, the toggling will stop. However, the final value of Q
is not known; it could be 0 or 1.

→ Use the “Master-slave” configuration.

M. B. Patil, IIT Bombay

JK flip-flop (Master-Slave)

J

K

SlaveMaster

RS latch 2RS latch 1

Q

CLK CLK

CLK KJ

0 0

0 1

1 0

1 1

Qn

0

1

Qn

Qn+1

* When CLK goes high, only the first latch is affected; the second latch retains its
previous value (because CLK = 0 → R2 = S2 = 1).

* When CLK goes low, the output of the first latch (Q1) is retained (since
R1 = S1 = 1), and Q1 can now affect Q.

* In other words, the effect of any changes in J and K appears at the output Q
only when CLK makes a transition from 1 to 0.
This is therefore a negative edge-triggered flip-flop.

* Note that, unlike the RS NAND latch which does not allow one of the
combinations of R and S (viz., R = S = 0), the JK flip-flop allows all four
combinations.

M. B. Patil, IIT Bombay

JK flip-flop (Master-Slave)

J

K

SlaveMaster

RS latch 2RS latch 1

Q

CLK CLK

CLK KJ

0 0

0 1

1 0

1 1

Qn

0

1

Qn

Qn+1

* When CLK goes high, only the first latch is affected; the second latch retains its
previous value (because CLK = 0 → R2 = S2 = 1).

* When CLK goes low, the output of the first latch (Q1) is retained (since
R1 = S1 = 1), and Q1 can now affect Q.

* In other words, the effect of any changes in J and K appears at the output Q
only when CLK makes a transition from 1 to 0.
This is therefore a negative edge-triggered flip-flop.

* Note that, unlike the RS NAND latch which does not allow one of the
combinations of R and S (viz., R = S = 0), the JK flip-flop allows all four
combinations.

M. B. Patil, IIT Bombay

JK flip-flop (Master-Slave)

J

K

SlaveMaster

RS latch 2RS latch 1

Q

CLK CLK

CLK KJ

0 0

0 1

1 0

1 1

Qn

0

1

Qn

Qn+1

* When CLK goes high, only the first latch is affected; the second latch retains its
previous value (because CLK = 0 → R2 = S2 = 1).

* When CLK goes low, the output of the first latch (Q1) is retained (since
R1 = S1 = 1), and Q1 can now affect Q.

* In other words, the effect of any changes in J and K appears at the output Q
only when CLK makes a transition from 1 to 0.
This is therefore a negative edge-triggered flip-flop.

* Note that, unlike the RS NAND latch which does not allow one of the
combinations of R and S (viz., R = S = 0), the JK flip-flop allows all four
combinations.

M. B. Patil, IIT Bombay

JK flip-flop (Master-Slave)

J

K

SlaveMaster

RS latch 2RS latch 1

Q

CLK CLK

CLK KJ

0 0

0 1

1 0

1 1

Qn

0

1

Qn

Qn+1

* When CLK goes high, only the first latch is affected; the second latch retains its
previous value (because CLK = 0 → R2 = S2 = 1).

* When CLK goes low, the output of the first latch (Q1) is retained (since
R1 = S1 = 1), and Q1 can now affect Q.

* In other words, the effect of any changes in J and K appears at the output Q
only when CLK makes a transition from 1 to 0.
This is therefore a negative edge-triggered flip-flop.

* Note that, unlike the RS NAND latch which does not allow one of the
combinations of R and S (viz., R = S = 0), the JK flip-flop allows all four
combinations.

M. B. Patil, IIT Bombay

JK flip-flop (Master-Slave)

J

K

SlaveMaster

RS latch 2RS latch 1

Q

CLK CLK

CLK KJ

0 0

0 1

1 0

1 1

Qn

0

1

Qn

Qn+1

* When CLK goes high, only the first latch is affected; the second latch retains its
previous value (because CLK = 0 → R2 = S2 = 1).

* When CLK goes low, the output of the first latch (Q1) is retained (since
R1 = S1 = 1), and Q1 can now affect Q.

* In other words, the effect of any changes in J and K appears at the output Q
only when CLK makes a transition from 1 to 0.
This is therefore a negative edge-triggered flip-flop.

* Note that, unlike the RS NAND latch which does not allow one of the
combinations of R and S (viz., R = S = 0), the JK flip-flop allows all four
combinations.

M. B. Patil, IIT Bombay

JK flip-flop (Master-Slave)

J

K

SlaveMaster

RS latch 2RS latch 1

Q

CLK CLK

CLK KJ

0 0

0 1

1 0

1 1

Qn

0

1

Qn

Qn+1

* When CLK goes high, only the first latch is affected; the second latch retains its
previous value (because CLK = 0 → R2 = S2 = 1).

* When CLK goes low, the output of the first latch (Q1) is retained (since
R1 = S1 = 1), and Q1 can now affect Q.

* In other words, the effect of any changes in J and K appears at the output Q
only when CLK makes a transition from 1 to 0.
This is therefore a negative edge-triggered flip-flop.

* Note that, unlike the RS NAND latch which does not allow one of the
combinations of R and S (viz., R = S = 0), the JK flip-flop allows all four
combinations.

M. B. Patil, IIT Bombay

JK flip-flop

CLK

J

K

CLK KJ

positive edge−triggered JK flip−flop

CLK

J

K

CLK KJ

negative edge−triggered JK flip−flop

Q

Q 0 0

0 1

1 0

1 1

Qn

0

1

Qn

0 0

0 1

1 0

1 1

Qn

0

1

Qn

Qn+1

Q

Q

Qn+1

* Both negative (e.g., 74101) and positive (e.g., 7470) edge-triggered JK flip-flops
are available as ICs.

M. B. Patil, IIT Bombay

JK flip-flop

CLK

J

K

CLK KJ

positive edge−triggered JK flip−flop

CLK

J

K

CLK KJ

negative edge−triggered JK flip−flop

Q

Q 0 0

0 1

1 0

1 1

Qn

0

1

Qn

0 0

0 1

1 0

1 1

Qn

0

1

Qn

Qn+1

Q

Q

Qn+1

* Both negative (e.g., 74101) and positive (e.g., 7470) edge-triggered JK flip-flops
are available as ICs.

M. B. Patil, IIT Bombay

JK flip-flop

K

J

Master Slave
Q1

Q1

Q

Q

CLKCLK

CLK

t2Bt2At1Bt1A

Consider a negative edge-triggered JK flip-flop.

* As seen earlier, when CLK is high (i.e., t1A < t < t1B , etc.), the input J and K
determine the Master latch output Q1.
During this time, no change is visible at the flip-flop output Q.

* When the clock goes low, the Slave flip-flop becomes active, making it possible
for Q to change.

* In short, although the flip-flop output Q can only change after the active edge,
(t1B , t2B , etc.), the new Q value is determined by J and K values just before the
active edge.
This is a very important point!

M. B. Patil, IIT Bombay

JK flip-flop

K

J

Master Slave
Q1

Q1

Q

Q

CLKCLK

CLK

t2Bt2At1Bt1A

Consider a negative edge-triggered JK flip-flop.

* As seen earlier, when CLK is high (i.e., t1A < t < t1B , etc.), the input J and K
determine the Master latch output Q1.
During this time, no change is visible at the flip-flop output Q.

* When the clock goes low, the Slave flip-flop becomes active, making it possible
for Q to change.

* In short, although the flip-flop output Q can only change after the active edge,
(t1B , t2B , etc.), the new Q value is determined by J and K values just before the
active edge.
This is a very important point!

M. B. Patil, IIT Bombay

JK flip-flop

K

J

Master Slave
Q1

Q1

Q

Q

CLKCLK

CLK

t2Bt2At1Bt1A

Consider a negative edge-triggered JK flip-flop.

* As seen earlier, when CLK is high (i.e., t1A < t < t1B , etc.), the input J and K
determine the Master latch output Q1.
During this time, no change is visible at the flip-flop output Q.

* When the clock goes low, the Slave flip-flop becomes active, making it possible
for Q to change.

* In short, although the flip-flop output Q can only change after the active edge,
(t1B , t2B , etc.), the new Q value is determined by J and K values just before the
active edge.
This is a very important point!

M. B. Patil, IIT Bombay

JK flip-flop

K

J

Master Slave
Q1

Q1

Q

Q

CLKCLK

CLK

t2Bt2At1Bt1A

Consider a negative edge-triggered JK flip-flop.

* As seen earlier, when CLK is high (i.e., t1A < t < t1B , etc.), the input J and K
determine the Master latch output Q1.
During this time, no change is visible at the flip-flop output Q.

* When the clock goes low, the Slave flip-flop becomes active, making it possible
for Q to change.

* In short, although the flip-flop output Q can only change after the active edge,
(t1B , t2B , etc.), the new Q value is determined by J and K values just before the
active edge.

This is a very important point!

M. B. Patil, IIT Bombay

JK flip-flop

K

J

Master Slave
Q1

Q1

Q

Q

CLKCLK

CLK

t2Bt2At1Bt1A

Consider a negative edge-triggered JK flip-flop.

* As seen earlier, when CLK is high (i.e., t1A < t < t1B , etc.), the input J and K
determine the Master latch output Q1.
During this time, no change is visible at the flip-flop output Q.

* When the clock goes low, the Slave flip-flop becomes active, making it possible
for Q to change.

* In short, although the flip-flop output Q can only change after the active edge,
(t1B , t2B , etc.), the new Q value is determined by J and K values just before the
active edge.
This is a very important point!

M. B. Patil, IIT Bombay

JK flip-flop

CLK J K

positive edge−triggered JK flip−flop

J

CLK

K

CLK

J

K

Q

 0
time (msec)

 0.1 0.2 0.3 0.4 0.5 0.6

Q

Q 0 0

0 1

1 0

1 1

Qn

0

1

Qn

Qn+1

CLK J K

negative edge−triggered JK flip−flop

J

CLK

K

CLK

J

K

Q

 0
time (msec)

 0.1 0.2 0.3 0.4 0.5 0.6

0 0

0 1

1 0

1 1

Qn

0

1

Qn

Qn+1

Q

Q

M. B. Patil, IIT Bombay

JK flip-flop

CLK J K

positive edge−triggered JK flip−flop

J

CLK

K

CLK

J

K

Q

 0
time (msec)

 0.1 0.2 0.3 0.4 0.5 0.6

Q

Q 0 0

0 1

1 0

1 1

Qn

0

1

Qn

Qn+1 CLK J K

negative edge−triggered JK flip−flop

J

CLK

K

CLK

J

K

Q

 0
time (msec)

 0.1 0.2 0.3 0.4 0.5 0.6

0 0

0 1

1 0

1 1

Qn

0

1

Qn

Qn+1

Q

Q

M. B. Patil, IIT Bombay

JK flip-flop

J

K

1 J

K

CLK

CLK

t

t

t

K2

J2

K1

J1
Q2

Q2

Q1

t5t4t3t2t1

Q1

Q

Q

Q

Q

J1 = K1 = 1. Assume Q1 = Q2 = 0 initially.

t Q2 (t = t+k)K2 (t = t−k)J2 (t = t−k)

t1

t2

t3

t4

t5

1 10

0 01

1 0

0 0

1

1

1 10

* Since J1 = K1 = 1, Q1 toggles after every active clock edge.

* J2 = Q1, K2 = Q1. We need to look at J2 and K2 values just before the active edge, to
determine the next value of Q2.

* It is convenient to construct a table listing J2 and K2 to figure out the next Q2 value.

* Note that the circuit is not doing much, apart from taxing our minds!
But hold on, some useful circuits will appear soon.

M. B. Patil, IIT Bombay

JK flip-flop

J

K

1 J

K

CLK

CLK

t

t

t

K2

J2

K1

J1
Q2

Q2

Q1

t5t4t3t2t1

Q1

Q

Q

Q

Q

J1 = K1 = 1. Assume Q1 = Q2 = 0 initially.

t Q2 (t = t+k)K2 (t = t−k)J2 (t = t−k)

t1

t2

t3

t4

t5

1 10

0 01

1 0

0 0

1

1

1 10

* Since J1 = K1 = 1, Q1 toggles after every active clock edge.

* J2 = Q1, K2 = Q1. We need to look at J2 and K2 values just before the active edge, to
determine the next value of Q2.

* It is convenient to construct a table listing J2 and K2 to figure out the next Q2 value.

* Note that the circuit is not doing much, apart from taxing our minds!
But hold on, some useful circuits will appear soon.

M. B. Patil, IIT Bombay

JK flip-flop

J

K

1 J

K

CLK

CLK

t

t

t

K2

J2

K1

J1
Q2

Q2

Q1

t5t4t3t2t1

Q1

Q

Q

Q

Q

J1 = K1 = 1. Assume Q1 = Q2 = 0 initially.

t Q2 (t = t+k)K2 (t = t−k)J2 (t = t−k)

t1

t2

t3

t4

t5

1 10

0 01

1 0

0 0

1

1

1 10

* Since J1 = K1 = 1, Q1 toggles after every active clock edge.

* J2 = Q1, K2 = Q1. We need to look at J2 and K2 values just before the active edge, to
determine the next value of Q2.

* It is convenient to construct a table listing J2 and K2 to figure out the next Q2 value.

* Note that the circuit is not doing much, apart from taxing our minds!
But hold on, some useful circuits will appear soon.

M. B. Patil, IIT Bombay

JK flip-flop

J

K

1 J

K

CLK

CLK

t

t

t

K2

J2

K1

J1
Q2

Q2

Q1

t5t4t3t2t1

Q1

Q

Q

Q

Q

J1 = K1 = 1. Assume Q1 = Q2 = 0 initially.

t Q2 (t = t+k)K2 (t = t−k)J2 (t = t−k)

t1

t2

t3

t4

t5

1 10

0 01

1 0

0 0

1

1

1 10

* Since J1 = K1 = 1, Q1 toggles after every active clock edge.

* J2 = Q1, K2 = Q1. We need to look at J2 and K2 values just before the active edge, to
determine the next value of Q2.

* It is convenient to construct a table listing J2 and K2 to figure out the next Q2 value.

* Note that the circuit is not doing much, apart from taxing our minds!
But hold on, some useful circuits will appear soon.

M. B. Patil, IIT Bombay

JK flip-flop

J

K

1 J

K

CLK

CLK

t

t

t

K2

J2

K1

J1
Q2

Q2

Q1

t5t4t3t2t1

Q1

Q

Q

Q

Q

J1 = K1 = 1. Assume Q1 = Q2 = 0 initially.

t Q2 (t = t+k)K2 (t = t−k)J2 (t = t−k)

t1

t2

t3

t4

t5

1 10

0 01

1 0

0 0

1

1

1 10

* Since J1 = K1 = 1, Q1 toggles after every active clock edge.

* J2 = Q1, K2 = Q1. We need to look at J2 and K2 values just before the active edge, to
determine the next value of Q2.

* It is convenient to construct a table listing J2 and K2 to figure out the next Q2 value.

* Note that the circuit is not doing much, apart from taxing our minds!
But hold on, some useful circuits will appear soon.

M. B. Patil, IIT Bombay

JK flip-flop

J

K

1 J

K

CLK

CLK

t

t

t

K2

J2

K1

J1
Q2

Q2

Q1

t5t4t3t2t1

Q1

Q

Q

Q

Q

J1 = K1 = 1. Assume Q1 = Q2 = 0 initially. t Q2 (t = t+k)K2 (t = t−k)J2 (t = t−k)

t1

t2

t3

t4

t5

1 10

0 01

1 0

0 0

1

1

1 10

* Since J1 = K1 = 1, Q1 toggles after every active clock edge.

* J2 = Q1, K2 = Q1. We need to look at J2 and K2 values just before the active edge, to
determine the next value of Q2.

* It is convenient to construct a table listing J2 and K2 to figure out the next Q2 value.

* Note that the circuit is not doing much, apart from taxing our minds!
But hold on, some useful circuits will appear soon.

M. B. Patil, IIT Bombay

JK flip-flop

J

K

1 J

K

CLK

CLK

t

t

t

K2

J2

K1

J1
Q2

Q2

Q1

t5t4t3t2t1

Q1

Q

Q

Q

Q

J1 = K1 = 1. Assume Q1 = Q2 = 0 initially. t Q2 (t = t+k)K2 (t = t−k)J2 (t = t−k)

t1

t2

t3

t4

t5

1 10

0 01

1 0

0 0

1

1

1 10

* Since J1 = K1 = 1, Q1 toggles after every active clock edge.

* J2 = Q1, K2 = Q1. We need to look at J2 and K2 values just before the active edge, to
determine the next value of Q2.

* It is convenient to construct a table listing J2 and K2 to figure out the next Q2 value.

* Note that the circuit is not doing much, apart from taxing our minds!
But hold on, some useful circuits will appear soon.

M. B. Patil, IIT Bombay

JK flip-flop

J

K

1 J

K

CLK

CLK

t

t

t

K2

J2

K1

J1
Q2

Q2

Q1

t5t4t3t2t1

Q1

Q

Q

Q

Q

J1 = K1 = 1. Assume Q1 = Q2 = 0 initially. t Q2 (t = t+k)K2 (t = t−k)J2 (t = t−k)

t1

t2

t3

t4

t5

1 10

0 01

1 0

0 0

1

1

1 10

* Since J1 = K1 = 1, Q1 toggles after every active clock edge.

* J2 = Q1, K2 = Q1. We need to look at J2 and K2 values just before the active edge, to
determine the next value of Q2.

* It is convenient to construct a table listing J2 and K2 to figure out the next Q2 value.

* Note that the circuit is not doing much, apart from taxing our minds!
But hold on, some useful circuits will appear soon.

M. B. Patil, IIT Bombay

