Clocked flip-flops are also provided with asynchronous or direct Set and Reset inputs, S_d and R_d (also called Preset and Clear, respectively) which override all other inputs (J, K, CLK).

The S_d and R_d inputs may be active low; in that case, they are denoted by S_d' and R_d'.

The asynchronous inputs are convenient for “starting up” a circuit in a known state.

JK flip-flop: asynchronous inputs

<table>
<thead>
<tr>
<th>S_d</th>
<th>R_d</th>
<th>CLK</th>
<th>J</th>
<th>K</th>
<th>Q_{n+1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>invalid</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>\uparrow</td>
<td>0</td>
<td>0</td>
<td>Q_n</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>\uparrow</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>\uparrow</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>\uparrow</td>
<td>1</td>
<td>1</td>
<td>\overline{Q}_n</td>
</tr>
</tbody>
</table>

normal operation
Clocked flip-flops are also provided with *asynchronous* or *direct* Set and Reset inputs, S_d and R_d, (also called Preset and Clear, respectively) which override all other inputs (J, K, CLK).
Clocked flip-flops are also provided with *asynchronous* or *direct* Set and Reset inputs, \(S_d \) and \(R_d \), (also called Preset and Clear, respectively) which override all other inputs (J, K, CLK).

* The \(S_d \) and \(R_d \) inputs may be active low; in that case, they are denoted by \(\overline{S_d} \) and \(\overline{R_d} \).
Clocked flip-flops are also provided with asynchronous or direct Set and Reset inputs, S_d and R_d, (also called Preset and Clear, respectively) which override all other inputs (J, K, CLK).

The S_d and R_d inputs may be active low; in that case, they are denoted by $\overline{S_d}$ and $\overline{R_d}$.

The asynchronous inputs are convenient for “starting up” a circuit in a known state.
The D flip-flop can be used to delay the Data (D) signal by one clock period. With \(J = D \), \(K = D \), we have either \(J = 0 \), \(K = 1 \) or \(J = 1 \), \(K = 0 \); the next \(Q \) is 0 in the first case, 1 in the second case. Instead of a JK flip-flop, an RS flip-flop can also be used to make a D flip-flop, with \(S = D \), \(R = D \).
The D flip-flop can be used to delay the Data (D) signal by one clock period.

<table>
<thead>
<tr>
<th>CLK</th>
<th>D</th>
<th>Q_{n+1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>↑</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

* Instead of a JK flip-flop, an RS flip-flop can also be used to make a D flip-flop, with \(S = D \), \(R = \overline{D} \).
The D flip-flop can be used to delay the Data (D) signal by one clock period.

With $J = D$, $K = \overline{D}$, we have either $J = 0$, $K = 1$ or $J = 1$, $K = 0$; the next Q is 0 in the first case, 1 in the second case.
The D flip-flop can be used to delay the Data (D) signal by one clock period.

With $J = D$, $K = \overline{D}$, we have either $J = 0$, $K = 1$ or $J = 1$, $K = 0$; the next Q is 0 in the first case, 1 in the second case.

Instead of a JK flip-flop, an RS flip-flop can also be used to make a D flip-flop, with $S = D$, $R = \overline{D}$.
Let $Q_1 = Q_2 = Q_3 = Q_4 = 0$ initially.

Shift register
Let $Q_1 = Q_2 = Q_3 = Q_4 = 0$ initially.

Let $Q_1 = Q_2 = Q_3 = Q_4 = 0$ initially.

(SEQUEL file: ee101_shift_reg_1.sqproj)
Let $Q_1 = Q_2 = Q_3 = Q_4 = 0$ initially.
Let $Q_1 = Q_2 = Q_3 = Q_4 = 0$ initially.

![Shift register diagram](image-url)
Let $Q_1 = Q_2 = Q_3 = Q_4 = 0$ initially.
Let $Q_1 = Q_2 = Q_3 = Q_4 = 0$ initially.
Let $Q_1 = Q_2 = Q_3 = Q_4 = 0$ initially.

The data (D) keeps shifting right after each active clock edge.

M. B. Patil, IIT Bombay
Let \(Q_1 = Q_2 = Q_3 = Q_4 = 0 \) initially.

The data (D) keeps shifting right after each active clock edge.

(SEQUEL file: ee101_shift_reg_1.sqproj)
Let $Q_1 = Q_2 = Q_3 = Q_4 = 0$ initially.
Let $Q_1 = Q_2 = Q_3 = Q_4 = 0$ initially.

The data (D) keeps shifting right after each active clock edge.

(SEQUEL file: ee101_shift_reg_1.sqproj)
Let $Q_1 = Q_2 = Q_3 = Q_4 = 0$ initially.

The data (D) keeps shifting right after each active clock edge.

(SEQUEL file: ee101_shift_reg_1.sqproj)

M. B. Patil, IIT Bombay
Let \(Q_1 = Q_2 = Q_3 = Q_4 = 0 \) initially.

\[\begin{array}{cccc}
D & Q_1 & Q_2 & Q_3 \\
\hline
D & Q & D & Q \\
\hline
D & Q & D & Q \\
\hline
D & Q & D & Q \\
\end{array} \]

CLK

\[\begin{array}{cccc}
Q_4 & Q_3 & Q_2 & Q_1 \\
\hline
0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
\end{array} \]

(SEQUEL file: ee101_shift_reg_1.sqproj)
Let $Q_1 = Q_2 = Q_3 = Q_4 = 0$ initially.

* The data (D) keeps shifting right after each active clock edge.
Parallel transfer between shift registers

After the active clock edge, the contents of the A register ($A_3 A_2 A_1 A_0$) are copied to the B register.
Parallel transfer between shift registers

* After the active clock edge, the contents of the A register \((A_3A_2A_1A_0)\) are copied to the B register.
When the mode input (M) is 1, we have
\[D_0 = D_R, \quad D_1 = Q_0, \quad D_2 = Q_1, \quad D_3 = Q_2. \]

When the mode input (M) is 0, we have
\[D_0 = Q_1, \quad D_1 = Q_2, \quad D_2 = Q_3, \quad D_3 = D_L. \]

* M = 1 → shift right operation.
* M = 0 → shift left operation.
When the mode input (M) is 1, we have
\[D_0 = D_R, \quad D_1 = Q_0, \quad D_2 = Q_1, \quad D_3 = Q_2. \]
* When the mode input (M) is 1, we have
 \[D_0 = D_R, \quad D_1 = Q_0, \quad D_2 = Q_1, \quad D_3 = Q_2. \]

* When the mode input (M) is 0, we have
 \[D_0 = Q_1, \quad D_1 = Q_2, \quad D_2 = Q_3, \quad D_3 = D_L. \]
When the mode input (M) is 1, we have
\[D_0 = D_R, \quad D_1 = Q_0, \quad D_2 = Q_1, \quad D_3 = Q_2. \]

When the mode input (M) is 0, we have
\[D_0 = Q_1, \quad D_1 = Q_2, \quad D_2 = Q_3, \quad D_3 = D_L. \]

* \(M = 1 \) → shift right operation.
* \(M = 0 \) → shift left operation.
Multiplication using shift and add

\[
\begin{array}{c}
1 & 0 & 1 & 1 \\
\times & 1 & 1 & 0 & 1 \\
\hline
1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & Z \\
\hline
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & Z & Z \\
\hline
1 & 1 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & Z & Z & Z \\
\hline
1 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}
\]

A_3 A_2 A_1 A_0 (decimal 11)
B_3 B_2 B_1 B_0 (decimal 13)
since B_0 = 1
since B_1 = 0
addition
since B_2 = 1
addition
since B_3 = 1
addition (decimal 143)

Note that Z = 0. We use Z to denote 0s which are independent of the numbers being multiplied.
Multiplication using shift and add

\[\begin{array}{c}
1 & 0 & 1 & 1 \\
\times & 1 & 1 & 0 & 1 \\
\hline
1 & 0 & 1 & 1 \\
+ & 0 & 0 & 0 & 0 & Z \\
\hline
0 & 1 & 0 & 1 & 1 \\
+ & 1 & 0 & 1 & 1 & Z & Z \\
\hline
1 & 1 & 0 & 1 & 1 & 1 \\
+ & 1 & 0 & 1 & 1 & Z & Z & Z \\
\hline
1 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array} \]

\(A_3A_2A_1A_0 \) (decimal 11)
\(B_3B_2B_1B_0 \) (decimal 13)

since \(B_0 = 1 \)
since \(B_1 = 0 \)

addition
since \(B_2 = 1 \)

addition
since \(B_3 = 1 \)

addition (decimal 143)

Note that \(Z = 0 \). We use \(Z \) to denote 0s which are independent of the numbers being multiplied.
Multiplication using shift and add

\[
\begin{array}{cccc}
1 & 0 & 1 & 1 \\
\times & 1 & 1 & 0 & 1 \\
\hline
1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & Z \\
+ & 0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & Z & Z \\
+ & 1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & Z & Z \\
\hline
1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
\end{array}
\]
Multiplication using shift and add

\[
\begin{array}{cccc}
1 & 0 & 1 & 1 \\
\times & 1 & 1 & 0 & 1 \\
\hline
1 & 0 & 1 & 1 \\
+ & 0 & 0 & 0 & 0 & Z \\
\hline
1 & 0 & 1 & 1 & Z & Z \\
+ & 1 & 1 & 0 & 1 & 1 \\
\hline
1 & 1 & 0 & 1 & 1 & 1 \\
+ & 1 & 0 & 1 & 1 & Z & Z \\
\hline
1 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}
\]

\[A_3A_2A_1A_0 \text{ (decimal 11)}\]
\[B_3B_2B_1B_0 \text{ (decimal 13)}\]

\[
\begin{array}{cccc}
\text{Register 2} & \text{Register 1} \\
\hline
Z & Z & Z & Z \\
1 & 0 & 1 & 1 \\
\hline
1 & 0 & 1 & 1 & Z & Z & Z & Z \\
+ & & & & & & & \\
\hline
1 & 1 & 0 & 1 & 1 & 1 \\
+ & 1 & 0 & 1 & 1 & Z & Z \\
\hline
1 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}
\]

Note that \(Z = 0\). We use \(Z\) to denote 0s which are independent of the numbers being multiplied.
Multiplication using shift and add

\[
\begin{array}{c}
1 & 0 & 1 & 1 \\
\times & 1 & 1 & 0 & 1 \\
\hline
1 & 0 & 1 & 1 \\
& 0 & 0 & 0 & 0 & Z \\
& 0 & 1 & 0 & 1 & 1 \\
& 1 & 0 & 1 & 1 & Z & Z \\
\hline
1 & 1 & 0 & 1 & 1 & 1 \\
& 1 & 0 & 1 & 1 & Z & Z & Z & Z \\
\end{array}
\]

\[A_3A_2A_1A_0 \text{ (decimal 11)}\]
\[B_3B_2B_1B_0 \text{ (decimal 13)}\]
since $B_0 = 1$
since $B_1 = 0$
addition
since $B_2 = 1$
addition
since $B_3 = 1$
addition
(decimal 143)

Note that $Z = 0$. We use Z to denote 0s which are independent of the numbers being multiplied.
Multiplication using shift and add

\[\begin{array}{cccc}
A_3A_2A_1A_0 & (\text{decimal 11}) \\
B_3B_2B_1B_0 & (\text{decimal 13}) \\
\end{array} \]

\[\begin{array}{cccc}
1 & 0 & 1 & 1 \\
\times & 1 & 1 & 0 & 1 \\
\hline
1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & Z \\
\hline
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & Z & Z \\
\hline
1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & Z & Z & Z \\
\hline
1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
\end{array} \]

since \(B_0 = 1 \)
since \(B_1 = 0 \)
addition
since \(B_2 = 1 \)
addition
since \(B_3 = 1 \)
addition
(denom 143)

Note that \(Z = 0 \). We use \(Z \) to denote 0s which are independent of the numbers being multiplied.
Multiplication using shift and add

\[
\begin{array}{c}
\begin{array}{cccc}
1 & 0 & 1 & 1 \\
\times & 1 & 1 & 0 & 1 \\
\hline
1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & Z \\
\hline
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & Z & Z \\
\hline
1 & 1 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & Z & Z \\
\hline
1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
\end{array}
\end{array}
\]

A_3A_2A_1A_0 \text{ (decimal 11)} \times B_3B_2B_1B_0 \text{ (decimal 13)}

since B_0 = 1

addition

since B_1 = 0

addition

since B_2 = 1

addition

since B_3 = 1

\text{addition} \quad \text{(decimal 143)}

Note that Z = 0. We use Z to denote 0s which are independent of the numbers being multiplied.
Multiplication using shift and add

\[
\begin{array}{c}
1 & 0 & 1 & 1 \\
\times & 1 & 1 & 0 & 1 \\
\hline
1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & Z \\
+ & 0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & Z & Z \\
+ & 1 & 1 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & Z & Z & Z \\
\hline
1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
\end{array}
\]

\(A_3A_2A_1A_0 \) (decimal 11)
\(B_3B_2B_1B_0 \) (decimal 13)

Since \(B_0 = 1\)
Since \(B_1 = 0\)
Addition
Since \(B_2 = 1\)
Addition
Since \(B_3 = 1\)
Addition (decimal 143)

Note that \(Z = 0\). We use \(Z\) to denote 0s which are independent of the numbers being multiplied.
Multiplication using shift and add

\[
\begin{array}{cccc}
1 & 0 & 1 & 1 \\
\times & 1 & 1 & 0 & 1 \\
\hline
1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & Z \\
\hline
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & Z & Z \\
\hline
1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & Z & Z \\
\hline
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
\end{array}
\]

\(A_3A_2A_1A_0\) (decimal 11)
\(B_3B_2B_1B_0\) (decimal 13)

since \(B_0 = 1\)
since \(B_1 = 0\)
addition
since \(B_2 = 1\)
addition
since \(B_3 = 1\)
addition (decimal 143)

Note that \(Z = 0\). We use \(Z\) to denote 0s which are independent of the numbers being multiplied.
Multiplication using shift and add

\[
\begin{array}{cccccccc}
1 & 0 & 1 & 1 \\
\times & 1 & 1 & 0 & 1 \\
\hline
1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & Z \\
\hline
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & Z & Z \\
\hline
1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & Z & Z \\
\hline
1 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}
\]

\(A_3A_2A_1A_0\) (decimal 11)
\(B_3B_2B_1B_0\) (decimal 13)

since \(B_0 = 1\)
since \(B_1 = 0\)
addition
since \(B_2 = 1\)
addition
since \(B_3 = 1\)
addition
(decimal 143)

Note that \(Z = 0\). We use \(Z\) to denote 0s which are independent of the numbers being multiplied.
Multiplication using shift and add

\[
\begin{array}{c}
1 & 0 & 1 & 1 \\
\times & 1 & 1 & 0 & 1 \\
\hline
1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & Z \\
\hline
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & Z Z \\
\hline
1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & Z Z \\
\hline
1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
\end{array}
\]

A_3A_2A_1A_0 (decimal 11)
B_3B_2B_1B_0 (decimal 13)
since B_0 = 1
since B_1 = 0
addition
since B_2 = 1
addition
since B_3 = 1
addition (decimal 143)

Note that Z = 0. We use Z to denote 0s which are independent of the numbers being multiplied.

Register 2

\[
\begin{array}{c}
Z & Z & Z & Z \\
1 & 0 & 1 & 1 \\
Z & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
Z & 0 & 1 & 0 & 1 \\
1 & 1 & Z & Z \\
Z & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & Z \\
\end{array}
\]

Register 1

\[
\begin{array}{c}
Z & Z & Z & Z \\
1 & 0 & 1 & 1 \\
1 & Z & Z & Z \\
0 & 0 & 0 & 0 \\
1 & Z & Z & Z \\
1 & Z & Z & Z \\
1 & 1 & Z & Z \\
1 & 1 & Z & Z \\
\end{array}
\]

initialize
load 1011 since B_0 = 1
add
shift
load 0000 since B_1 = 0
add
shift
load 1011 since B_2 = 1
add
shift
load 1011 since B_3 = 1
add
shift
Multiplication using shift and add

\[
\begin{array}{c}
1 \ 0 \ 1 \ 1 \\
\times \ 1 \ 1 \ 0 \ 1 \\
\hline
1 \ 0 \ 1 \ 1 \\
0 \ 0 \ 0 \ 0 \ Z \\
+ \\
0 \ 1 \ 0 \ 1 \ 1 \\
1 \ 0 \ 1 \ 1 \ Z \ Z \\
+ \\
1 \ 1 \ 0 \ 1 \ 1 \\
1 \ 0 \ 1 \ 1 \ Z \ Z \\
\hline
1 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1
\end{array}
\]

A_3A_2A_1A_0 (decimal 11)
B_3B_2B_1B_0 (decimal 13)

since B_0 = 1
since B_1 = 0

addition

since B_2 = 1

addition

since B_3 = 1

addition (decimal 143)

Note that Z = 0. We use Z to denote 0s which are independent of the numbers being multiplied.
Multiplication using shift and add

<table>
<thead>
<tr>
<th>A3A2A1A0 (decimal 11)</th>
<th>B3B2B1B0 (decimal 13)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 1 1</td>
<td>1 1 0 1</td>
</tr>
<tr>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>1 0 1 1</td>
<td>0 0 0 0 Z</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>0 1 0 1 1</td>
<td>1 0 1 1 Z Z Z</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>1 1 0 1 1 1</td>
<td>0 0 1 1 1 Z Z Z</td>
</tr>
<tr>
<td>addition</td>
<td>addition</td>
</tr>
<tr>
<td>since B0 = 1</td>
<td>since B0 = 1</td>
</tr>
<tr>
<td>since B1 = 0</td>
<td>since B1 = 0</td>
</tr>
<tr>
<td>addition</td>
<td>addition</td>
</tr>
<tr>
<td>since B2 = 1</td>
<td>since B2 = 1</td>
</tr>
<tr>
<td>addition</td>
<td>addition</td>
</tr>
<tr>
<td>since B3 = 1</td>
<td>since B3 = 1</td>
</tr>
<tr>
<td>addition</td>
<td>addition</td>
</tr>
<tr>
<td>(decimal 143)</td>
<td>(decimal 143)</td>
</tr>
</tbody>
</table>

Note that Z = 0. We use Z to denote 0s which are independent of the numbers being multiplied.
Multiplication using shift and add

\[
\begin{array}{cccc}
1 & 0 & 1 & 1 \\
\times & 1 & 1 & 0 & 1 \\
\hline
1 & 0 & 1 & 1 \\
+ & 0 & 0 & 0 & 0 \ Z \\
\hline
0 & 1 & 0 & 1 & 1 \\
+ & 1 & 0 & 1 & 1 \ Z \ Z \\
\hline
1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
\end{array}
\]

\(A_3A_2A_1A_0 \) (decimal 11)
\(B_3B_2B_1B_0 \) (decimal 13)

since \(B_0 = 1 \)
since \(B_1 = 0 \)
addition
since \(B_2 = 1 \)
addition
since \(B_3 = 1 \)
addition (decimal 143)

Note that \(Z = 0 \). We use \(Z \) to denote 0s which are independent of the numbers being multiplied.
Parallel in-serial out data movement

- All flip-flops are cleared in the beginning (with \(\text{Load} = \text{Clear} = 1 \), \(\text{Sd} = 0 \)).
- When \(\text{Load} = 1 \), \(\text{Sd} = A_i, \text{Rd} = 0 \) → \(A_i \) gets loaded into the \(i \)th flip-flop. (We will assume that \(\text{CLK} \) has been made 0 in this initial phase.)
- Subsequently, with every clock pulse, the data shifts right and appears serially at the output \(Q_0 \).
Parallel in-serial out data movement

* All flip-flops are cleared in the beginning (with $R_d = \text{Clear} = 1$, $S_d = 0$).
Parallel in-serial out data movement

* All flip-flops are cleared in the beginning (with $R_d = \text{Clear} = 1$, $S_d = 0$).
* When $\text{Load} = 1$, $S_d = A_i$, $R_d = 0 \rightarrow A_i$ gets loaded into the i^{th} flip-flop. (We will assume that CLK has been made 0 in this initial phase.)
Parallel in-serial out data movement

- All flip-flops are cleared in the beginning (with \(R_d = \text{Clear} = 1, \ S_d = 0 \)).
- When Load = 1, \(S_d = A_i, \ R_d = 0 \rightarrow A_i \) gets loaded into the \(i^{th} \) flip-flop. (We will assume that CLK has been made 0 in this initial phase.)
- Subsequently, with every clock pulse, the data shifts right and appears \textit{serially} at the output \(Q_0 \).
Parallel in-serial out data movement

- All flip-flops are cleared in the beginning (with \(R_d = \text{Clear} = 1, \ S_d = 0 \)).
- When \(\text{Load} = 1, \ S_d = A_i, \ R_d = 0 \) → \(A_i \) gets loaded into the \(i^{th} \) flip-flop. (We will assume that \(\text{CLK} \) has been made 0 in this initial phase.)
- Subsequently, with every clock pulse, the data shifts right and appears \textit{serially} at the output \(Q_0 \).
Parallel in-serial out data movement

* All flip-flops are cleared in the beginning (with $R_d = \text{Clear} = 1$, $S_d = 0$).
* When $\text{Load} = 1$, $S_d = A_i$, $R_d = 0 \rightarrow A_i$ gets loaded into the i^{th} flip-flop. (We will assume that CLK has been made 0 in this initial phase.)
* Subsequently, with every clock pulse, the data shifts right and appears *serially* at the output Q_0.

\[Q_0 = A_0 \quad Q_0 = A_1 \quad Q_0 = A_2 \quad Q_0 = A_3 \]
Parallel in-serial out data movement

- All flip-flops are cleared in the beginning (with $R_d = \text{Clear} = 1$, $S_d = 0$).
- When Load = 1, $S_d = A_i$, $R_d = 0 \rightarrow A_i$ gets loaded into the i^{th} flip-flop. (We will assume that CLK has been made 0 in this initial phase.)
- Subsequently, with every clock pulse, the data shifts right and appears serially at the output Q_0.

M. B. Patil, IIT Bombay
Parallel in-serial out data movement

* All flip-flops are cleared in the beginning (with \(R_d = \text{Clear} = 1, S_d = 0 \)).
* When \(\text{Load} = 1 \), \(S_d = A_i \), \(R_d = 0 \) \(\rightarrow A_i \) gets loaded into the \(i^{th} \) flip-flop. (We will assume that \(\text{CLK} \) has been made 0 in this initial phase.)
* Subsequently, with every clock pulse, the data shifts right and appears \textit{serially} at the output \(Q_0 \).
Parallel in-serial out data movement

* All flip-flops are cleared in the beginning (with $R_d = \text{Clear} = 1$, $S_d = 0$).
* When Load = 1, $S_d = A_i$, $R_d = 0 \rightarrow A_i$ gets loaded into the i^{th} flip-flop. (We will assume that CLK has been made 0 in this initial phase.)
* Subsequently, with every clock pulse, the data shifts right and appears serially at the output Q_0.

\[Q_0 = A_0 \quad Q_0 = A_1 \quad Q_0 = A_2 \quad Q_0 = A_3 \]
* All flip-flops are cleared in the beginning (with $R_d = \text{Clear} = 1$, $S_d = 0$).
* When Load = 1, $S_d = A_i$, $R_d = 0 \rightarrow A_i$ gets loaded into the i^{th} flip-flop. (We will assume that CLK has been made 0 in this initial phase.)
* Subsequently, with every clock pulse, the data shifts right and appears *serially* at the output Q_0.
A counter with k states is called a modulo-k (mod-k) counter.

A counter can be made with flip-flops, each flip-flop serving as a memory element with two states (0 or 1).

If there are N flip-flops in a counter, there are 2^N possible states (since each flip-flop can have $Q = 0$ or $Q = 1$). It is possible to exclude some of these states. → N flip-flops can be used to make a mod-k counter with $k \leq 2^N$.

Typically, a reset facility is also provided, which can be used to force a certain state to initialize the counter.
A counter with k states is called a modulo-k (mod-k) counter.
A counter with \(k \) states is called a modulo-\(k \) (mod-\(k \)) counter.

A counter can be made with flip-flops, each flip-flop serving as a memory element with two states (0 or 1).
- A counter with k states is called a modulo-k ($\text{mod-}k$) counter.
- A counter can be made with flip-flops, each flip-flop serving as a memory element with two states (0 or 1).
- If there are N flip-flops in a counter, there are 2^N possible states (since each flip-flop can have $Q = 0$ or $Q = 1$). It is possible to exclude some of these states.
 → N flip-flops can be used to make a mod-k counter with $k \leq 2^N$.

A counter with k states is called a modulo-k ($\text{mod-}k$) counter. A counter can be made with flip-flops, each flip-flop serving as a memory element with two states (0 or 1). If there are N flip-flops in a counter, there are 2^N possible states (since each flip-flop can have $Q = 0$ or $Q = 1$). It is possible to exclude some of these states. → N flip-flops can be used to make a mod-k counter with $k \leq 2^N$.

Typically, a reset facility is also provided, which can be used to force a certain state to initialize the counter.
* A counter with k states is called a modulo-k (mod-k) counter.
* A counter can be made with flip-flops, each flip-flop serving as a memory element with two states (0 or 1).
* If there are N flip-flops in a counter, there are 2^N possible states (since each flip-flop can have $Q = 0$ or $Q = 1$). It is possible to exclude some of these states. → N flip-flops can be used to make a mod-k counter with $k \leq 2^N$.
* Typically, a reset facility is also provided, which can be used to force a certain state to initialize the counter.
The counter outputs (i.e., the flip-flop outputs, $Q_0, Q_1, \ldots, Q_{N-1}$) can be decoded using appropriate logic. In particular, it is possible to have a decoder output (say, X) which is 1 only for state i, and 0 otherwise. For k clock pulses, we get a single pulse at X, i.e., the clock frequency has been divided by k. For this reason, a mod-k counter is also called a divide-by-k counter.
The counter outputs (i.e., the flip-flop outputs, \(Q_0, Q_1, \ldots, Q_{N-1} \)) can be decoded using appropriate logic.
Counters

* The counter outputs (i.e., the flip-flop outputs, Q_0, Q_1, \cdots, Q_{N-1}) can be decoded using appropriate logic.

* In particular, it is possible to have a decoder output (say, X) which is 1 only for state i, and 0 otherwise.

→ For k clock pulses, we get a single pulse at X, i.e., the clock frequency has been divided by k. For this reason, a mod-k counter is also called a divide-by-k counter.
A binary ripple counter

\[J\overline{K} \]

\[
\begin{array}{c}
\text{CLK} \\
\text{FF0} \\
J \quad Q \\
K \quad \overline{Q} \\
\text{FF1} \\
J \quad Q \\
K \quad \overline{Q} \\
\text{FF2} \\
J \quad Q \\
K \quad \overline{Q} \\
\end{array}
\]

\[
\begin{array}{c}
\text{CLK} \\
Q_0 \\
Q_1 \\
Q_2 \\
\end{array}
\]

For FF1 and FF2, \(Q_0 \) and \(Q_1 \), respectively, provide the clock.

Note that the direct inputs \(S_d \) and \(R_d \) (not shown) are assumed to be \(S_d = R_d = 0 \) for all flip-flops, allowing normal flip-flop operation.

M. B. Patil, IIT Bombay
A binary ripple counter

* $J = K = 1$ for all flip-flops. Let $Q_0 = Q_1 = Q_2 = 0$ initially.
A binary ripple counter

* $J = K = 1$ for all flip-flops. Let $Q_0 = Q_1 = Q_2 = 0$ initially.
* Since $J = K = 1$, each flip-flop will toggle when an active (in this case, negative) clock edge arrives.
* \(J = K = 1 \) for all flip-flops. Let \(Q_0 = Q_1 = Q_2 = 0 \) initially.
* Since \(J = K = 1 \), each flip-flop will toggle when an active (in this case, negative) clock edge arrives.
* For FF1 and FF2, \(Q_0 \) and \(Q_1 \), respectively, provide the clock.
* $J = K = 1$ for all flip-flops. Let $Q_0 = Q_1 = Q_2 = 0$ initially.

* Since $J = K = 1$, each flip-flop will toggle when an active (in this case, negative) clock edge arrives.

* For FF1 and FF2, Q_0 and Q_1, respectively, provide the clock.
A binary ripple counter

* $J = K = 1$ for all flip-flops. Let $Q_0 = Q_1 = Q_2 = 0$ initially.
* Since $J = K = 1$, each flip-flop will toggle when an active (in this case, negative) clock edge arrives.
* For FF1 and FF2, Q_0 and Q_1, respectively, provide the clock.
A binary ripple counter

* $J = K = 1$ for all flip-flops. Let $Q_0 = Q_1 = Q_2 = 0$ initially.
* Since $J = K = 1$, each flip-flop will toggle when an active (in this case, negative) clock edge arrives.
* For FF1 and FF2, Q_0 and Q_1, respectively, provide the clock.
* $J = K = 1$ for all flip-flops. Let $Q_0 = Q_1 = Q_2 = 0$ initially.
* Since $J = K = 1$, each flip-flop will toggle when an active (in this case, negative) clock edge arrives.
* For FF1 and FF2, Q_0 and Q_1, respectively, provide the clock.
A binary ripple counter

- \(J = K = 1 \) for all flip-flops. Let \(Q_0 = Q_1 = Q_2 = 0 \) initially.
- Since \(J = K = 1 \), each flip-flop will toggle when an active (in this case, negative) clock edge arrives.
- For FF1 and FF2, \(Q_0 \) and \(Q_1 \), respectively, provide the clock.
- Note that the direct inputs \(S_d \) and \(R_d \) (not shown) are assumed to be \(S_d = R_d = 0 \) for all flip-flops, allowing normal flip-flop operation.

M. B. Patil, IIT Bombay
A binary ripple counter

The counter has 8 states, \(Q_2 Q_1 Q_0 = 000, 001, 010, 011, 100, 101, 110, 111 \). It is a mod-8 counter. In particular, it is a binary, mod-8, up counter (since it counts up from 000 to 111).

If the clock frequency is \(f_c \), the frequency at the \(Q_0 \), \(Q_1 \), \(Q_2 \) outputs is \(f_c / 2, f_c / 4, f_c / 8 \), respectively. For this counter, therefore, div-by-2, div-by-4, div-by-8 outputs are already available, without requiring decoding logic.

This type of counter is called a "ripple" counter since the clock transitions ripple through the flip-flops.

M. B. Patil, IIT Bombay
A binary ripple counter

The counter has 8 states, \(Q_2Q_1Q_0 = 000, 001, 010, 011, 100, 101, 110, 111 \).
\(\rightarrow \) it is a mod-8 counter. In particular, it is a binary, \textit{mod-8, up} counter (since it counts \textit{up} from 000 to 111).
A binary ripple counter

* The counter has 8 states, $Q_2 Q_1 Q_0 = 000, 001, 010, 011, 100, 101, 110, 111$. → it is a mod-8 counter. In particular, it is a binary, mod-8, up counter (since it counts up from 000 to 111).
* If the clock frequency is f_c, the frequency at the Q_0, Q_1, Q_2 outputs is $f_c/2$, $f_c/4$, $f_c/8$, respectively. For this counter, therefore, div-by-2, div-by-4, div-by-8 outputs are already available, without requiring decoding logic.
* The counter has 8 states, $Q_2 Q_1 Q_0 = 000, 001, 010, 011, 100, 101, 110, 111$.
→ it is a mod-8 counter. In particular, it is a binary, mod-8, up counter (since it counts up from 000 to 111).

* If the clock frequency is f_c, the frequency at the Q_0, Q_1, Q_2 outputs is $f_c/2$, $f_c/4$, $f_c/8$, respectively. For this counter, therefore, div-by-2, div-by-4, div-by-8 outputs are already available, without requiring decoding logic.

* This type of counter is called a “ripple” counter since the clock transitions ripple through the flip-flops.
If positive edge-triggered flip-flops are used, we get a binary down counter (counting down from 1111 to 0000).

M. B. Patil, IIT Bombay
If positive edge-triggered flip-flops are used, we get a binary *down* counter (counting down from 1111 to 0000).
Binay ripple counters

* Home work: Sketch the waveforms (CLK, Q₀, Q₁, Q₂), and tabulate the counter states in each case.
Up-down binary ripple counters

When Mode (M) = 1, the counter counts up; else, it counts down.

(SEQUEL file: ee101_counter3.sqproj)

M. B. Patil, IIT Bombay
When Mode \((M) = 1\), the counter counts up; else, it counts down.

(SEQUEL file: ee101_counter_3.sqproj)
Decade counter using direct inputs

When the counter reaches $Q_3 Q_2 Q_1 Q_0 = 1010$ (i.e., decimal 10), $Q_3 Q_1 = 1$, and the flip-flops are cleared to $Q_3 Q_2 Q_1 Q_0 = 0000$.

The counter counts from 0000 (decimal 0) to 1001 (decimal 9) → "decade counter."

(SEQUEL file: ee101_counter_5.sqproj)
Decade counter using direct inputs

* When the counter reaches $Q_3Q_2Q_1Q_0 = 1010$ (i.e., decimal 10), $Q_3Q_1 = 1$, and the flip-flops are cleared to $Q_3Q_2Q_1Q_0 = 0000$.
Decade counter using direct inputs

When the counter reaches \(Q_3 Q_2 Q_1 Q_0 = 1010 \) (i.e., decimal 10), \(Q_3 Q_1 = 1 \), and the flip-flops are cleared to \(Q_3 Q_2 Q_1 Q_0 = 0000 \).

The counter counts from 0000 (decimal 0) to 1001 (decimal 9) → “decade counter.”

(SEQUEL file: ee101_counter_5.sqproj)
A synchronous counter

Since all flip-flops are driven by the same clock, the counter is called a "synchronous" counter.

J₀ = K₀ = 1,
J₁ = K₁ = Q₀,
J₂ = K₂ = Q₁ Q₀,
J₃ = K₃ = Q₂ Q₁ Q₀.

FF0 toggles at every active edge.
FF1 toggles if Q₀ = 1 (just before the active clock edge); else, it retains its previous state.
Similar comments apply to FF2 and FF3.

From the waveforms, we see that it is a binary up counter.

M. B. Patil, IIT Bombay
A synchronous counter

* Since all flip-flops are driven by the same clock, the counter is called a “synchronous” counter.
A synchronous counter

Since all flip-flops are driven by the same clock, the counter is called a “synchronous” counter.

* $J_0 = K_0 = 1$, $J_1 = K_1 = Q_0$, $J_2 = K_2 = Q_1 Q_0$, $J_3 = K_3 = Q_2 Q_1 Q_0$.

M. B. Patil, IIT Bombay
A synchronous counter

* Since all flip-flops are driven by the same clock, the counter is called a “synchronous” counter.
* \(J_0 = K_0 = 1, J_1 = K_1 = Q_0, J_2 = K_2 = Q_1 Q_0, J_3 = K_3 = Q_2 Q_1 Q_0. \)
* FF0 toggles at every active edge. FF1 toggles if \(Q_0 = 1 \) (just before the active clock edge); else, it retains its previous state. Similar comments apply to FF2 and FF3.
A synchronous counter

* Since all flip-flops are driven by the same clock, the counter is called a “synchronous” counter.
* \(J_0 = K_0 = 1, \ J_1 = K_1 = Q_0, \ J_2 = K_2 = Q_1 Q_0, \ J_3 = K_3 = Q_2 Q_1 Q_0. \)
* FF0 toggles at every active edge. FF1 toggles if \(Q_0 = 1 \) (just before the active clock edge); else, it retains its previous state. Similar comments apply to FF2 and FF3.
A synchronous counter

* Since all flip-flops are driven by the same clock, the counter is called a “synchronous” counter.
* $J_0 = K_0 = 1$, $J_1 = K_1 = Q_0$, $J_2 = K_2 = Q_1Q_0$, $J_3 = K_3 = Q_2Q_1Q_0$.
* FF0 toggles at every active edge.
 FF1 toggles if $Q_0 = 1$ (just before the active clock edge); else, it retains its previous state.
 Similar comments apply to FF2 and FF3.
Since all flip-flops are driven by the same clock, the counter is called a “synchronous” counter.

- $J_0 = K_0 = 1$, $J_1 = K_1 = Q_0$, $J_2 = K_2 = Q_1 Q_0$, $J_3 = K_3 = Q_2 Q_1 Q_0$.
- FF0 toggles at every active edge.
 FF1 toggles if $Q_0 = 1$ (just before the active clock edge); else, it retains its previous state.
 Similar comments apply to FF2 and FF3.
A synchronous counter

Since all flip-flops are driven by the same clock, the counter is called a “synchronous” counter.

* $J_0 = K_0 = 1$, $J_1 = K_1 = Q_0$, $J_2 = K_2 = Q_1 Q_0$, $J_3 = K_3 = Q_2 Q_1 Q_0$.

* FF0 toggles at every active edge.
 FF1 toggles if $Q_0 = 1$ (just before the active clock edge); else, it retains its previous state.
 Similar comments apply to FF2 and FF3.

M. B. Patil, IIT Bombay
A synchronous counter

* Since all flip-flops are driven by the same clock, the counter is called a “synchronous” counter.
* \(J_0 = K_0 = 1, \ J_1 = K_1 = Q_0, \ J_2 = K_2 = Q_1 Q_0, \ J_3 = K_3 = Q_2 Q_1 Q_0. \)
* FF0 toggles at every active edge.
 FF1 toggles if \(Q_0 = 1 \) (just before the active clock edge); else, it retains its previous state.
 Similar comments apply to FF2 and FF3.
* From the waveforms, we see that it is a binary up counter.
Consider the reverse problem: We are given \(Q_n \) and the next desired state (\(Q_{n+1} \)). What should \(J \) and \(K \) be in order to make that happen?

\(Q_n = 0, Q_{n+1} = 0 \): We can either force \(Q_{n+1} = 0 \) with \(J = 0, K = 1 \), or let \(Q_{n+1} = Q_n = 0 \) by making \(J = 0, K = 0 \).

\(J = 0, K = X \) (i.e., \(K \) can be 0 or 1).

Similarly, work out the other entries in the table.

The table for a negative edge-triggered flip-flop would be identical except for the active edge.
Design of synchronous counters

* Consider the reverse problem: We are given Q_n and the next desired state (Q_{n+1}). What should J and K be in order to make that happen?
Consider the reverse problem: We are given Q_n and the next desired state (Q_{n+1}). What should J and K be in order to make that happen?

* $Q_n = 0$, $Q_{n+1} = 0$: We can either force $Q_{n+1} = 0$ with $J = 0$, $K = 1$, or let $Q_{n+1} = Q_n = 0$ by making $J = 0$, $K = 0$.
* Consider the reverse problem: We are given Q_n and the next desired state (Q_{n+1}). What should J and K be in order to make that happen?

* $Q_n = 0$, $Q_{n+1} = 0$: We can either force $Q_{n+1} = 0$ with $J = 0$, $K = 1$, or let $Q_{n+1} = Q_n = 0$ by making $J = 0$, $K = 0$.
 $\rightarrow J = 0$, $K = X$ (i.e., K can be 0 or 1).
Consider the reverse problem: We are given Q_n and the next desired state (Q_{n+1}). What should J and K be in order to make that happen?

* $Q_n = 0, Q_{n+1} = 0$: We can either force $Q_{n+1} = 0$ with $J = 0, K = 1$, or let $Q_{n+1} = Q_n = 0$ by making $J = 0, K = 0$.
 → $J = 0, K = X$ (i.e., K can be 0 or 1).
Consider the reverse problem: We are given Q_n and the next desired state (Q_{n+1}). What should J and K be in order to make that happen?

* $Q_n = 0, Q_{n+1} = 0$: We can either force $Q_{n+1} = 0$ with $J = 0, K = 1$, or let $Q_{n+1} = Q_n = 0$ by making $J = 0, K = 0$.
 → $J = 0, K = X$ (i.e., K can be 0 or 1).

* Similarly, work out the other entries in the table.
Consider the reverse problem: We are given Q_n and the next desired state (Q_{n+1}). What should J and K be in order to make that happen?

* $Q_n = 0$, $Q_{n+1} = 0$: We can either force $Q_{n+1} = 0$ with $J = 0$, $K = 1$, or let $Q_{n+1} = Q_n = 0$ by making $J = 0$, $K = 0$.
 → $J = 0$, $K = X$ (i.e., K can be 0 or 1).

* Similarly, work out the other entries in the table.
Consider the reverse problem: We are given \(Q_n \) and the next desired state (\(Q_{n+1} \)). What should \(J \) and \(K \) be in order to make that happen?

- \(Q_n = 0, Q_{n+1} = 0 \): We can either force \(Q_{n+1} = 0 \) with \(J = 0, K = 1 \), or let \(Q_{n+1} = Q_n = 0 \) by making \(J = 0, K = 0 \).
 \[\rightarrow J = 0, K = X \text{ (i.e., } K \text{ can be 0 or 1).} \]

- Similarly, work out the other entries in the table.

- The table for a negative edge-triggered flip-flop would be identical except for the active edge.
Design a synchronous mod-5 counter with the given state transition table.

Design of synchronous counters
Design of synchronous counters

Design a synchronous mod-5 counter with the given state transition table.

Outline of method:
Design a synchronous mod-5 counter with the given state transition table.

Outline of method:

* State 1 → State 2 means
 - Q_2: 0 → 0,
 - Q_1: 0 → 0,
 - Q_0: 0 → 1.
Design a synchronous mod-5 counter with the given state transition table.

Outline of method:

* State 1 → State 2 means
 - Q_2: 0 → 0,
 - Q_1: 0 → 0,
 - Q_0: 0 → 1.

* Refer to the right table. For Q_2: 0 → 0, we must have $J_2 = 0$, $K_2 = X$, and so on.
Design a synchronous mod-5 counter with the given state transition table.

Outline of method:

* State 1 \rightarrow State 2 means
 Q_2: 0 \rightarrow 0,
 Q_1: 0 \rightarrow 0,
 Q_0: 0 \rightarrow 1.

* Refer to the right table. For Q_2: 0 \rightarrow 0, we must have $J_2 = 0$, $K_2 = X$, and so on.

* When we cover all transitions in the left table, we have the truth tables for J_0, K_0, J_1, K_1, J_2, K_2 in terms of Q_1, Q_2, Q_3.
Design a synchronous mod-5 counter with the given state transition table.

Outline of method:

* State 1 → State 2 means
 Q_2: 0 → 0,
 Q_1: 0 → 0,
 Q_0: 0 → 1.

* Refer to the right table. For Q_2: 0 → 0, we must have $J_2 = 0$, $K_2 = X$, and so on.

* When we cover all transitions in the left table, we have the truth tables for J_0, K_0, J_1, K_1, J_2, K_2 in terms of Q_1, Q_2, Q_3.

* The last step is to come up with suitable functions for J_0, K_0, J_1, K_1, J_2, K_2 in terms of Q_1, Q_2, Q_3. This can be done with K-maps. (If the number of flip-flops is more than 4, other techniques can be employed.)
We now have the truth tables for J_0, K_0, J_1, K_1, J_2, K_2 in terms of Q_0, Q_1, Q_2. The next step is to find logical functions for each of them. Note that we have not tabulated the J and K values for those combinations of Q_0, Q_1, Q_2 which do not occur in the state transition table (such as $Q_2 Q_1 Q_0 = 110$). We treat these as don’t care conditions (next slide).
We now have the truth tables for J_0, K_0, J_1, K_1, J_2, K_2 in terms of Q_0, Q_1, Q_2. The next step is to find logical functions for each of them.

Note that we have not tabulated the J and K values for those combinations of Q_0, Q_1, Q_2 which do not occur in the state transition table (such as $Q_2 Q_1 Q_0 = 110$). We treat these as don’t care conditions (next slide).

M. B. Patil, IIT Bombay
Design of synchronous counters

<table>
<thead>
<tr>
<th>state</th>
<th>Q_2</th>
<th>Q_1</th>
<th>Q_0</th>
<th>J_2</th>
<th>K_2</th>
<th>J_1</th>
<th>K_1</th>
<th>J_0</th>
<th>K_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLK</th>
<th>Q_n</th>
<th>Q_{n+1}</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>↑</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>↑</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>↑</td>
<td>1</td>
<td>1</td>
<td>X</td>
<td>0</td>
</tr>
</tbody>
</table>
Design of synchronous counters

We now have the truth tables for J_0, K_0, J_1, K_1, J_2, K_2 in terms of Q_0, Q_1, Q_2. The next step is to find logical functions for each of them.

Note that we have not tabulated the J and K values for those combinations of Q_0, Q_1, Q_2 which do not occur in the state transition table (such as Q_2 Q_1 Q_0 = 110). We treat these as don’t care conditions (next slide).

<table>
<thead>
<tr>
<th>state</th>
<th>Q_2</th>
<th>Q_1</th>
<th>Q_0</th>
<th>J_2</th>
<th>K_2</th>
<th>J_1</th>
<th>K_1</th>
<th>J_0</th>
<th>K_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLK</th>
<th>Q_n</th>
<th>Q_{n+1}</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>↑</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>↑</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>↑</td>
<td>1</td>
<td>1</td>
<td>X</td>
<td>0</td>
</tr>
</tbody>
</table>
Design of synchronous counters

<table>
<thead>
<tr>
<th>state</th>
<th>Q₂</th>
<th>Q₁</th>
<th>Q₀</th>
<th>J₂</th>
<th>K₂</th>
<th>J₁</th>
<th>K₁</th>
<th>J₀</th>
<th>K₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td>X</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We now have the truth tables for \(J_0, K_0, J_1, K_1, J_2, K_2\) in terms of \(Q_0, Q_1, Q_2\). The next step is to find logical functions for each of them. Note that we have not tabulated the \(J\) and \(K\) values for those combinations of \(Q_0, Q_1, Q_2\) which do not occur in the state transition table (such as \(Q_2 Q_1 Q_0 = 110\)). We treat these as don’t care conditions (next slide).
Design of synchronous counters

Truth Tables

<table>
<thead>
<tr>
<th>State</th>
<th>Q_2</th>
<th>Q_1</th>
<th>Q_0</th>
<th>J_2</th>
<th>K_2</th>
<th>J_1</th>
<th>K_1</th>
<th>J_0</th>
<th>K_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td>X</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Transition Table

<table>
<thead>
<tr>
<th>CLK</th>
<th>Q_n</th>
<th>Q_{n+1}</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>↑</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>↑</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>↑</td>
<td>1</td>
<td>1</td>
<td>X</td>
<td>0</td>
</tr>
</tbody>
</table>
Design of synchronous counters

We now have the truth tables for J_0, K_0, J_1, K_1, J_2, K_2 in terms of Q_0, Q_1, Q_2. The next step is to find logical functions for each of them. Note that we have not tabulated the J and K values for those combinations of Q_0, Q_1, Q_2 which do not occur in the state transition table (such as $Q_2 Q_1 Q_0 = 110$). We treat these as don't care conditions (next slide).
Design of synchronous counters

<table>
<thead>
<tr>
<th>state</th>
<th>Q_2</th>
<th>Q_1</th>
<th>Q_0</th>
<th>J_2</th>
<th>K_2</th>
<th>J_1</th>
<th>K_1</th>
<th>J_0</th>
<th>K_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td>X</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>1</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLK</th>
<th>Q_n</th>
<th>Q_{n+1}</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>↑</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>↑</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>↑</td>
<td>1</td>
<td>1</td>
<td>X</td>
<td>0</td>
</tr>
</tbody>
</table>
Design of synchronous counters

We now have the truth tables for J_0, K_0, J_1, K_1, J_2, K_2 in terms of Q_0, Q_1, Q_2. The next step is to find logical functions for each of them.

Note that we have not tabulated the J and K values for those combinations of Q_0, Q_1, Q_2 which do not occur in the state transition table (such as $Q_2 Q_1 Q_0 = 110$). We treat these as don't care conditions (next slide).
We now have the truth tables for J_0, K_0, J_1, K_1, J_2, K_2 in terms of Q_0, Q_1, Q_2. The next step is to find logical functions for each of them.

Note that we have not tabulated the J and K values for those combinations of Q_0, Q_1, Q_2 which do not occur in the state transition table (such as $Q_2 Q_1 Q_0 = 110$). We treat these as don’t care conditions (next slide).
Design of synchronous counters

We now have the truth tables for J_0, K_0, J_1, K_1, J_2, K_2 in terms of Q_0, Q_1, Q_2. The next step is to find logical functions for each of them.

Note that we have not tabulated the J and K values for those combinations of Q_0, Q_1, Q_2 which do not occur in the state transition table (such as $Q_2 Q_1 Q_0 = 110$). We treat these as don't care conditions (next slide).

<table>
<thead>
<tr>
<th>state</th>
<th>Q_2</th>
<th>Q_1</th>
<th>Q_0</th>
<th>J_2</th>
<th>K_2</th>
<th>J_1</th>
<th>K_1</th>
<th>J_0</th>
<th>K_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td>X</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLK</th>
<th>Q_n</th>
<th>Q_{n+1}</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>↑</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>↑</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>↑</td>
<td>1</td>
<td>1</td>
<td>X</td>
<td>0</td>
</tr>
</tbody>
</table>
Design of synchronous counters

<table>
<thead>
<tr>
<th>state</th>
<th>Q2</th>
<th>Q1</th>
<th>Q0</th>
<th>J2</th>
<th>K2</th>
<th>J1</th>
<th>K1</th>
<th>J0</th>
<th>K0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td>X</td>
<td>1</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We now have the truth tables for J_0, K_0, J_1, K_1, J_2, K_2 in terms of Q_0, Q_1, Q_2. The next step is to find logical functions for each of them. Note that we have not tabulated the J and K values for those combinations of Q_0, Q_1, Q_2 which do not occur in the state transition table (such as $Q_2Q_1Q_0 = 110$). We treat these as don’t care conditions (next slide).

<table>
<thead>
<tr>
<th>CLK</th>
<th>Qn</th>
<th>Qn+1</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>↑</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>↑</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>↑</td>
<td>1</td>
<td>1</td>
<td>X</td>
<td>0</td>
</tr>
</tbody>
</table>

M. B. Patil, IIT Bombay
Design of synchronous counters

<table>
<thead>
<tr>
<th>state</th>
<th>Q₂</th>
<th>Q₁</th>
<th>Q₀</th>
<th>J₂</th>
<th>K₂</th>
<th>J₁</th>
<th>K₁</th>
<th>J₀</th>
<th>K₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td>X</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLK</th>
<th>Q₀</th>
<th>Q₁</th>
<th>Q₂</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>↑</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>↑</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>↑</td>
<td>1</td>
<td>1</td>
<td>X</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Design of synchronous counters

<table>
<thead>
<tr>
<th>State</th>
<th>Q_2</th>
<th>Q_1</th>
<th>Q_0</th>
<th>J_2</th>
<th>K_2</th>
<th>J_1</th>
<th>K_1</th>
<th>J_0</th>
<th>K_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td>X</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>X</td>
<td>0</td>
<td>1</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We now have the truth tables for J_0, K_0, J_1, K_1, J_2, K_2 in terms of Q_0, Q_1, Q_2. The next step is to find logical functions for each of them.

Note that we have not tabulated the J and K values for those combinations of Q_0, Q_1, Q_2 which do not occur in the state transition table (such as Q_2 Q_1 Q_0 = 110). We treat these as don’t care conditions (next slide).

<table>
<thead>
<tr>
<th>CLK</th>
<th>Q_n</th>
<th>Q_{n+1}</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>†</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>†</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>†</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>†</td>
<td>1</td>
<td>1</td>
<td>X</td>
<td>0</td>
</tr>
</tbody>
</table>
Design of synchronous counters

<table>
<thead>
<tr>
<th>state</th>
<th>Q₂</th>
<th>Q₁</th>
<th>Q₀</th>
<th>J₂ K₂</th>
<th>J₁ K₁</th>
<th>J₀ K₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1 X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We now have the truth tables for \(J_0 \), \(K_0 \), \(J_1 \), \(K_1 \), \(J_2 \), \(K_2 \) in terms of \(Q_0 \), \(Q_1 \), \(Q_2 \). The next step is to find logical functions for each of them.

Note that we have not tabulated the \(J \) and \(K \) values for those combinations of \(Q_0 \), \(Q_1 \), \(Q_2 \) which do not occur in the state transition table (such as \(Q_2 Q_1 Q_0 = 110 \)). We treat these as don’t care conditions (next slide).
Design of synchronous counters

<table>
<thead>
<tr>
<th>state</th>
<th>Q₂</th>
<th>Q₁</th>
<th>Q₀</th>
<th>J₂</th>
<th>K₂</th>
<th>J₁</th>
<th>K₁</th>
<th>J₀</th>
<th>K₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td>X</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>X</td>
</tr>
</tbody>
</table>

We now have the truth tables for J₀, K₀, J₁, K₁, J₂, K₂ in terms of Q₀, Q₁, Q₂. The next step is to find logical functions for each of them. Note that we have not tabulated the J and K values for those combinations of Q₀, Q₁, Q₂ which do not occur in the state transition table (such as Q₂ Q₁ Q₀ = 110). We treat these as don’t care conditions (next slide).
We now have the truth tables for J_0, K_0, J_1, K_1, J_2, K_2 in terms of Q_0, Q_1, Q_2. The next step is to find logical functions for each of them.
Design of synchronous counters

State Transition Table

<table>
<thead>
<tr>
<th>State</th>
<th>Q_2</th>
<th>Q_1</th>
<th>Q_0</th>
<th>J_2</th>
<th>K_2</th>
<th>J_1</th>
<th>K_1</th>
<th>J_0</th>
<th>K_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td>X</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>X</td>
<td>1</td>
</tr>
</tbody>
</table>

Transition Table

<table>
<thead>
<tr>
<th>CLK</th>
<th>Q_n</th>
<th>Q_{n+1}</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>↑</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>↑</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>↑</td>
<td>1</td>
<td>1</td>
<td>X</td>
<td>0</td>
</tr>
</tbody>
</table>
Design of synchronous counters

We now have the truth tables for J_0, K_0, J_1, K_1, J_2, K_2 in terms of Q_0, Q_1, Q_2. The next step is to find logical functions for each of them. Note that we have not tabulated the J and K values for those combinations of Q_0, Q_1, Q_2 which do not occur in the state transition table (such as $Q_2Q_1Q_0 = 110$). We treat these as don’t care conditions (next slide).

<table>
<thead>
<tr>
<th>state</th>
<th>Q_2</th>
<th>Q_1</th>
<th>Q_0</th>
<th>J_2</th>
<th>K_2</th>
<th>J_1</th>
<th>K_1</th>
<th>J_0</th>
<th>K_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td>X</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLK</th>
<th>Q_n</th>
<th>Q_{n+1}</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>↑</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>↑</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>↑</td>
<td>1</td>
<td>1</td>
<td>X</td>
<td>0</td>
</tr>
</tbody>
</table>
Design of synchronous counters

<table>
<thead>
<tr>
<th>state</th>
<th>Q₂</th>
<th>Q₁</th>
<th>Q₀</th>
<th>J₂</th>
<th>K₂</th>
<th>J₁</th>
<th>K₁</th>
<th>J₀</th>
<th>K₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td>X</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We now have the truth tables for J₀, K₀, J₁, K₁, J₂, K₂ in terms of Q₀, Q₁, Q₂. The next step is to find logical functions for each of them. Note that we have not tabulated the J and K values for those combinations of Q₀, Q₁, Q₂ which do not occur in the state transition table (such as Q₂Q₁Q₀ = 110). We treat these as don’t care conditions (next slide).

<table>
<thead>
<tr>
<th>CLK</th>
<th>Qₙ</th>
<th>Qₙ₊₁</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>↑</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>↑</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>↑</td>
<td>1</td>
<td>1</td>
<td>X</td>
<td>0</td>
</tr>
</tbody>
</table>
Design of synchronous counters

We now have the truth tables for J_0, K_0, J_1, K_1, J_2, K_2 in terms of Q_0, Q_1, Q_2. The next step is to find logical functions for each of them. Note that we have not tabulated the J and K values for those combinations of Q_0, Q_1, Q_2 which do not occur in the state transition table (such as $Q_2 Q_1 Q_0 = 110$). We treat these as don't care conditions (next slide).
Design of synchronous counters

We now have the truth tables for J_0, K_0, J_1, K_1, J_2, K_2 in terms of Q_0, Q_1, Q_2. The next step is to find logical functions for each of them.
We now have the truth tables for J_0, K_0, J_1, K_1, J_2, K_2 in terms of Q_0, Q_1, Q_2. The next step is to find logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q_0, Q_1, Q_2 which do not occur in the state transition table (such as $Q_2Q_1Q_0 = 110$). We treat these as don’t care conditions (next slide).
Design of synchronous counters

We treat the unused states (Q₂Q₁Q₀ = 101, 110, 111) as (additional) don’t care conditions. Since these are different from the don’t care conditions arising from the state transition table, we mark them with a different colour.

We will assume that a suitable initialization facility is provided to ensure that the counter starts up in one of the five allowed states (say, Q₂Q₁Q₀ = 000).

From the K-maps, J₂ = Q₁Q₀, K₂ = 1, J₁ = Q₀, K₁ = Q₀, J₀ = Q₂, K₀ = 1.

M. B. Patil, IIT Bombay
We treat the unused states \((Q_2Q_1Q_0 = 101, 110, 111)\) as (additional) don’t care conditions. Since these are different from the don’t care conditions arising from the state transition table, we mark them with a different colour.
We treat the unused states \((Q_2Q_1Q_0 = 101, 110, 111)\) as (additional) don’t care conditions. Since these are different from the don’t care conditions arising from the state transition table, we mark them with a different colour.

We will assume that a suitable initialization facility is provided to ensure that the counter starts up in one of the five allowed states (say, \(Q_2Q_1Q_0 = 000\)).
Design of synchronous counters

<table>
<thead>
<tr>
<th>state</th>
<th>Q_2</th>
<th>Q_1</th>
<th>Q_0</th>
<th>J_2</th>
<th>K_2</th>
<th>J_1</th>
<th>K_1</th>
<th>J_0</th>
<th>K_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td>X</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>1</td>
<td>X</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

* We treat the unused states \((Q_2 Q_1 Q_0 = 101, 110, 111)\) as (additional) don’t care conditions. Since these are different from the don’t care conditions arising from the state transition table, we mark them with a different colour.

* We will assume that a suitable initialization facility is provided to ensure that the counter starts up in one of the five allowed states (say, \(Q_2 Q_1 Q_0 = 000\)).

* From the K-maps, \(J_2 = Q_1 Q_0, K_2 = 1, J_1 = Q_0, K_1 = Q_0, J_0 = \overline{Q_2}, K_0 = 1\).
Design of synchronous counters: verification

Note that the design is independent of whether positive or negative edge-triggered flip-flops are used.

M. B. Patil, IIT Bombay
Design of synchronous counters: verification

* \(J_2 = Q_1 Q_0, \ K_2 = 1, \ J_1 = Q_0, \ K_1 = Q_0, \ J_0 = \overline{Q}_2, \ K_0 = 1. \)
* $J_2 = Q_1 Q_0$, $K_2 = 1$, $J_1 = Q_0$, $K_1 = Q_0$, $J_0 = \overline{Q_2}$, $K_0 = 1$.

* Note that the design is independent of whether positive or negative edge-triggered flip-flops are used.
Consider two counters, Counter 1 (mod-\(k_1\)) and Counter 2 (mod-\(k_2\)). (Each of them can be ripple or synchronous type.)
Consider two counters, Counter 1 (mod-k_1) and Counter 2 (mod-k_2). (Each of them can be ripple or synchronous type.)

Since Counter 1 has k_1 states and Counter 2 has k_2 states, we can get a new counter with $k_1 k_2$ states if appropriate synchronisation is provided between the two clocks.
Consider two counters, Counter 1 (mod-k_1) and Counter 2 (mod-k_2). (Each of them can be ripple or synchronous type.)

Since Counter 1 has k_1 states and Counter 2 has k_2 states, we can get a new counter with k_1k_2 states if appropriate synchronisation is provided between the two clocks.

There are two ways of providing synchronisation:
Consider two counters, Counter 1 (mod-k_1) and Counter 2 (mod-k_2). (Each of them can be ripple or synchronous type.)

Since Counter 1 has k_1 states and Counter 2 has k_2 states, we can get a new counter with k_1k_2 states if appropriate synchronisation is provided between the two clocks.

There are two ways of providing synchronisation:
- derive Clock 2 from Clock 1 (using some decoding logic, if necessary)
Consider two counters, Counter 1 (mod-k_1) and Counter 2 (mod-k_2). (Each of them can be ripple or synchronous type.)

Since Counter 1 has k_1 states and Counter 2 has k_2 states, we can get a new counter with $k_1 k_2$ states if appropriate synchronisation is provided between the two clocks.

There are two ways of providing synchronisation:

- derive Clock 2 from Clock 1 (using some decoding logic, if necessary)
* Consider two counters, Counter 1 (mod-k_1) and Counter 2 (mod-k_2). (Each of them can be ripple or synchronous type.)
* Since Counter 1 has k_1 states and Counter 2 has k_2 states, we can get a new counter with $k_1 k_2$ states if appropriate synchronisation is provided between the two clocks.
* There are two ways of providing synchronisation:
 - derive Clock 2 from Clock 1 (using some decoding logic, if necessary)
 - drive the two counters with the same clock
Consider two counters, Counter 1 (mod-k_1) and Counter 2 (mod-k_2). (Each of them can be ripple or synchronous type.)

Since Counter 1 has k_1 states and Counter 2 has k_2 states, we can get a new counter with k_1k_2 states if appropriate synchronisation is provided between the two clocks.

There are two ways of providing synchronisation:
- derive Clock 2 from Clock 1 (using some decoding logic, if necessary)
- drive the two counters with the same clock
Let us combine the mod-2 and mod-5 counters to make a mod-10 counter.

We will follow two approaches (as described earlier):

A: The clock for the second (mod-5) counter is derived from the first (mod-2) counter.

B: A common clock is used to drive the mod-2 and mod-5 counters.

M. B. Patil, IIT Bombay
Let us combine the mod-2 and mod-5 counters to make a mod-10 counter.
Let us combine the mod-2 and mod-5 counters to make a mod-10 counter.

We will follow two approaches (as described earlier):

A: The clock for the second (mod-5) counter is derived from the first (mod-2) counter.

B: A common clock is used to drive the mod-2 and mod-5 counters.
Approach A

(SEQUEL file: ee101_counter_7.sqproj)

M. B. Patil, IIT Bombay
Approach B

(SEQUEL file: ee101_counter_8.sqproj)
* Show that, by connecting the \overline{Q} output of the mod-2 counter (instead of the Q output) to the clock input of the mod-5 counter in the ripple connection (“Approach A”) circuit, we get a decade counter, counting up from 0000 to 1001.
* Show that, by connecting the \overline{Q} output of the mod-2 counter (instead of the Q output) to the clock input of the mod-5 counter in the ripple connection (“Approach A”) circuit, we get a decade counter, counting up from 0000 to 1001.

* Derive appropriate decoding logic for each of the ten counters states (i.e., the output should be 1 for only that particular state and 0 otherwise).
* Show that, by connecting the \overline{Q} output of the mod-2 counter (instead of the Q output) to the clock input of the mod-5 counter in the ripple connection ("Approach A") circuit, we get a decade counter, counting up from 0000 to 1001.

* Derive appropriate decoding logic for each of the ten counters states (i.e., the output should be 1 for only that particular state and 0 otherwise).

* Derive appropriate decoding logic which will give a symmetrical square wave (i.e., a duty cycle of 50 %) with a frequency of $f_c/10$, where f_c is the clock frequency.

M. B. Patil, IIT Bombay
Combination of counters

* Show that, by connecting the \(\overline{Q} \) output of the mod-2 counter (instead of the \(Q \) output) to the clock input of the mod-5 counter in the ripple connection ("Approach A") circuit, we get a decade counter, counting up from 0000 to 1001.

* Derive appropriate decoding logic for each of the ten counters states (i.e., the output should be 1 for only that particular state and 0 otherwise).

* Derive appropriate decoding logic which will give a symmetrical square wave (i.e., a duty cycle of 50 \%) with a frequency of \(f_c/10 \), where \(f_c \) is the clock frequency.

* Verify your design by simulation.