
EE101: Digital circuits (Part 5)

M. B. Patil
mbpatil@ee.iitb.ac.in

www.ee.iitb.ac.in/~sequel

Department of Electrical Engineering
Indian Institute of Technology Bombay

M. B. Patil, IIT Bombay

JK flip-flop: asynchronous inputs

CLK

J

K

CLK KJ

operation
normal

RdSd

Qn

Qn

Q

Q

Rd

Sd

0 0

0 1

1 0

1 1

0

1

X X X

X X X

X X X

0 1

1 0

1 1

0

1

0

0

0

0

0

0

0

0

invalid

Qn+1

* Clocked flip-flops are also provided with asynchronous or direct Set and Reset
inputs, Sd and Rd , (also called Preset and Clear, respectively) which override all
other inputs (J, K, CLK).

* The Sd and Rd inputs may be active low; in that case, they are denoted by
Sd and Rd .

* The asynchronous inputs are convenient for “starting up” a circuit in a known
state.

M. B. Patil, IIT Bombay

JK flip-flop: asynchronous inputs

CLK

J

K

CLK KJ

operation
normal

RdSd

Qn

Qn

Q

Q

Rd

Sd

0 0

0 1

1 0

1 1

0

1

X X X

X X X

X X X

0 1

1 0

1 1

0

1

0

0

0

0

0

0

0

0

invalid

Qn+1

* Clocked flip-flops are also provided with asynchronous or direct Set and Reset
inputs, Sd and Rd , (also called Preset and Clear, respectively) which override all
other inputs (J, K, CLK).

* The Sd and Rd inputs may be active low; in that case, they are denoted by
Sd and Rd .

* The asynchronous inputs are convenient for “starting up” a circuit in a known
state.

M. B. Patil, IIT Bombay

JK flip-flop: asynchronous inputs

CLK

J

K

CLK KJ

operation
normal

RdSd

Qn

Qn

Q

Q

Rd

Sd

0 0

0 1

1 0

1 1

0

1

X X X

X X X

X X X

0 1

1 0

1 1

0

1

0

0

0

0

0

0

0

0

invalid

Qn+1

* Clocked flip-flops are also provided with asynchronous or direct Set and Reset
inputs, Sd and Rd , (also called Preset and Clear, respectively) which override all
other inputs (J, K, CLK).

* The Sd and Rd inputs may be active low; in that case, they are denoted by
Sd and Rd .

* The asynchronous inputs are convenient for “starting up” a circuit in a known
state.

M. B. Patil, IIT Bombay

JK flip-flop: asynchronous inputs

CLK

J

K

CLK KJ

operation
normal

RdSd

Qn

Qn

Q

Q

Rd

Sd

0 0

0 1

1 0

1 1

0

1

X X X

X X X

X X X

0 1

1 0

1 1

0

1

0

0

0

0

0

0

0

0

invalid

Qn+1

* Clocked flip-flops are also provided with asynchronous or direct Set and Reset
inputs, Sd and Rd , (also called Preset and Clear, respectively) which override all
other inputs (J, K, CLK).

* The Sd and Rd inputs may be active low; in that case, they are denoted by
Sd and Rd .

* The asynchronous inputs are convenient for “starting up” a circuit in a known
state.

M. B. Patil, IIT Bombay

D flip-flop

D DCLK J

K

CLK

D

D

CLK

J

K

CLK

D

CLK

D

Q

CLK

D

Q

DCLK

CLK

positive edge−triggered D flip−flop

negative edge−triggered D flip−flop

t

t

t

t

t

t

t5t4t3t2t1

t5t4t3t2t1

Q

Q

Q

Q

Q

Q

Q

Q

0

1

0

1

0

1

0

1

Qn+1

Qn+1

* The D flip-flop can be used to delay the Data (D) signal by one clock period.

* With J = D, K = D, we have either J = 0, K = 1 or J = 1, K = 0; the next Q is 0 in the first
case, 1 in the second case.

* Instead of a JK flip-flop, an RS flip-flop can also be used to make a D flip-flop, with
S = D, R = D.

M. B. Patil, IIT Bombay

D flip-flop

D DCLK J

K

CLK

D

D

CLK

J

K

CLK

D

CLK

D

Q

CLK

D

Q

DCLK

CLK

positive edge−triggered D flip−flop

negative edge−triggered D flip−flop

t

t

t

t

t

t

t5t4t3t2t1

t5t4t3t2t1

Q

Q

Q

Q

Q

Q

Q

Q

0

1

0

1

0

1

0

1

Qn+1

Qn+1

* The D flip-flop can be used to delay the Data (D) signal by one clock period.

* With J = D, K = D, we have either J = 0, K = 1 or J = 1, K = 0; the next Q is 0 in the first
case, 1 in the second case.

* Instead of a JK flip-flop, an RS flip-flop can also be used to make a D flip-flop, with
S = D, R = D.

M. B. Patil, IIT Bombay

D flip-flop

D DCLK J

K

CLK

D

D

CLK

J

K

CLK

D

CLK

D

Q

CLK

D

Q

DCLK

CLK

positive edge−triggered D flip−flop

negative edge−triggered D flip−flop

t

t

t

t

t

t

t5t4t3t2t1

t5t4t3t2t1

Q

Q

Q

Q

Q

Q

Q

Q

0

1

0

1

0

1

0

1

Qn+1

Qn+1

* The D flip-flop can be used to delay the Data (D) signal by one clock period.

* With J = D, K = D, we have either J = 0, K = 1 or J = 1, K = 0; the next Q is 0 in the first
case, 1 in the second case.

* Instead of a JK flip-flop, an RS flip-flop can also be used to make a D flip-flop, with
S = D, R = D.

M. B. Patil, IIT Bombay

D flip-flop

D DCLK J

K

CLK

D

D

CLK

J

K

CLK

D

CLK

D

Q

CLK

D

Q

DCLK

CLK

positive edge−triggered D flip−flop

negative edge−triggered D flip−flop

t

t

t

t

t

t

t5t4t3t2t1

t5t4t3t2t1

Q

Q

Q

Q

Q

Q

Q

Q

0

1

0

1

0

1

0

1

Qn+1

Qn+1

* The D flip-flop can be used to delay the Data (D) signal by one clock period.

* With J = D, K = D, we have either J = 0, K = 1 or J = 1, K = 0; the next Q is 0 in the first
case, 1 in the second case.

* Instead of a JK flip-flop, an RS flip-flop can also be used to make a D flip-flop, with
S = D, R = D.

M. B. Patil, IIT Bombay

Shift register

D D D DD

CLK

Q4
Q3Q2Q1

Q

Q

Q

Q

Q

Q

Q

Q

Let Q1 = Q2 = Q3 = Q4 = 0 initially.

D

CLK

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
time (msec)

Q4

Q3

Q2

Q1

0 0 0 011010D:

t

t Q4Q3Q2Q1

01 0 0

0011

010 1

11 10

0 101

(SEQUEL file: ee101_shift_reg_1.sqproj)

* The data (D) keeps shifting right after each active clock edge.

M. B. Patil, IIT Bombay

Shift register

D D D DD

CLK

Q4
Q3Q2Q1

Q

Q

Q

Q

Q

Q

Q

Q

Let Q1 = Q2 = Q3 = Q4 = 0 initially.

D

CLK

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
time (msec)

Q4

Q3

Q2

Q1

0 0 0 011010D:

t

t Q4Q3Q2Q1

01 0 0

0011

010 1

11 10

0 101

(SEQUEL file: ee101_shift_reg_1.sqproj)

* The data (D) keeps shifting right after each active clock edge.

M. B. Patil, IIT Bombay

Shift register

D D D DD

CLK

Q4
Q3Q2Q1

Q

Q

Q

Q

Q

Q

Q

Q

Let Q1 = Q2 = Q3 = Q4 = 0 initially.

D

CLK

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
time (msec)

Q4

Q3

Q2

Q1

0 0 0 011010D:

t

t Q4Q3Q2Q1

01 0 0

0011

010 1

11 10

0 101

(SEQUEL file: ee101_shift_reg_1.sqproj)

* The data (D) keeps shifting right after each active clock edge.

M. B. Patil, IIT Bombay

Shift register

D D D DD

CLK

Q4
Q3Q2Q1

Q

Q

Q

Q

Q

Q

Q

Q

Let Q1 = Q2 = Q3 = Q4 = 0 initially.

D

CLK

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
time (msec)

Q4

Q3

Q2

Q1

0 0 0 011010D:

t

t Q4Q3Q2Q1

01 0 0

0011

010 1

11 10

0 101

(SEQUEL file: ee101_shift_reg_1.sqproj)

* The data (D) keeps shifting right after each active clock edge.

M. B. Patil, IIT Bombay

Shift register

D D D DD

CLK

Q4
Q3Q2Q1

Q

Q

Q

Q

Q

Q

Q

Q

Let Q1 = Q2 = Q3 = Q4 = 0 initially.

D

CLK

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
time (msec)

Q4

Q3

Q2

Q1

0 0 0 011010D:

t

t Q4Q3Q2Q1

01 0 0

0011

010 1

11 10

0 101

(SEQUEL file: ee101_shift_reg_1.sqproj)

* The data (D) keeps shifting right after each active clock edge.

M. B. Patil, IIT Bombay

Shift register

D D D DD

CLK

Q4
Q3Q2Q1

Q

Q

Q

Q

Q

Q

Q

Q

Let Q1 = Q2 = Q3 = Q4 = 0 initially.

D

CLK

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
time (msec)

Q4

Q3

Q2

Q1

0 0 0 011010D:

t

t Q4Q3Q2Q1

01 0 0

0011

010 1

11 10

0 101

(SEQUEL file: ee101_shift_reg_1.sqproj)

* The data (D) keeps shifting right after each active clock edge.

M. B. Patil, IIT Bombay

Shift register

D D D DD

CLK

Q4
Q3Q2Q1

Q

Q

Q

Q

Q

Q

Q

Q

Let Q1 = Q2 = Q3 = Q4 = 0 initially.

D

CLK

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
time (msec)

Q4

Q3

Q2

Q1

0 0 0 011010D:

t

t Q4Q3Q2Q1

01 0 0

0011

010 1

11 10

0 101

(SEQUEL file: ee101_shift_reg_1.sqproj)

* The data (D) keeps shifting right after each active clock edge.

M. B. Patil, IIT Bombay

Shift register

D D D DD

CLK

Q4
Q3Q2Q1

Q

Q

Q

Q

Q

Q

Q

Q

Let Q1 = Q2 = Q3 = Q4 = 0 initially.

D

CLK

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
time (msec)

Q4

Q3

Q2

Q1

0 0 0 011010D:

t

t Q4Q3Q2Q1

01 0 0

0011

010 1

11 10

0 101

(SEQUEL file: ee101_shift_reg_1.sqproj)

* The data (D) keeps shifting right after each active clock edge.

M. B. Patil, IIT Bombay

Shift register

D D D DD

CLK

Q4
Q3Q2Q1

Q

Q

Q

Q

Q

Q

Q

Q

Let Q1 = Q2 = Q3 = Q4 = 0 initially.

D

CLK

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
time (msec)

Q4

Q3

Q2

Q1

0 0 0 011010D:

t

t Q4Q3Q2Q1

01 0 0

0011

010 1

11 10

0 101

(SEQUEL file: ee101_shift_reg_1.sqproj)

* The data (D) keeps shifting right after each active clock edge.

M. B. Patil, IIT Bombay

Shift register

D D D DD

CLK

Q4
Q3Q2Q1

Q

Q

Q

Q

Q

Q

Q

Q

Let Q1 = Q2 = Q3 = Q4 = 0 initially.

D

CLK

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
time (msec)

Q4

Q3

Q2

Q1

0 0 0 011010D:

t

t Q4Q3Q2Q1

01 0 0

0011

010 1

11 10

0 101

(SEQUEL file: ee101_shift_reg_1.sqproj)

* The data (D) keeps shifting right after each active clock edge.

M. B. Patil, IIT Bombay

Shift register

D D D DD

CLK

Q4
Q3Q2Q1

Q

Q

Q

Q

Q

Q

Q

Q

Let Q1 = Q2 = Q3 = Q4 = 0 initially.

D

CLK

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
time (msec)

Q4

Q3

Q2

Q1

0 0 0 011010D:

t

t Q4Q3Q2Q1

01 0 0

0011

010 1

11 10

0 101

(SEQUEL file: ee101_shift_reg_1.sqproj)

* The data (D) keeps shifting right after each active clock edge.

M. B. Patil, IIT Bombay

Shift register

D D D DD

CLK

Q4
Q3Q2Q1

Q

Q

Q

Q

Q

Q

Q

Q

Let Q1 = Q2 = Q3 = Q4 = 0 initially.

D

CLK

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
time (msec)

Q4

Q3

Q2

Q1

0 0 0 011010D:

t

t Q4Q3Q2Q1

01 0 0

0011

010 1

11 10

0 101

(SEQUEL file: ee101_shift_reg_1.sqproj)

* The data (D) keeps shifting right after each active clock edge.

M. B. Patil, IIT Bombay

Shift register

D D D DD

CLK

Q4
Q3Q2Q1

Q

Q

Q

Q

Q

Q

Q

Q

Let Q1 = Q2 = Q3 = Q4 = 0 initially.

D

CLK

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
time (msec)

Q4

Q3

Q2

Q1

0 0 0 011010D:

t

t Q4Q3Q2Q1

01 0 0

0011

010 1

11 10

0 101

(SEQUEL file: ee101_shift_reg_1.sqproj)

* The data (D) keeps shifting right after each active clock edge.

M. B. Patil, IIT Bombay

Parallel transfer between shift registers

DDDD

DDDD
Register B

Register A

CLK

B0B1B2B3

A0A1A2A3

A0A1A2A3

B0B1B2B3

Q

Q

Q

Q

Q

QQ

Q

Q

Q

Q

Q

Q

QQ

Q

* After the active clock edge, the contents of the A register (A3A2A1A0) are
copied to the B register.

M. B. Patil, IIT Bombay

Parallel transfer between shift registers

DDDD

DDDD
Register B

Register A

CLK

B0B1B2B3

A0A1A2A3

A0A1A2A3

B0B1B2B3

Q

Q

Q

Q

Q

QQ

Q

Q

Q

Q

Q

Q

QQ

Q

* After the active clock edge, the contents of the A register (A3A2A1A0) are
copied to the B register.

M. B. Patil, IIT Bombay

Bidirectional shift register

DD D D

CLK

D3D2D1D0 Q1Q0 Q2 Q3

DL

DR

Q

Q

Q

Q

Q

Q

Q

Q

M

M

* When the mode input (M) is 1, we have
D0 = DR , D1 = Q0, D2 = Q1, D3 = Q2.

* When the mode input (M) is 0, we have
D0 = Q1, D1 = Q2, D2 = Q3, D3 = DL.

* M = 1 → shift right operation.
M = 0 → shift left operation.

M. B. Patil, IIT Bombay

Bidirectional shift register

DD D D

CLK

D3D2D1D0 Q1Q0 Q2 Q3

DL

DR

Q

Q

Q

Q

Q

Q

Q

Q

M

M

* When the mode input (M) is 1, we have
D0 = DR , D1 = Q0, D2 = Q1, D3 = Q2.

* When the mode input (M) is 0, we have
D0 = Q1, D1 = Q2, D2 = Q3, D3 = DL.

* M = 1 → shift right operation.
M = 0 → shift left operation.

M. B. Patil, IIT Bombay

Bidirectional shift register

DD D D

CLK

D3D2D1D0 Q1Q0 Q2 Q3

DL

DR

Q

Q

Q

Q

Q

Q

Q

Q

M

M

* When the mode input (M) is 1, we have
D0 = DR , D1 = Q0, D2 = Q1, D3 = Q2.

* When the mode input (M) is 0, we have
D0 = Q1, D1 = Q2, D2 = Q3, D3 = DL.

* M = 1 → shift right operation.
M = 0 → shift left operation.

M. B. Patil, IIT Bombay

Bidirectional shift register

DD D D

CLK

D3D2D1D0 Q1Q0 Q2 Q3

DL

DR

Q

Q

Q

Q

Q

Q

Q

Q

M

M

* When the mode input (M) is 1, we have
D0 = DR , D1 = Q0, D2 = Q1, D3 = Q2.

* When the mode input (M) is 0, we have
D0 = Q1, D1 = Q2, D2 = Q3, D3 = DL.

* M = 1 → shift right operation.
M = 0 → shift left operation.

M. B. Patil, IIT Bombay

Multiplication using shift and add

(decimal 11)

(decimal 13)

since B0 = 1

since B1 = 0

addition

since B2 = 1

addition

since B3 = 1

(decimal 143)

Note that Z = 0. We use Z to denote 0s which are
independent of the numbers being multiplied.

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 10

0 0 00 Z

0

Z Z

1 1 1 1 10

ZZZ

11110001

A3A2A1A0
B3B2B1B0

addition

initializeZ Z Z Z Z Z Z Z

Register 2 Register 1

since B0 = 1
load 10111 1 10

add1 1 10 ZZZZ

shift1 0 1 1Z Z Z Z

since B1 = 0
load 00000 0 0 0

add0 01 1 1 Z Z Z

shiftZ 0 01 1 1 Z Z

since B2 = 1
load 10111 1 10

add1 1 10 1 1 Z Z

shiftZ 1 1 0 1 1 1 Z

since B3 = 1
load 10111 1 10

add1 1 1 1 1 Z0 0 0

shiftZ 1 0 0 0 1 1 1 1

M. B. Patil, IIT Bombay

Multiplication using shift and add

(decimal 11)

(decimal 13)

since B0 = 1

since B1 = 0

addition

since B2 = 1

addition

since B3 = 1

(decimal 143)

Note that Z = 0. We use Z to denote 0s which are
independent of the numbers being multiplied.

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 10

0 0 00 Z

0

Z Z

1 1 1 1 10

ZZZ

11110001

A3A2A1A0
B3B2B1B0

addition

initializeZ Z Z Z Z Z Z Z

Register 2 Register 1

since B0 = 1
load 10111 1 10

add1 1 10 ZZZZ

shift1 0 1 1Z Z Z Z

since B1 = 0
load 00000 0 0 0

add0 01 1 1 Z Z Z

shiftZ 0 01 1 1 Z Z

since B2 = 1
load 10111 1 10

add1 1 10 1 1 Z Z

shiftZ 1 1 0 1 1 1 Z

since B3 = 1
load 10111 1 10

add1 1 1 1 1 Z0 0 0

shiftZ 1 0 0 0 1 1 1 1

M. B. Patil, IIT Bombay

Multiplication using shift and add

(decimal 11)

(decimal 13)

since B0 = 1

since B1 = 0

addition

since B2 = 1

addition

since B3 = 1

(decimal 143)

Note that Z = 0. We use Z to denote 0s which are
independent of the numbers being multiplied.

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 10

0 0 00 Z

0

Z Z

1 1 1 1 10

ZZZ

11110001

A3A2A1A0
B3B2B1B0

addition

initializeZ Z Z Z Z Z Z Z

Register 2 Register 1

since B0 = 1
load 10111 1 10

add1 1 10 ZZZZ

shift1 0 1 1Z Z Z Z

since B1 = 0
load 00000 0 0 0

add0 01 1 1 Z Z Z

shiftZ 0 01 1 1 Z Z

since B2 = 1
load 10111 1 10

add1 1 10 1 1 Z Z

shiftZ 1 1 0 1 1 1 Z

since B3 = 1
load 10111 1 10

add1 1 1 1 1 Z0 0 0

shiftZ 1 0 0 0 1 1 1 1

M. B. Patil, IIT Bombay

Multiplication using shift and add

(decimal 11)

(decimal 13)

since B0 = 1

since B1 = 0

addition

since B2 = 1

addition

since B3 = 1

(decimal 143)

Note that Z = 0. We use Z to denote 0s which are
independent of the numbers being multiplied.

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 10

0 0 00 Z

0

Z Z

1 1 1 1 10

ZZZ

11110001

A3A2A1A0
B3B2B1B0

addition

initializeZ Z Z Z Z Z Z Z

Register 2 Register 1

since B0 = 1
load 10111 1 10

add1 1 10 ZZZZ

shift1 0 1 1Z Z Z Z

since B1 = 0
load 00000 0 0 0

add0 01 1 1 Z Z Z

shiftZ 0 01 1 1 Z Z

since B2 = 1
load 10111 1 10

add1 1 10 1 1 Z Z

shiftZ 1 1 0 1 1 1 Z

since B3 = 1
load 10111 1 10

add1 1 1 1 1 Z0 0 0

shiftZ 1 0 0 0 1 1 1 1

M. B. Patil, IIT Bombay

Multiplication using shift and add

(decimal 11)

(decimal 13)

since B0 = 1

since B1 = 0

addition

since B2 = 1

addition

since B3 = 1

(decimal 143)

Note that Z = 0. We use Z to denote 0s which are
independent of the numbers being multiplied.

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 10

0 0 00 Z

0

Z Z

1 1 1 1 10

ZZZ

11110001

A3A2A1A0
B3B2B1B0

addition

initializeZ Z Z Z Z Z Z Z

Register 2 Register 1

since B0 = 1
load 10111 1 10

add1 1 10 ZZZZ

shift1 0 1 1Z Z Z Z

since B1 = 0
load 00000 0 0 0

add0 01 1 1 Z Z Z

shiftZ 0 01 1 1 Z Z

since B2 = 1
load 10111 1 10

add1 1 10 1 1 Z Z

shiftZ 1 1 0 1 1 1 Z

since B3 = 1
load 10111 1 10

add1 1 1 1 1 Z0 0 0

shiftZ 1 0 0 0 1 1 1 1

M. B. Patil, IIT Bombay

Multiplication using shift and add

(decimal 11)

(decimal 13)

since B0 = 1

since B1 = 0

addition

since B2 = 1

addition

since B3 = 1

(decimal 143)

Note that Z = 0. We use Z to denote 0s which are
independent of the numbers being multiplied.

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 10

0 0 00 Z

0

Z Z

1 1 1 1 10

ZZZ

11110001

A3A2A1A0
B3B2B1B0

addition

initializeZ Z Z Z Z Z Z Z

Register 2 Register 1

since B0 = 1
load 10111 1 10

add1 1 10 ZZZZ

shift1 0 1 1Z Z Z Z

since B1 = 0
load 00000 0 0 0

add0 01 1 1 Z Z Z

shiftZ 0 01 1 1 Z Z

since B2 = 1
load 10111 1 10

add1 1 10 1 1 Z Z

shiftZ 1 1 0 1 1 1 Z

since B3 = 1
load 10111 1 10

add1 1 1 1 1 Z0 0 0

shiftZ 1 0 0 0 1 1 1 1

M. B. Patil, IIT Bombay

Multiplication using shift and add

(decimal 11)

(decimal 13)

since B0 = 1

since B1 = 0

addition

since B2 = 1

addition

since B3 = 1

(decimal 143)

Note that Z = 0. We use Z to denote 0s which are
independent of the numbers being multiplied.

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 10

0 0 00 Z

0

Z Z

1 1 1 1 10

ZZZ

11110001

A3A2A1A0
B3B2B1B0

addition

initializeZ Z Z Z Z Z Z Z

Register 2 Register 1

since B0 = 1
load 10111 1 10

add1 1 10 ZZZZ

shift1 0 1 1Z Z Z Z

since B1 = 0
load 00000 0 0 0

add0 01 1 1 Z Z Z

shiftZ 0 01 1 1 Z Z

since B2 = 1
load 10111 1 10

add1 1 10 1 1 Z Z

shiftZ 1 1 0 1 1 1 Z

since B3 = 1
load 10111 1 10

add1 1 1 1 1 Z0 0 0

shiftZ 1 0 0 0 1 1 1 1

M. B. Patil, IIT Bombay

Multiplication using shift and add

(decimal 11)

(decimal 13)

since B0 = 1

since B1 = 0

addition

since B2 = 1

addition

since B3 = 1

(decimal 143)

Note that Z = 0. We use Z to denote 0s which are
independent of the numbers being multiplied.

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 10

0 0 00 Z

0

Z Z

1 1 1 1 10

ZZZ

11110001

A3A2A1A0
B3B2B1B0

addition

initializeZ Z Z Z Z Z Z Z

Register 2 Register 1

since B0 = 1
load 10111 1 10

add1 1 10 ZZZZ

shift1 0 1 1Z Z Z Z

since B1 = 0
load 00000 0 0 0

add0 01 1 1 Z Z Z

shiftZ 0 01 1 1 Z Z

since B2 = 1
load 10111 1 10

add1 1 10 1 1 Z Z

shiftZ 1 1 0 1 1 1 Z

since B3 = 1
load 10111 1 10

add1 1 1 1 1 Z0 0 0

shiftZ 1 0 0 0 1 1 1 1

M. B. Patil, IIT Bombay

Multiplication using shift and add

(decimal 11)

(decimal 13)

since B0 = 1

since B1 = 0

addition

since B2 = 1

addition

since B3 = 1

(decimal 143)

Note that Z = 0. We use Z to denote 0s which are
independent of the numbers being multiplied.

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 10

0 0 00 Z

0

Z Z

1 1 1 1 10

ZZZ

11110001

A3A2A1A0
B3B2B1B0

addition

initializeZ Z Z Z Z Z Z Z

Register 2 Register 1

since B0 = 1
load 10111 1 10

add1 1 10 ZZZZ

shift1 0 1 1Z Z Z Z

since B1 = 0
load 00000 0 0 0

add0 01 1 1 Z Z Z

shiftZ 0 01 1 1 Z Z

since B2 = 1
load 10111 1 10

add1 1 10 1 1 Z Z

shiftZ 1 1 0 1 1 1 Z

since B3 = 1
load 10111 1 10

add1 1 1 1 1 Z0 0 0

shiftZ 1 0 0 0 1 1 1 1

M. B. Patil, IIT Bombay

Multiplication using shift and add

(decimal 11)

(decimal 13)

since B0 = 1

since B1 = 0

addition

since B2 = 1

addition

since B3 = 1

(decimal 143)

Note that Z = 0. We use Z to denote 0s which are
independent of the numbers being multiplied.

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 10

0 0 00 Z

0

Z Z

1 1 1 1 10

ZZZ

11110001

A3A2A1A0
B3B2B1B0

addition

initializeZ Z Z Z Z Z Z Z

Register 2 Register 1

since B0 = 1
load 10111 1 10

add1 1 10 ZZZZ

shift1 0 1 1Z Z Z Z

since B1 = 0
load 00000 0 0 0

add0 01 1 1 Z Z Z

shiftZ 0 01 1 1 Z Z

since B2 = 1
load 10111 1 10

add1 1 10 1 1 Z Z

shiftZ 1 1 0 1 1 1 Z

since B3 = 1
load 10111 1 10

add1 1 1 1 1 Z0 0 0

shiftZ 1 0 0 0 1 1 1 1

M. B. Patil, IIT Bombay

Multiplication using shift and add

(decimal 11)

(decimal 13)

since B0 = 1

since B1 = 0

addition

since B2 = 1

addition

since B3 = 1

(decimal 143)

Note that Z = 0. We use Z to denote 0s which are
independent of the numbers being multiplied.

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 10

0 0 00 Z

0

Z Z

1 1 1 1 10

ZZZ

11110001

A3A2A1A0
B3B2B1B0

addition

initializeZ Z Z Z Z Z Z Z

Register 2 Register 1

since B0 = 1
load 10111 1 10

add1 1 10 ZZZZ

shift1 0 1 1Z Z Z Z

since B1 = 0
load 00000 0 0 0

add0 01 1 1 Z Z Z

shiftZ 0 01 1 1 Z Z

since B2 = 1
load 10111 1 10

add1 1 10 1 1 Z Z

shiftZ 1 1 0 1 1 1 Z

since B3 = 1
load 10111 1 10

add1 1 1 1 1 Z0 0 0

shiftZ 1 0 0 0 1 1 1 1

M. B. Patil, IIT Bombay

Multiplication using shift and add

(decimal 11)

(decimal 13)

since B0 = 1

since B1 = 0

addition

since B2 = 1

addition

since B3 = 1

(decimal 143)

Note that Z = 0. We use Z to denote 0s which are
independent of the numbers being multiplied.

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 10

0 0 00 Z

0

Z Z

1 1 1 1 10

ZZZ

11110001

A3A2A1A0
B3B2B1B0

addition

initializeZ Z Z Z Z Z Z Z

Register 2 Register 1

since B0 = 1
load 10111 1 10

add1 1 10 ZZZZ

shift1 0 1 1Z Z Z Z

since B1 = 0
load 00000 0 0 0

add0 01 1 1 Z Z Z

shiftZ 0 01 1 1 Z Z

since B2 = 1
load 10111 1 10

add1 1 10 1 1 Z Z

shiftZ 1 1 0 1 1 1 Z

since B3 = 1
load 10111 1 10

add1 1 1 1 1 Z0 0 0

shiftZ 1 0 0 0 1 1 1 1

M. B. Patil, IIT Bombay

Multiplication using shift and add

(decimal 11)

(decimal 13)

since B0 = 1

since B1 = 0

addition

since B2 = 1

addition

since B3 = 1

(decimal 143)

Note that Z = 0. We use Z to denote 0s which are
independent of the numbers being multiplied.

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 10

0 0 00 Z

0

Z Z

1 1 1 1 10

ZZZ

11110001

A3A2A1A0
B3B2B1B0

addition

initializeZ Z Z Z Z Z Z Z

Register 2 Register 1

since B0 = 1
load 10111 1 10

add1 1 10 ZZZZ

shift1 0 1 1Z Z Z Z

since B1 = 0
load 00000 0 0 0

add0 01 1 1 Z Z Z

shiftZ 0 01 1 1 Z Z

since B2 = 1
load 10111 1 10

add1 1 10 1 1 Z Z

shiftZ 1 1 0 1 1 1 Z

since B3 = 1
load 10111 1 10

add1 1 1 1 1 Z0 0 0

shiftZ 1 0 0 0 1 1 1 1

M. B. Patil, IIT Bombay

Multiplication using shift and add

(decimal 11)

(decimal 13)

since B0 = 1

since B1 = 0

addition

since B2 = 1

addition

since B3 = 1

(decimal 143)

Note that Z = 0. We use Z to denote 0s which are
independent of the numbers being multiplied.

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 10

0 0 00 Z

0

Z Z

1 1 1 1 10

ZZZ

11110001

A3A2A1A0
B3B2B1B0

addition

initializeZ Z Z Z Z Z Z Z

Register 2 Register 1

since B0 = 1
load 10111 1 10

add1 1 10 ZZZZ

shift1 0 1 1Z Z Z Z

since B1 = 0
load 00000 0 0 0

add0 01 1 1 Z Z Z

shiftZ 0 01 1 1 Z Z

since B2 = 1
load 10111 1 10

add1 1 10 1 1 Z Z

shiftZ 1 1 0 1 1 1 Z

since B3 = 1
load 10111 1 10

add1 1 1 1 1 Z0 0 0

shiftZ 1 0 0 0 1 1 1 1

M. B. Patil, IIT Bombay

Parallel in-serial out data movement

Clear
CLK

Load

0

1

J

K

J

K

J

K

J

K

t

t

t

CLK

Clear

Load

RdRd

Sd Sd

Rd

Sd

Rd

Sd
Q3

A0A1A2A3

Q0
Q

Q0 = A0 Q0 = A1 Q0 = A3Q0 = A2

Q1
Q

QQQ

Q
Q2

Q

Q

0 00 00 0 00 0 0 0

* All flip-flops are cleared in the beginning (with Rd = Clear = 1, Sd = 0).

* When Load = 1, Sd = Ai , Rd = 0 → Ai gets loaded into the i th flip-flop. (We will assume
that CLK has been made 0 in this initial phase.)

* Subsequently, with every clock pulse, the data shifts right and appears serially at the
output Q0.

M. B. Patil, IIT Bombay

Parallel in-serial out data movement

Clear
CLK

Load

0

1

J

K

J

K

J

K

J

K

t

t

t

CLK

Clear

Load

RdRd

Sd Sd

Rd

Sd

Rd

Sd
Q3

A0A1A2A3

Q0
Q

Q0 = A0 Q0 = A1 Q0 = A3Q0 = A2

Q1
Q

QQQ

Q
Q2

Q

Q

0 00 00 0 00 0 0 0

* All flip-flops are cleared in the beginning (with Rd = Clear = 1, Sd = 0).

* When Load = 1, Sd = Ai , Rd = 0 → Ai gets loaded into the i th flip-flop. (We will assume
that CLK has been made 0 in this initial phase.)

* Subsequently, with every clock pulse, the data shifts right and appears serially at the
output Q0.

M. B. Patil, IIT Bombay

Parallel in-serial out data movement

Clear
CLK

Load

0

1

J

K

J

K

J

K

J

K

t

t

t

CLK

Clear

Load

RdRd

Sd Sd

Rd

Sd

Rd

Sd
Q3

A0A1A2A3

Q0
Q

Q0 = A0 Q0 = A1 Q0 = A3Q0 = A2

Q1
Q

QQQ

Q
Q2

Q

Q

0 00 00 0 00 0 0 0

* All flip-flops are cleared in the beginning (with Rd = Clear = 1, Sd = 0).

* When Load = 1, Sd = Ai , Rd = 0 → Ai gets loaded into the i th flip-flop. (We will assume
that CLK has been made 0 in this initial phase.)

* Subsequently, with every clock pulse, the data shifts right and appears serially at the
output Q0.

M. B. Patil, IIT Bombay

Parallel in-serial out data movement

Clear
CLK

Load

0

1

J

K

J

K

J

K

J

K

t

t

t

CLK

Clear

Load

RdRd

Sd Sd

Rd

Sd

Rd

Sd
Q3

A0A1A2A3

Q0
Q

Q0 = A0 Q0 = A1 Q0 = A3Q0 = A2

Q1
Q

QQQ

Q
Q2

Q

Q

0 00 00 0 00 0 0 0

* All flip-flops are cleared in the beginning (with Rd = Clear = 1, Sd = 0).

* When Load = 1, Sd = Ai , Rd = 0 → Ai gets loaded into the i th flip-flop. (We will assume
that CLK has been made 0 in this initial phase.)

* Subsequently, with every clock pulse, the data shifts right and appears serially at the
output Q0.

M. B. Patil, IIT Bombay

Parallel in-serial out data movement

Clear
CLK

Load

0

1

J

K

J

K

J

K

J

K

t

t

t

CLK

Clear

Load

RdRd

Sd Sd

Rd

Sd

Rd

Sd
Q3

A0A1A2A3

Q0
Q

Q0 = A0 Q0 = A1 Q0 = A3Q0 = A2

Q1
Q

QQQ

Q
Q2

Q

Q

0

00 00 0 00 0 0 0

* All flip-flops are cleared in the beginning (with Rd = Clear = 1, Sd = 0).

* When Load = 1, Sd = Ai , Rd = 0 → Ai gets loaded into the i th flip-flop. (We will assume
that CLK has been made 0 in this initial phase.)

* Subsequently, with every clock pulse, the data shifts right and appears serially at the
output Q0.

M. B. Patil, IIT Bombay

Parallel in-serial out data movement

Clear
CLK

Load

0

1

J

K

J

K

J

K

J

K

t

t

t

CLK

Clear

Load

RdRd

Sd Sd

Rd

Sd

Rd

Sd
Q3

A0A1A2A3

Q0
Q

Q0 = A0 Q0 = A1 Q0 = A3Q0 = A2

Q1
Q

QQQ

Q
Q2

Q

Q

0

00 00 0 00 0 0 0

* All flip-flops are cleared in the beginning (with Rd = Clear = 1, Sd = 0).

* When Load = 1, Sd = Ai , Rd = 0 → Ai gets loaded into the i th flip-flop. (We will assume
that CLK has been made 0 in this initial phase.)

* Subsequently, with every clock pulse, the data shifts right and appears serially at the
output Q0.

M. B. Patil, IIT Bombay

Parallel in-serial out data movement

Clear
CLK

Load

0

1

J

K

J

K

J

K

J

K

t

t

t

CLK

Clear

Load

RdRd

Sd Sd

Rd

Sd

Rd

Sd
Q3

A0A1A2A3

Q0
Q

Q0 = A0 Q0 = A1 Q0 = A3Q0 = A2

Q1
Q

QQQ

Q
Q2

Q

Q

0 0

0 00 0 00 0 0 0

* All flip-flops are cleared in the beginning (with Rd = Clear = 1, Sd = 0).

* When Load = 1, Sd = Ai , Rd = 0 → Ai gets loaded into the i th flip-flop. (We will assume
that CLK has been made 0 in this initial phase.)

* Subsequently, with every clock pulse, the data shifts right and appears serially at the
output Q0.

M. B. Patil, IIT Bombay

Parallel in-serial out data movement

Clear
CLK

Load

0

1

J

K

J

K

J

K

J

K

t

t

t

CLK

Clear

Load

RdRd

Sd Sd

Rd

Sd

Rd

Sd
Q3

A0A1A2A3

Q0
Q

Q0 = A0 Q0 = A1 Q0 = A3Q0 = A2

Q1
Q

QQQ

Q
Q2

Q

Q

0 00 0

0 0 00 0 0 0

* All flip-flops are cleared in the beginning (with Rd = Clear = 1, Sd = 0).

* When Load = 1, Sd = Ai , Rd = 0 → Ai gets loaded into the i th flip-flop. (We will assume
that CLK has been made 0 in this initial phase.)

* Subsequently, with every clock pulse, the data shifts right and appears serially at the
output Q0.

M. B. Patil, IIT Bombay

Parallel in-serial out data movement

Clear
CLK

Load

0

1

J

K

J

K

J

K

J

K

t

t

t

CLK

Clear

Load

RdRd

Sd Sd

Rd

Sd

Rd

Sd
Q3

A0A1A2A3

Q0
Q

Q0 = A0 Q0 = A1 Q0 = A3Q0 = A2

Q1
Q

QQQ

Q
Q2

Q

Q

0 00 00 0 0

0 0 0 0

* All flip-flops are cleared in the beginning (with Rd = Clear = 1, Sd = 0).

* When Load = 1, Sd = Ai , Rd = 0 → Ai gets loaded into the i th flip-flop. (We will assume
that CLK has been made 0 in this initial phase.)

* Subsequently, with every clock pulse, the data shifts right and appears serially at the
output Q0.

M. B. Patil, IIT Bombay

Parallel in-serial out data movement

Clear
CLK

Load

0

1

J

K

J

K

J

K

J

K

t

t

t

CLK

Clear

Load

RdRd

Sd Sd

Rd

Sd

Rd

Sd
Q3

A0A1A2A3

Q0
Q

Q0 = A0 Q0 = A1 Q0 = A3Q0 = A2

Q1
Q

QQQ

Q
Q2

Q

Q

0 00 00 0 00 0 0 0

* All flip-flops are cleared in the beginning (with Rd = Clear = 1, Sd = 0).

* When Load = 1, Sd = Ai , Rd = 0 → Ai gets loaded into the i th flip-flop. (We will assume
that CLK has been made 0 in this initial phase.)

* Subsequently, with every clock pulse, the data shifts right and appears serially at the
output Q0.

M. B. Patil, IIT Bombay

Counters

Decoding
logic

State transition diagram General configuration

CounterClock
k

1

2

3

4
Reset

Q0
Q1
Q2

QN-1

* A counter with k states is called a modulo-k (mod-k) counter.

* A counter can be made with flip-flops, each flip-flop serving as a memory element with two
states (0 or 1).

* If there are N flip-flops in a counter, there are 2N possible states (since each flip-flop can
have Q = 0 or Q = 1). It is possible to exclude some of these states.

→ N flip-flops can be used to make a mod-k counter with k ≤ 2N .

* Typically, a reset facility is also provided, which can be used to force a certain state to
initialize the counter.

M. B. Patil, IIT Bombay

Counters

Decoding
logic

State transition diagram General configuration

CounterClock
k

1

2

3

4
Reset

Q0
Q1
Q2

QN-1

* A counter with k states is called a modulo-k (mod-k) counter.

* A counter can be made with flip-flops, each flip-flop serving as a memory element with two
states (0 or 1).

* If there are N flip-flops in a counter, there are 2N possible states (since each flip-flop can
have Q = 0 or Q = 1). It is possible to exclude some of these states.

→ N flip-flops can be used to make a mod-k counter with k ≤ 2N .

* Typically, a reset facility is also provided, which can be used to force a certain state to
initialize the counter.

M. B. Patil, IIT Bombay

Counters

Decoding
logic

State transition diagram General configuration

CounterClock
k

1

2

3

4
Reset

Q0
Q1
Q2

QN-1

* A counter with k states is called a modulo-k (mod-k) counter.

* A counter can be made with flip-flops, each flip-flop serving as a memory element with two
states (0 or 1).

* If there are N flip-flops in a counter, there are 2N possible states (since each flip-flop can
have Q = 0 or Q = 1). It is possible to exclude some of these states.

→ N flip-flops can be used to make a mod-k counter with k ≤ 2N .

* Typically, a reset facility is also provided, which can be used to force a certain state to
initialize the counter.

M. B. Patil, IIT Bombay

Counters

Decoding
logic

State transition diagram General configuration

CounterClock
k

1

2

3

4
Reset

Q0
Q1
Q2

QN-1

* A counter with k states is called a modulo-k (mod-k) counter.

* A counter can be made with flip-flops, each flip-flop serving as a memory element with two
states (0 or 1).

* If there are N flip-flops in a counter, there are 2N possible states (since each flip-flop can
have Q = 0 or Q = 1). It is possible to exclude some of these states.

→ N flip-flops can be used to make a mod-k counter with k ≤ 2N .

* Typically, a reset facility is also provided, which can be used to force a certain state to
initialize the counter.

M. B. Patil, IIT Bombay

Counters

Decoding
logic

State transition diagram General configuration

CounterClock
k

1

2

3

4
Reset

Q0
Q1
Q2

QN-1

* A counter with k states is called a modulo-k (mod-k) counter.

* A counter can be made with flip-flops, each flip-flop serving as a memory element with two
states (0 or 1).

* If there are N flip-flops in a counter, there are 2N possible states (since each flip-flop can
have Q = 0 or Q = 1). It is possible to exclude some of these states.

→ N flip-flops can be used to make a mod-k counter with k ≤ 2N .

* Typically, a reset facility is also provided, which can be used to force a certain state to
initialize the counter.

M. B. Patil, IIT Bombay

Counters

Decoding
logic

State transition diagram General configuration

CounterClock
k

1

2

3

4
Reset

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1

CLK
t

t
8T

X

Q0
Q1
Q2

QN-1

X is 1 for state 3; else, it is 0.

* The counter outputs (i.e., the flip-flop outputs, Q0, Q1, · · · QN−1) can be decoded using
appropriate logic.

* In particular, it is possible to have a decoder output (say, X) which is 1 only for state i , and
0 otherwise.
→ For k clock pulses, we get a single pulse at X , i.e., the clock frequency has been divided
by k. For this reason, a mod-k counter is also called a divide-by-k counter.

M. B. Patil, IIT Bombay

Counters

Decoding
logic

State transition diagram General configuration

CounterClock
k

1

2

3

4
Reset

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1

CLK
t

t
8T

X

Q0
Q1
Q2

QN-1

X is 1 for state 3; else, it is 0.

* The counter outputs (i.e., the flip-flop outputs, Q0, Q1, · · · QN−1) can be decoded using
appropriate logic.

* In particular, it is possible to have a decoder output (say, X) which is 1 only for state i , and
0 otherwise.
→ For k clock pulses, we get a single pulse at X , i.e., the clock frequency has been divided
by k. For this reason, a mod-k counter is also called a divide-by-k counter.

M. B. Patil, IIT Bombay

Counters

Decoding
logic

State transition diagram General configuration

CounterClock
k

1

2

3

4
Reset

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1

CLK
t

t
8T

X

Q0
Q1
Q2

QN-1

X is 1 for state 3; else, it is 0.

* The counter outputs (i.e., the flip-flop outputs, Q0, Q1, · · · QN−1) can be decoded using
appropriate logic.

* In particular, it is possible to have a decoder output (say, X) which is 1 only for state i , and
0 otherwise.
→ For k clock pulses, we get a single pulse at X , i.e., the clock frequency has been divided
by k. For this reason, a mod-k counter is also called a divide-by-k counter.

M. B. Patil, IIT Bombay

A binay ripple counter

J

K

J

K

J

K

CLK

1

CLK

FF0 FF1 FF2

t

t

t

t

Q1

Q2

Q0 Q1 Q2

Q0

Q

Q

Q

Q

Q

Q

0

1

0

1

0

0

1

1

0

0

0

0

0

1

1

1

1

0

0

0

1

1

0

0

1

1

0 repeats

Q2 Q1 Q0

* J = K = 1 for all flip-flops. Let Q0 = Q1 = Q2 = 0 initially.

* Since J = K = 1, each flip-flop will toggle when an active (in this case, negative) clock edge
arrives.

* For FF1 and FF2, Q0 and Q1, respectively, provide the clock.

* Note that the direct inputs Sd and Rd (not shown) are assumed to be Sd = Rd = 0 for all
flip-flops, allowing normal flip-flip operation.

M. B. Patil, IIT Bombay

A binay ripple counter

J

K

J

K

J

K

CLK

1

CLK

FF0 FF1 FF2

t

t

t

t

Q1

Q2

Q0 Q1 Q2

Q0

Q

Q

Q

Q

Q

Q

0

1

0

1

0

0

1

1

0

0

0

0

0

1

1

1

1

0

0

0

1

1

0

0

1

1

0 repeats

Q2 Q1 Q0

* J = K = 1 for all flip-flops. Let Q0 = Q1 = Q2 = 0 initially.

* Since J = K = 1, each flip-flop will toggle when an active (in this case, negative) clock edge
arrives.

* For FF1 and FF2, Q0 and Q1, respectively, provide the clock.

* Note that the direct inputs Sd and Rd (not shown) are assumed to be Sd = Rd = 0 for all
flip-flops, allowing normal flip-flip operation.

M. B. Patil, IIT Bombay

A binay ripple counter

J

K

J

K

J

K

CLK

1

CLK

FF0 FF1 FF2

t

t

t

t

Q1

Q2

Q0 Q1 Q2

Q0

Q

Q

Q

Q

Q

Q

0

1

0

1

0

0

1

1

0

0

0

0

0

1

1

1

1

0

0

0

1

1

0

0

1

1

0 repeats

Q2 Q1 Q0

* J = K = 1 for all flip-flops. Let Q0 = Q1 = Q2 = 0 initially.

* Since J = K = 1, each flip-flop will toggle when an active (in this case, negative) clock edge
arrives.

* For FF1 and FF2, Q0 and Q1, respectively, provide the clock.

* Note that the direct inputs Sd and Rd (not shown) are assumed to be Sd = Rd = 0 for all
flip-flops, allowing normal flip-flip operation.

M. B. Patil, IIT Bombay

A binay ripple counter

J

K

J

K

J

K

CLK

1

CLK

FF0 FF1 FF2

t

t

t

t

Q1

Q2

Q0 Q1 Q2

Q0

Q

Q

Q

Q

Q

Q

0

1

0

1

0

0

1

1

0

0

0

0

0

1

1

1

1

0

0

0

1

1

0

0

1

1

0 repeats

Q2 Q1 Q0

* J = K = 1 for all flip-flops. Let Q0 = Q1 = Q2 = 0 initially.

* Since J = K = 1, each flip-flop will toggle when an active (in this case, negative) clock edge
arrives.

* For FF1 and FF2, Q0 and Q1, respectively, provide the clock.

* Note that the direct inputs Sd and Rd (not shown) are assumed to be Sd = Rd = 0 for all
flip-flops, allowing normal flip-flip operation.

M. B. Patil, IIT Bombay

A binay ripple counter

J

K

J

K

J

K

CLK

1

CLK

FF0 FF1 FF2

t

t

t

t

Q1

Q2

Q0 Q1 Q2

Q0

Q

Q

Q

Q

Q

Q

0

1

0

1

0

0

1

1

0

0

0

0

0

1

1

1

1

0

0

0

1

1

0

0

1

1

0 repeats

Q2 Q1 Q0

* J = K = 1 for all flip-flops. Let Q0 = Q1 = Q2 = 0 initially.

* Since J = K = 1, each flip-flop will toggle when an active (in this case, negative) clock edge
arrives.

* For FF1 and FF2, Q0 and Q1, respectively, provide the clock.

* Note that the direct inputs Sd and Rd (not shown) are assumed to be Sd = Rd = 0 for all
flip-flops, allowing normal flip-flip operation.

M. B. Patil, IIT Bombay

A binay ripple counter

J

K

J

K

J

K

CLK

1

CLK

FF0 FF1 FF2

t

t

t

t

Q1

Q2

Q0 Q1 Q2

Q0

Q

Q

Q

Q

Q

Q

0

1

0

1

0

0

1

1

0

0

0

0

0

1

1

1

1

0

0

0

1

1

0

0

1

1

0 repeats

Q2 Q1 Q0

* J = K = 1 for all flip-flops. Let Q0 = Q1 = Q2 = 0 initially.

* Since J = K = 1, each flip-flop will toggle when an active (in this case, negative) clock edge
arrives.

* For FF1 and FF2, Q0 and Q1, respectively, provide the clock.

* Note that the direct inputs Sd and Rd (not shown) are assumed to be Sd = Rd = 0 for all
flip-flops, allowing normal flip-flip operation.

M. B. Patil, IIT Bombay

A binay ripple counter

J

K

J

K

J

K

CLK

1

CLK

FF0 FF1 FF2

t

t

t

t

Q1

Q2

Q0 Q1 Q2

Q0

Q

Q

Q

Q

Q

Q

0

1

0

1

0

0

1

1

0

0

0

0

0

1

1

1

1

0

0

0

1

1

0

0

1

1

0 repeats

Q2 Q1 Q0

* J = K = 1 for all flip-flops. Let Q0 = Q1 = Q2 = 0 initially.

* Since J = K = 1, each flip-flop will toggle when an active (in this case, negative) clock edge
arrives.

* For FF1 and FF2, Q0 and Q1, respectively, provide the clock.

* Note that the direct inputs Sd and Rd (not shown) are assumed to be Sd = Rd = 0 for all
flip-flops, allowing normal flip-flip operation.

M. B. Patil, IIT Bombay

A binay ripple counter

J

K

J

K

J

K

CLK

1

CLK

FF0 FF1 FF2

t

t

t

t

Q1

Q2

Q0 Q1 Q2

Q0

Q

Q

Q

Q

Q

Q 0

1

0

1

0

0

1

1

0

0

0

0

0

1

1

1

1

0

0

0

1

1

0

0

1

1

0 repeats

Q2 Q1 Q0

* J = K = 1 for all flip-flops. Let Q0 = Q1 = Q2 = 0 initially.

* Since J = K = 1, each flip-flop will toggle when an active (in this case, negative) clock edge
arrives.

* For FF1 and FF2, Q0 and Q1, respectively, provide the clock.

* Note that the direct inputs Sd and Rd (not shown) are assumed to be Sd = Rd = 0 for all
flip-flops, allowing normal flip-flip operation.

M. B. Patil, IIT Bombay

A binay ripple counter

J

K

J

K

J

K

CLK

1

CLK

FF0 FF1 FF2

t

t

t

t

Q1

Q2

Q0 Q1 Q2

Q0

Q

Q

Q

Q

Q

Q 0

1

0

1

0

0

1

1

0

0

0

0

0

1

1

1

1

0

0

0

1

1

0

0

1

1

0 repeats

Q2 Q1 Q0

* J = K = 1 for all flip-flops. Let Q0 = Q1 = Q2 = 0 initially.

* Since J = K = 1, each flip-flop will toggle when an active (in this case, negative) clock edge
arrives.

* For FF1 and FF2, Q0 and Q1, respectively, provide the clock.

* Note that the direct inputs Sd and Rd (not shown) are assumed to be Sd = Rd = 0 for all
flip-flops, allowing normal flip-flip operation.

M. B. Patil, IIT Bombay

A binay ripple counter

J

K

J

K

J

K

CLK

1

0

1

0

1

0

0

1

1

0

0

0

0

0

1

1

1

1

0

0

0

1

1

0

0

1

1

0

CLK

repeats

FF0 FF1 FF2

t

t

t

t

Q2 Q1

Q1

Q2

Q0 Q1 Q2

Q0

Q0

Q

Q

Q

Q

Q

Q

* The counter has 8 states, Q2Q1Q0 = 000, 001, 010, 011, 100, 101, 110, 111.
→ it is a mod-8 counter. In particular, it is a binary, mod-8, up counter (since it counts up
from 000 to 111).

* If the clock frequency is fc , the frequency at the Q0, Q1, Q2 outputs is fc/2, fc/4, fc/8,
respectively. For this counter, therefore, div-by-2, div-by-4, div-by-8 outputs are already
available, without requring decoding logic.

* This type of counter is called a “ripple” counter since the clock transitions ripple through
the flip-flops.

M. B. Patil, IIT Bombay

A binay ripple counter

J

K

J

K

J

K

CLK

1

0

1

0

1

0

0

1

1

0

0

0

0

0

1

1

1

1

0

0

0

1

1

0

0

1

1

0

CLK

repeats

FF0 FF1 FF2

t

t

t

t

Q2 Q1

Q1

Q2

Q0 Q1 Q2

Q0

Q0

Q

Q

Q

Q

Q

Q

* The counter has 8 states, Q2Q1Q0 = 000, 001, 010, 011, 100, 101, 110, 111.
→ it is a mod-8 counter. In particular, it is a binary, mod-8, up counter (since it counts up
from 000 to 111).

* If the clock frequency is fc , the frequency at the Q0, Q1, Q2 outputs is fc/2, fc/4, fc/8,
respectively. For this counter, therefore, div-by-2, div-by-4, div-by-8 outputs are already
available, without requring decoding logic.

* This type of counter is called a “ripple” counter since the clock transitions ripple through
the flip-flops.

M. B. Patil, IIT Bombay

A binay ripple counter

J

K

J

K

J

K

CLK

1

0

1

0

1

0

0

1

1

0

0

0

0

0

1

1

1

1

0

0

0

1

1

0

0

1

1

0

CLK

repeats

FF0 FF1 FF2

t

t

t

t

Q2 Q1

Q1

Q2

Q0 Q1 Q2

Q0

Q0

Q

Q

Q

Q

Q

Q

* The counter has 8 states, Q2Q1Q0 = 000, 001, 010, 011, 100, 101, 110, 111.
→ it is a mod-8 counter. In particular, it is a binary, mod-8, up counter (since it counts up
from 000 to 111).

* If the clock frequency is fc , the frequency at the Q0, Q1, Q2 outputs is fc/2, fc/4, fc/8,
respectively. For this counter, therefore, div-by-2, div-by-4, div-by-8 outputs are already
available, without requring decoding logic.

* This type of counter is called a “ripple” counter since the clock transitions ripple through
the flip-flops.

M. B. Patil, IIT Bombay

A binay ripple counter

J

K

J

K

J

K

CLK

1

0

1

0

1

0

0

1

1

0

0

0

0

0

1

1

1

1

0

0

0

1

1

0

0

1

1

0

CLK

repeats

FF0 FF1 FF2

t

t

t

t

Q2 Q1

Q1

Q2

Q0 Q1 Q2

Q0

Q0

Q

Q

Q

Q

Q

Q

* The counter has 8 states, Q2Q1Q0 = 000, 001, 010, 011, 100, 101, 110, 111.
→ it is a mod-8 counter. In particular, it is a binary, mod-8, up counter (since it counts up
from 000 to 111).

* If the clock frequency is fc , the frequency at the Q0, Q1, Q2 outputs is fc/2, fc/4, fc/8,
respectively. For this counter, therefore, div-by-2, div-by-4, div-by-8 outputs are already
available, without requring decoding logic.

* This type of counter is called a “ripple” counter since the clock transitions ripple through
the flip-flops.

M. B. Patil, IIT Bombay

A binay ripple counter

CLK

1

J

K

J

K

J

K

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

CLK

repeats

FF0 FF1 FF2

0 0 0

t

t

t

t

Q2 Q1

Q1

Q2

Q0

Q0 Q1 Q2

Q0

Q

Q

Q

Q

Q

Q

* If positive edge-triggered flip-flops are used, we get a binary down counter (counting down
from 1111 to 0000).

M. B. Patil, IIT Bombay

A binay ripple counter

CLK

1

J

K

J

K

J

K

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

CLK

repeats

FF0 FF1 FF2

0 0 0

t

t

t

t

Q2 Q1

Q1

Q2

Q0

Q0 Q1 Q2

Q0

Q

Q

Q

Q

Q

Q

* If positive edge-triggered flip-flops are used, we get a binary down counter (counting down
from 1111 to 0000).

M. B. Patil, IIT Bombay

Binay ripple counters

J

K

J

K

J

K

CLK

1

CLK

1

J

K

J

K

J

K

FF0 FF1 FF2

FF0 FF1 FF2

Q0 Q1 Q2

Q0 Q1 Q2

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

* Home work: Sketch the waveforms (CLK, Q0, Q1, Q2), and tabulate the counter states in
each case.

M. B. Patil, IIT Bombay

Up-down binay ripple counters

J

K

FF0

J

K

FF2

J

K

FF1CLK

1

M=1

CLK CLK

M=0

t

t

t

t

t

t

t

t

Q1

Q2

Q1

Q2

Q0 Q2Q1

Q0 Q0

M

Q

Q

Q

Q

Q

Q

M

* When Mode (M) = 1, the counter counts up; else, it counts down.
(SEQUEL file: ee101 counter 3.sqproj)

M. B. Patil, IIT Bombay

Up-down binay ripple counters

J

K

FF0

J

K

FF2

J

K

FF1CLK

1

M=1

CLK CLK

M=0

t

t

t

t

t

t

t

t

Q1

Q2

Q1

Q2

Q0 Q2Q1

Q0 Q0

M

Q

Q

Q

Q

Q

Q

M

* When Mode (M) = 1, the counter counts up; else, it counts down.
(SEQUEL file: ee101 counter 3.sqproj)

M. B. Patil, IIT Bombay

Decade counter using direct inputs

J

K

FF0

J

K

FF1

J

K

FF2

J

K

FF3

1

0

CLK

0

1

0

1

0

0

1

1

0

0

0

1

1

0

0

1

1

0

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

1

0

0

0 01 1

repeats00 0 0

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
time (msec)

Q3

Q2

Q1

Q0

Q2Q3 Q1

Q0 Q1 Q2 Q3

Q0

Q

Q

Sd

Rd

Q

Q

Sd

Rd

Q

Q

Sd

Rd

Q

Q

Sd

Rd

* When the counter reaches Q3Q2Q1Q0 = 1010 (i.e., decmial 10), Q3Q1 = 1, and the flip-flops
are cleared to Q3Q2Q1Q0 = 0000.

* The counter counts from 0000 (decimal 0) to 1001 (decimal 9) → “decade counter.”
(SEQUEL file: ee101 counter 5.sqproj)

M. B. Patil, IIT Bombay

Decade counter using direct inputs

J

K

FF0

J

K

FF1

J

K

FF2

J

K

FF3

1

0

CLK

0

1

0

1

0

0

1

1

0

0

0

1

1

0

0

1

1

0

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

1

0

0

0 01 1

repeats00 0 0

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
time (msec)

Q3

Q2

Q1

Q0

Q2Q3 Q1

Q0 Q1 Q2 Q3

Q0

Q

Q

Sd

Rd

Q

Q

Sd

Rd

Q

Q

Sd

Rd

Q

Q

Sd

Rd

* When the counter reaches Q3Q2Q1Q0 = 1010 (i.e., decmial 10), Q3Q1 = 1, and the flip-flops
are cleared to Q3Q2Q1Q0 = 0000.

* The counter counts from 0000 (decimal 0) to 1001 (decimal 9) → “decade counter.”
(SEQUEL file: ee101 counter 5.sqproj)

M. B. Patil, IIT Bombay

Decade counter using direct inputs

J

K

FF0

J

K

FF1

J

K

FF2

J

K

FF3

1

0

CLK

0

1

0

1

0

0

1

1

0

0

0

1

1

0

0

1

1

0

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

1

0

0

0 01 1

repeats00 0 0

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
time (msec)

Q3

Q2

Q1

Q0

Q2Q3 Q1

Q0 Q1 Q2 Q3

Q0

Q

Q

Sd

Rd

Q

Q

Sd

Rd

Q

Q

Sd

Rd

Q

Q

Sd

Rd

* When the counter reaches Q3Q2Q1Q0 = 1010 (i.e., decmial 10), Q3Q1 = 1, and the flip-flops
are cleared to Q3Q2Q1Q0 = 0000.

* The counter counts from 0000 (decimal 0) to 1001 (decimal 9) → “decade counter.”
(SEQUEL file: ee101 counter 5.sqproj)

M. B. Patil, IIT Bombay

A synchronous counter

J

K

J

K

J

K

CLK

J

K

FF3

1

CLK

FF0 FF1 FF2

t

t

t

t

t

Q1

Q2

Q3

Q3Q0 Q1 Q2

Q0

Q

Q

Q

Q

Q

Q

Q

Q

* Since all flip-flops are driven by the same clock, the counter is called a “synchronous”
counter.

* J0 = K0 = 1, J1 = K1 = Q0, J2 = K2 = Q1Q0, J3 = K3 = Q2Q1Q0.
* FF0 toggles at every active edge.

FF1 toggles if Q0 = 1 (just before the active clock edge); else, it retains its previous state.
Similar comments apply to FF2 and FF3.

* From the waveforms, we see that it is a binary up counter.

M. B. Patil, IIT Bombay

A synchronous counter

J

K

J

K

J

K

CLK

J

K

FF3

1

CLK

FF0 FF1 FF2

t

t

t

t

t

Q1

Q2

Q3

Q3Q0 Q1 Q2

Q0

Q

Q

Q

Q

Q

Q

Q

Q

* Since all flip-flops are driven by the same clock, the counter is called a “synchronous”
counter.

* J0 = K0 = 1, J1 = K1 = Q0, J2 = K2 = Q1Q0, J3 = K3 = Q2Q1Q0.
* FF0 toggles at every active edge.

FF1 toggles if Q0 = 1 (just before the active clock edge); else, it retains its previous state.
Similar comments apply to FF2 and FF3.

* From the waveforms, we see that it is a binary up counter.

M. B. Patil, IIT Bombay

A synchronous counter

J

K

J

K

J

K

CLK

J

K

FF3

1

CLK

FF0 FF1 FF2

t

t

t

t

t

Q1

Q2

Q3

Q3Q0 Q1 Q2

Q0

Q

Q

Q

Q

Q

Q

Q

Q

* Since all flip-flops are driven by the same clock, the counter is called a “synchronous”
counter.

* J0 = K0 = 1, J1 = K1 = Q0, J2 = K2 = Q1Q0, J3 = K3 = Q2Q1Q0.

* FF0 toggles at every active edge.
FF1 toggles if Q0 = 1 (just before the active clock edge); else, it retains its previous state.
Similar comments apply to FF2 and FF3.

* From the waveforms, we see that it is a binary up counter.

M. B. Patil, IIT Bombay

A synchronous counter

J

K

J

K

J

K

CLK

J

K

FF3

1

CLK

FF0 FF1 FF2

t

t

t

t

t

Q1

Q2

Q3

Q3Q0 Q1 Q2

Q0

Q

Q

Q

Q

Q

Q

Q

Q

* Since all flip-flops are driven by the same clock, the counter is called a “synchronous”
counter.

* J0 = K0 = 1, J1 = K1 = Q0, J2 = K2 = Q1Q0, J3 = K3 = Q2Q1Q0.
* FF0 toggles at every active edge.

FF1 toggles if Q0 = 1 (just before the active clock edge); else, it retains its previous state.
Similar comments apply to FF2 and FF3.

* From the waveforms, we see that it is a binary up counter.

M. B. Patil, IIT Bombay

A synchronous counter

J

K

J

K

J

K

CLK

J

K

FF3

1

CLK

FF0 FF1 FF2

t

t

t

t

t

Q1

Q2

Q3

Q3Q0 Q1 Q2

Q0

Q

Q

Q

Q

Q

Q

Q

Q

* Since all flip-flops are driven by the same clock, the counter is called a “synchronous”
counter.

* J0 = K0 = 1, J1 = K1 = Q0, J2 = K2 = Q1Q0, J3 = K3 = Q2Q1Q0.
* FF0 toggles at every active edge.

FF1 toggles if Q0 = 1 (just before the active clock edge); else, it retains its previous state.
Similar comments apply to FF2 and FF3.

* From the waveforms, we see that it is a binary up counter.

M. B. Patil, IIT Bombay

A synchronous counter

J

K

J

K

J

K

CLK

J

K

FF3

1

CLK

FF0 FF1 FF2

t

t

t

t

t

Q1

Q2

Q3

Q3Q0 Q1 Q2

Q0

Q

Q

Q

Q

Q

Q

Q

Q

* Since all flip-flops are driven by the same clock, the counter is called a “synchronous”
counter.

* J0 = K0 = 1, J1 = K1 = Q0, J2 = K2 = Q1Q0, J3 = K3 = Q2Q1Q0.
* FF0 toggles at every active edge.

FF1 toggles if Q0 = 1 (just before the active clock edge); else, it retains its previous state.
Similar comments apply to FF2 and FF3.

* From the waveforms, we see that it is a binary up counter.

M. B. Patil, IIT Bombay

A synchronous counter

J

K

J

K

J

K

CLK

J

K

FF3

1

CLK

FF0 FF1 FF2

t

t

t

t

t

Q1

Q2

Q3

Q3Q0 Q1 Q2

Q0

Q

Q

Q

Q

Q

Q

Q

Q

* Since all flip-flops are driven by the same clock, the counter is called a “synchronous”
counter.

* J0 = K0 = 1, J1 = K1 = Q0, J2 = K2 = Q1Q0, J3 = K3 = Q2Q1Q0.
* FF0 toggles at every active edge.

FF1 toggles if Q0 = 1 (just before the active clock edge); else, it retains its previous state.
Similar comments apply to FF2 and FF3.

* From the waveforms, we see that it is a binary up counter.

M. B. Patil, IIT Bombay

A synchronous counter

J

K

J

K

J

K

CLK

J

K

FF3

1

CLK

FF0 FF1 FF2

t

t

t

t

t

Q1

Q2

Q3

Q3Q0 Q1 Q2

Q0

Q

Q

Q

Q

Q

Q

Q

Q

* Since all flip-flops are driven by the same clock, the counter is called a “synchronous”
counter.

* J0 = K0 = 1, J1 = K1 = Q0, J2 = K2 = Q1Q0, J3 = K3 = Q2Q1Q0.
* FF0 toggles at every active edge.

FF1 toggles if Q0 = 1 (just before the active clock edge); else, it retains its previous state.
Similar comments apply to FF2 and FF3.

* From the waveforms, we see that it is a binary up counter.

M. B. Patil, IIT Bombay

A synchronous counter

J

K

J

K

J

K

CLK

J

K

FF3

1

CLK

FF0 FF1 FF2

t

t

t

t

t

Q1

Q2

Q3

Q3Q0 Q1 Q2

Q0

Q

Q

Q

Q

Q

Q

Q

Q

* Since all flip-flops are driven by the same clock, the counter is called a “synchronous”
counter.

* J0 = K0 = 1, J1 = K1 = Q0, J2 = K2 = Q1Q0, J3 = K3 = Q2Q1Q0.
* FF0 toggles at every active edge.

FF1 toggles if Q0 = 1 (just before the active clock edge); else, it retains its previous state.
Similar comments apply to FF2 and FF3.

* From the waveforms, we see that it is a binary up counter.
M. B. Patil, IIT Bombay

Design of synchronous counters

CLK KJ

CLK

J

K Q

Q 0 0

0 1

1 0

1 1

Qn

0

1

Qn

Qn+1

KJCLK Qn+1Qn

0 0 0 X

0

0

1

1

1 1

X

X

X

1

1

0

* Consider the reverse problem: We are given Qn and the next desired state (Qn+1). What
should J and K be in order to make that happen?

* Qn = 0, Qn+1 = 0: We can either force Qn+1 = 0 with J = 0, K = 1, or let Qn+1 = Qn = 0 by
making J = 0, K = 0.

→ J = 0, K = X (i.e., K can be 0 or 1).

* Similarly, work out the other entries in the table.

* The table for a negative edge-triggered flip-flop would be identical excpet for the active
edge.

M. B. Patil, IIT Bombay

Design of synchronous counters

CLK KJ

CLK

J

K Q

Q 0 0

0 1

1 0

1 1

Qn

0

1

Qn

Qn+1 KJCLK Qn+1Qn

0 0 0 X

0

0

1

1

1 1

X

X

X

1

1

0

* Consider the reverse problem: We are given Qn and the next desired state (Qn+1). What
should J and K be in order to make that happen?

* Qn = 0, Qn+1 = 0: We can either force Qn+1 = 0 with J = 0, K = 1, or let Qn+1 = Qn = 0 by
making J = 0, K = 0.

→ J = 0, K = X (i.e., K can be 0 or 1).

* Similarly, work out the other entries in the table.

* The table for a negative edge-triggered flip-flop would be identical excpet for the active
edge.

M. B. Patil, IIT Bombay

Design of synchronous counters

CLK KJ

CLK

J

K Q

Q 0 0

0 1

1 0

1 1

Qn

0

1

Qn

Qn+1 KJCLK Qn+1Qn

0 0 0 X

0

0

1

1

1 1

X

X

X

1

1

0

* Consider the reverse problem: We are given Qn and the next desired state (Qn+1). What
should J and K be in order to make that happen?

* Qn = 0, Qn+1 = 0: We can either force Qn+1 = 0 with J = 0, K = 1, or let Qn+1 = Qn = 0 by
making J = 0, K = 0.

→ J = 0, K = X (i.e., K can be 0 or 1).

* Similarly, work out the other entries in the table.

* The table for a negative edge-triggered flip-flop would be identical excpet for the active
edge.

M. B. Patil, IIT Bombay

Design of synchronous counters

CLK KJ

CLK

J

K Q

Q 0 0

0 1

1 0

1 1

Qn

0

1

Qn

Qn+1 KJCLK Qn+1Qn

0 0 0 X

0

0

1

1

1 1

X

X

X

1

1

0

* Consider the reverse problem: We are given Qn and the next desired state (Qn+1). What
should J and K be in order to make that happen?

* Qn = 0, Qn+1 = 0: We can either force Qn+1 = 0 with J = 0, K = 1, or let Qn+1 = Qn = 0 by
making J = 0, K = 0.
→ J = 0, K = X (i.e., K can be 0 or 1).

* Similarly, work out the other entries in the table.

* The table for a negative edge-triggered flip-flop would be identical excpet for the active
edge.

M. B. Patil, IIT Bombay

Design of synchronous counters

CLK KJ

CLK

J

K Q

Q 0 0

0 1

1 0

1 1

Qn

0

1

Qn

Qn+1 KJCLK Qn+1Qn

0 0 0 X

0

0

1

1

1 1

X

X

X

1

1

0

* Consider the reverse problem: We are given Qn and the next desired state (Qn+1). What
should J and K be in order to make that happen?

* Qn = 0, Qn+1 = 0: We can either force Qn+1 = 0 with J = 0, K = 1, or let Qn+1 = Qn = 0 by
making J = 0, K = 0.
→ J = 0, K = X (i.e., K can be 0 or 1).

* Similarly, work out the other entries in the table.

* The table for a negative edge-triggered flip-flop would be identical excpet for the active
edge.

M. B. Patil, IIT Bombay

Design of synchronous counters

CLK KJ

CLK

J

K Q

Q 0 0

0 1

1 0

1 1

Qn

0

1

Qn

Qn+1 KJCLK Qn+1Qn

0 0 0 X

0

0

1

1

1 1

X

X

X

1

1

0

* Consider the reverse problem: We are given Qn and the next desired state (Qn+1). What
should J and K be in order to make that happen?

* Qn = 0, Qn+1 = 0: We can either force Qn+1 = 0 with J = 0, K = 1, or let Qn+1 = Qn = 0 by
making J = 0, K = 0.
→ J = 0, K = X (i.e., K can be 0 or 1).

* Similarly, work out the other entries in the table.

* The table for a negative edge-triggered flip-flop would be identical excpet for the active
edge.

M. B. Patil, IIT Bombay

Design of synchronous counters

CLK KJ

CLK

J

K Q

Q 0 0

0 1

1 0

1 1

Qn

0

1

Qn

Qn+1 KJCLK Qn+1Qn

0 0 0 X

0

0

1

1

1 1

X

X

X

1

1

0

* Consider the reverse problem: We are given Qn and the next desired state (Qn+1). What
should J and K be in order to make that happen?

* Qn = 0, Qn+1 = 0: We can either force Qn+1 = 0 with J = 0, K = 1, or let Qn+1 = Qn = 0 by
making J = 0, K = 0.
→ J = 0, K = X (i.e., K can be 0 or 1).

* Similarly, work out the other entries in the table.

* The table for a negative edge-triggered flip-flop would be identical excpet for the active
edge.

M. B. Patil, IIT Bombay

Design of synchronous counters

CLK KJ

CLK

J

K Q

Q 0 0

0 1

1 0

1 1

Qn

0

1

Qn

Qn+1 KJCLK Qn+1Qn

0 0 0 X

0

0

1

1

1 1

X

X

X

1

1

0

* Consider the reverse problem: We are given Qn and the next desired state (Qn+1). What
should J and K be in order to make that happen?

* Qn = 0, Qn+1 = 0: We can either force Qn+1 = 0 with J = 0, K = 1, or let Qn+1 = Qn = 0 by
making J = 0, K = 0.
→ J = 0, K = X (i.e., K can be 0 or 1).

* Similarly, work out the other entries in the table.

* The table for a negative edge-triggered flip-flop would be identical excpet for the active
edge.

M. B. Patil, IIT Bombay

Design of synchronous counters

J

K

J

K

0

0

0

0

0

1

0

0

1

1

0

0

1

0

1

1

1

2

3

4

5

repeats0 0 0

state

CLK

CLK

J

K

J KQ2 Q1 Q0

0 0

0

0

1

1

1 1

0 X

X

X

X

1

1

0

Qn+1Qn

K1K2 K0

J1J2 J0

Q

Q
Q1

Q

Q
Q2

Q

Q
Q0

Design a synchronous mod-5 counter with the given state transition table.

Outline of method:

* State 1 → State 2 means
Q2: 0→ 0,
Q1: 0→ 0,
Q0: 0→ 1.

* Refer to the right table. For Q2: 0→ 0, we must have J2 = 0, K2 = X , and so on.

* When we cover all transitions in the left table, we have the truth tables for J0, K0, J1, K1,
J2, K2 in terms of Q1, Q2, Q3.

* The last step is to come up with suitable functions for J0, K0, J1, K1, J2, K2 in terms of Q1,
Q2, Q3. This can be done with K-maps. (If the number of flip-flops is more than 4, other
techniques can be employed.)

M. B. Patil, IIT Bombay

Design of synchronous counters

J

K

J

K

0

0

0

0

0

1

0

0

1

1

0

0

1

0

1

1

1

2

3

4

5

repeats0 0 0

state

CLK

CLK

J

K

J KQ2 Q1 Q0

0 0

0

0

1

1

1 1

0 X

X

X

X

1

1

0

Qn+1Qn

K1K2 K0

J1J2 J0

Q

Q
Q1

Q

Q
Q2

Q

Q
Q0

Design a synchronous mod-5 counter with the given state transition table.

Outline of method:

* State 1 → State 2 means
Q2: 0→ 0,
Q1: 0→ 0,
Q0: 0→ 1.

* Refer to the right table. For Q2: 0→ 0, we must have J2 = 0, K2 = X , and so on.

* When we cover all transitions in the left table, we have the truth tables for J0, K0, J1, K1,
J2, K2 in terms of Q1, Q2, Q3.

* The last step is to come up with suitable functions for J0, K0, J1, K1, J2, K2 in terms of Q1,
Q2, Q3. This can be done with K-maps. (If the number of flip-flops is more than 4, other
techniques can be employed.)

M. B. Patil, IIT Bombay

Design of synchronous counters

J

K

J

K

0

0

0

0

0

1

0

0

1

1

0

0

1

0

1

1

1

2

3

4

5

repeats0 0 0

state

CLK

CLK

J

K

J KQ2 Q1 Q0

0 0

0

0

1

1

1 1

0 X

X

X

X

1

1

0

Qn+1Qn

K1K2 K0

J1J2 J0

Q

Q
Q1

Q

Q
Q2

Q

Q
Q0

Design a synchronous mod-5 counter with the given state transition table.

Outline of method:

* State 1 → State 2 means
Q2: 0→ 0,
Q1: 0→ 0,
Q0: 0→ 1.

* Refer to the right table. For Q2: 0→ 0, we must have J2 = 0, K2 = X , and so on.

* When we cover all transitions in the left table, we have the truth tables for J0, K0, J1, K1,
J2, K2 in terms of Q1, Q2, Q3.

* The last step is to come up with suitable functions for J0, K0, J1, K1, J2, K2 in terms of Q1,
Q2, Q3. This can be done with K-maps. (If the number of flip-flops is more than 4, other
techniques can be employed.)

M. B. Patil, IIT Bombay

Design of synchronous counters

J

K

J

K

0

0

0

0

0

1

0

0

1

1

0

0

1

0

1

1

1

2

3

4

5

repeats0 0 0

state

CLK

CLK

J

K

J KQ2 Q1 Q0

0 0

0

0

1

1

1 1

0 X

X

X

X

1

1

0

Qn+1Qn

K1K2 K0

J1J2 J0

Q

Q
Q1

Q

Q
Q2

Q

Q
Q0

Design a synchronous mod-5 counter with the given state transition table.

Outline of method:

* State 1 → State 2 means
Q2: 0→ 0,
Q1: 0→ 0,
Q0: 0→ 1.

* Refer to the right table. For Q2: 0→ 0, we must have J2 = 0, K2 = X , and so on.

* When we cover all transitions in the left table, we have the truth tables for J0, K0, J1, K1,
J2, K2 in terms of Q1, Q2, Q3.

* The last step is to come up with suitable functions for J0, K0, J1, K1, J2, K2 in terms of Q1,
Q2, Q3. This can be done with K-maps. (If the number of flip-flops is more than 4, other
techniques can be employed.)

M. B. Patil, IIT Bombay

Design of synchronous counters

J

K

J

K

0

0

0

0

0

1

0

0

1

1

0

0

1

0

1

1

1

2

3

4

5

repeats0 0 0

state

CLK

CLK

J

K

J KQ2 Q1 Q0

0 0

0

0

1

1

1 1

0 X

X

X

X

1

1

0

Qn+1Qn

K1K2 K0

J1J2 J0

Q

Q
Q1

Q

Q
Q2

Q

Q
Q0

Design a synchronous mod-5 counter with the given state transition table.

Outline of method:

* State 1 → State 2 means
Q2: 0→ 0,
Q1: 0→ 0,
Q0: 0→ 1.

* Refer to the right table. For Q2: 0→ 0, we must have J2 = 0, K2 = X , and so on.

* When we cover all transitions in the left table, we have the truth tables for J0, K0, J1, K1,
J2, K2 in terms of Q1, Q2, Q3.

* The last step is to come up with suitable functions for J0, K0, J1, K1, J2, K2 in terms of Q1,
Q2, Q3. This can be done with K-maps. (If the number of flip-flops is more than 4, other
techniques can be employed.)

M. B. Patil, IIT Bombay

Design of synchronous counters

J

K

J

K

0

0

0

0

0

1

0

0

1

1

0

0

1

0

1

1

1

2

3

4

5

repeats0 0 0

state

CLK

CLK

J

K

J KQ2 Q1 Q0

0 0

0

0

1

1

1 1

0 X

X

X

X

1

1

0

Qn+1Qn

K1K2 K0

J1J2 J0

Q

Q
Q1

Q

Q
Q2

Q

Q
Q0

Design a synchronous mod-5 counter with the given state transition table.

Outline of method:

* State 1 → State 2 means
Q2: 0→ 0,
Q1: 0→ 0,
Q0: 0→ 1.

* Refer to the right table. For Q2: 0→ 0, we must have J2 = 0, K2 = X , and so on.

* When we cover all transitions in the left table, we have the truth tables for J0, K0, J1, K1,
J2, K2 in terms of Q1, Q2, Q3.

* The last step is to come up with suitable functions for J0, K0, J1, K1, J2, K2 in terms of Q1,
Q2, Q3. This can be done with K-maps. (If the number of flip-flops is more than 4, other
techniques can be employed.)

M. B. Patil, IIT Bombay

Design of synchronous counters

KJCLK
state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

0 X

X

X

X

1

1

0

Qn+1Qn

0 X 0 X X1

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

1X 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2.
The next step is to find logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of
Q0, Q1, Q2 which do not occur in the state transition table (such as
Q2Q1Q0 = 110). We treat these as don’t care conditions (next slide).

M. B. Patil, IIT Bombay

Design of synchronous counters

KJCLK
state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

0 X

X

X

X

1

1

0

Qn+1Qn

0 X 0 X X1

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

1X 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2.
The next step is to find logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of
Q0, Q1, Q2 which do not occur in the state transition table (such as
Q2Q1Q0 = 110). We treat these as don’t care conditions (next slide).

M. B. Patil, IIT Bombay

Design of synchronous counters

KJCLK
state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

0 X

X

X

X

1

1

0

Qn+1Qn
0 X

0 X X1

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

1X 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2.
The next step is to find logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of
Q0, Q1, Q2 which do not occur in the state transition table (such as
Q2Q1Q0 = 110). We treat these as don’t care conditions (next slide).

M. B. Patil, IIT Bombay

Design of synchronous counters

KJCLK
state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

0 X

X

X

X

1

1

0

Qn+1Qn
0 X 0 X

X1

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

1X 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2.
The next step is to find logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of
Q0, Q1, Q2 which do not occur in the state transition table (such as
Q2Q1Q0 = 110). We treat these as don’t care conditions (next slide).

M. B. Patil, IIT Bombay

Design of synchronous counters

KJCLK
state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

0 X

X

X

X

1

1

0

Qn+1Qn
0 X 0 X X1

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

1X 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2.
The next step is to find logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of
Q0, Q1, Q2 which do not occur in the state transition table (such as
Q2Q1Q0 = 110). We treat these as don’t care conditions (next slide).

M. B. Patil, IIT Bombay

Design of synchronous counters

KJCLK
state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

0 X

X

X

X

1

1

0

Qn+1Qn
0 X 0 X X1

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

1X 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2.
The next step is to find logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of
Q0, Q1, Q2 which do not occur in the state transition table (such as
Q2Q1Q0 = 110). We treat these as don’t care conditions (next slide).

M. B. Patil, IIT Bombay

Design of synchronous counters

KJCLK
state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

0 X

X

X

X

1

1

0

Qn+1Qn
0 X 0 X X1

0 X

1 X X 1

0 X X 0 1 X

1 X X 1 X 1

1X 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2.
The next step is to find logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of
Q0, Q1, Q2 which do not occur in the state transition table (such as
Q2Q1Q0 = 110). We treat these as don’t care conditions (next slide).

M. B. Patil, IIT Bombay

Design of synchronous counters

KJCLK
state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

0 X

X

X

X

1

1

0

Qn+1Qn
0 X 0 X X1

0 X 1 X

X 1

0 X X 0 1 X

1 X X 1 X 1

1X 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2.
The next step is to find logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of
Q0, Q1, Q2 which do not occur in the state transition table (such as
Q2Q1Q0 = 110). We treat these as don’t care conditions (next slide).

M. B. Patil, IIT Bombay

Design of synchronous counters

KJCLK
state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

0 X

X

X

X

1

1

0

Qn+1Qn
0 X 0 X X1

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

1X 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2.
The next step is to find logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of
Q0, Q1, Q2 which do not occur in the state transition table (such as
Q2Q1Q0 = 110). We treat these as don’t care conditions (next slide).

M. B. Patil, IIT Bombay

Design of synchronous counters

KJCLK
state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

0 X

X

X

X

1

1

0

Qn+1Qn
0 X 0 X X1

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

1X 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2.
The next step is to find logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of
Q0, Q1, Q2 which do not occur in the state transition table (such as
Q2Q1Q0 = 110). We treat these as don’t care conditions (next slide).

M. B. Patil, IIT Bombay

Design of synchronous counters

KJCLK
state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

0 X

X

X

X

1

1

0

Qn+1Qn
0 X 0 X X1

0 X 1 X X 1

0 X

X 0 1 X

1 X X 1 X 1

1X 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2.
The next step is to find logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of
Q0, Q1, Q2 which do not occur in the state transition table (such as
Q2Q1Q0 = 110). We treat these as don’t care conditions (next slide).

M. B. Patil, IIT Bombay

Design of synchronous counters

KJCLK
state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

0 X

X

X

X

1

1

0

Qn+1Qn
0 X 0 X X1

0 X 1 X X 1

0 X X 0

1 X

1 X X 1 X 1

1X 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2.
The next step is to find logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of
Q0, Q1, Q2 which do not occur in the state transition table (such as
Q2Q1Q0 = 110). We treat these as don’t care conditions (next slide).

M. B. Patil, IIT Bombay

Design of synchronous counters

KJCLK
state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

0 X

X

X

X

1

1

0

Qn+1Qn
0 X 0 X X1

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

1X 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2.
The next step is to find logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of
Q0, Q1, Q2 which do not occur in the state transition table (such as
Q2Q1Q0 = 110). We treat these as don’t care conditions (next slide).

M. B. Patil, IIT Bombay

Design of synchronous counters

KJCLK
state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

0 X

X

X

X

1

1

0

Qn+1Qn
0 X 0 X X1

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

1X 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2.
The next step is to find logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of
Q0, Q1, Q2 which do not occur in the state transition table (such as
Q2Q1Q0 = 110). We treat these as don’t care conditions (next slide).

M. B. Patil, IIT Bombay

Design of synchronous counters

KJCLK
state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

0 X

X

X

X

1

1

0

Qn+1Qn
0 X 0 X X1

0 X 1 X X 1

0 X X 0 1 X

1 X

X 1 X 1

1X 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2.
The next step is to find logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of
Q0, Q1, Q2 which do not occur in the state transition table (such as
Q2Q1Q0 = 110). We treat these as don’t care conditions (next slide).

M. B. Patil, IIT Bombay

Design of synchronous counters

KJCLK
state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

0 X

X

X

X

1

1

0

Qn+1Qn
0 X 0 X X1

0 X 1 X X 1

0 X X 0 1 X

1 X X 1

X 1

1X 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2.
The next step is to find logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of
Q0, Q1, Q2 which do not occur in the state transition table (such as
Q2Q1Q0 = 110). We treat these as don’t care conditions (next slide).

M. B. Patil, IIT Bombay

Design of synchronous counters

KJCLK
state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

0 X

X

X

X

1

1

0

Qn+1Qn
0 X 0 X X1

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

1X 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2.
The next step is to find logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of
Q0, Q1, Q2 which do not occur in the state transition table (such as
Q2Q1Q0 = 110). We treat these as don’t care conditions (next slide).

M. B. Patil, IIT Bombay

Design of synchronous counters

KJCLK
state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

0 X

X

X

X

1

1

0

Qn+1Qn
0 X 0 X X1

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

1X 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2.
The next step is to find logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of
Q0, Q1, Q2 which do not occur in the state transition table (such as
Q2Q1Q0 = 110). We treat these as don’t care conditions (next slide).

M. B. Patil, IIT Bombay

Design of synchronous counters

KJCLK
state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

0 X

X

X

X

1

1

0

Qn+1Qn
0 X 0 X X1

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

1X

0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2.
The next step is to find logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of
Q0, Q1, Q2 which do not occur in the state transition table (such as
Q2Q1Q0 = 110). We treat these as don’t care conditions (next slide).

M. B. Patil, IIT Bombay

Design of synchronous counters

KJCLK
state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

0 X

X

X

X

1

1

0

Qn+1Qn
0 X 0 X X1

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

1X 0 X

0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2.
The next step is to find logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of
Q0, Q1, Q2 which do not occur in the state transition table (such as
Q2Q1Q0 = 110). We treat these as don’t care conditions (next slide).

M. B. Patil, IIT Bombay

Design of synchronous counters

KJCLK
state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

0 X

X

X

X

1

1

0

Qn+1Qn
0 X 0 X X1

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

1X 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2.
The next step is to find logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of
Q0, Q1, Q2 which do not occur in the state transition table (such as
Q2Q1Q0 = 110). We treat these as don’t care conditions (next slide).

M. B. Patil, IIT Bombay

Design of synchronous counters

KJCLK
state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

0 X

X

X

X

1

1

0

Qn+1Qn
0 X 0 X X1

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

1X 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2.
The next step is to find logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of
Q0, Q1, Q2 which do not occur in the state transition table (such as
Q2Q1Q0 = 110). We treat these as don’t care conditions (next slide).

M. B. Patil, IIT Bombay

Design of synchronous counters

KJCLK
state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

0 X

X

X

X

1

1

0

Qn+1Qn
0 X 0 X X1

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

1X 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2.
The next step is to find logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of
Q0, Q1, Q2 which do not occur in the state transition table (such as
Q2Q1Q0 = 110). We treat these as don’t care conditions (next slide).

M. B. Patil, IIT Bombay

Design of synchronous counters

00 01 11 10

00 01 11 10

00 01 11 10 00 01 11 10

00 01 11 10

00 01 11 10

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

0 0X X X1

0 X 1 X X 1

0 X X 0 1 X

1 X X X1 1

1 0 X 0 XX

1 0 0 0

Q2Q1

Q2Q1 Q2Q1

Q2Q1

Q2Q1Q2Q1

Q0

Q0 Q0

Q0

Q0Q0

K0

K0

J0

J0

K1

K1

J1

J1

K2

K2

J2

J2Q2 Q1 Q0

1

1

11

1

1 1

1 1

1 1

1 1

1

0 X

X

X

X

X

X X

X

X X

0 X

X

00

0 X

X XX X

0 0 X

X X

X X X

0 0

0

0 XX

X X

0 X

X X

X

X

0 X

* We treat the unused states (Q2Q1Q0 = 101, 110, 111) as (additional) don’t care conditions.
Since these are different from the don’t care conditions arising from the state transition
table, we mark them with a different colour.

* We will assume that a suitable initialization facility is provided to ensure that the counter
starts up in one of the five allowed states (say, Q2Q1Q0 = 000).

* From the K-maps, J2 = Q1Q0, K2 = 1, J1 = Q0, K1 = Q0, J0 = Q2, K0 = 1.

M. B. Patil, IIT Bombay

Design of synchronous counters

00 01 11 10

00 01 11 10

00 01 11 10 00 01 11 10

00 01 11 10

00 01 11 10

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

0 0X X X1

0 X 1 X X 1

0 X X 0 1 X

1 X X X1 1

1 0 X 0 XX

1 0 0 0

Q2Q1

Q2Q1 Q2Q1

Q2Q1

Q2Q1Q2Q1

Q0

Q0 Q0

Q0

Q0Q0

K0

K0

J0

J0

K1

K1

J1

J1

K2

K2

J2

J2Q2 Q1 Q0

1

1

11

1

1 1

1 1

1 1

1 1

1

0 X

X

X

X

X

X X

X

X X

0 X

X

00

0 X

X XX X

0 0 X

X X

X X X

0 0

0

0 XX

X X

0 X

X X

X

X

0 X

* We treat the unused states (Q2Q1Q0 = 101, 110, 111) as (additional) don’t care conditions.
Since these are different from the don’t care conditions arising from the state transition
table, we mark them with a different colour.

* We will assume that a suitable initialization facility is provided to ensure that the counter
starts up in one of the five allowed states (say, Q2Q1Q0 = 000).

* From the K-maps, J2 = Q1Q0, K2 = 1, J1 = Q0, K1 = Q0, J0 = Q2, K0 = 1.

M. B. Patil, IIT Bombay

Design of synchronous counters

00 01 11 10

00 01 11 10

00 01 11 10 00 01 11 10

00 01 11 10

00 01 11 10

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

0 0X X X1

0 X 1 X X 1

0 X X 0 1 X

1 X X X1 1

1 0 X 0 XX

1 0 0 0

Q2Q1

Q2Q1 Q2Q1

Q2Q1

Q2Q1Q2Q1

Q0

Q0 Q0

Q0

Q0Q0

K0

K0

J0

J0

K1

K1

J1

J1

K2

K2

J2

J2Q2 Q1 Q0

1

1

11

1

1 1

1 1

1 1

1 1

1

0 X

X

X

X

X

X X

X

X X

0 X

X

00

0 X

X XX X

0 0 X

X X

X X X

0 0

0

0 XX

X X

0 X

X X

X

X

0 X

* We treat the unused states (Q2Q1Q0 = 101, 110, 111) as (additional) don’t care conditions.
Since these are different from the don’t care conditions arising from the state transition
table, we mark them with a different colour.

* We will assume that a suitable initialization facility is provided to ensure that the counter
starts up in one of the five allowed states (say, Q2Q1Q0 = 000).

* From the K-maps, J2 = Q1Q0, K2 = 1, J1 = Q0, K1 = Q0, J0 = Q2, K0 = 1.

M. B. Patil, IIT Bombay

Design of synchronous counters

00 01 11 10

00 01 11 10

00 01 11 10 00 01 11 10

00 01 11 10

00 01 11 10

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

0 0X X X1

0 X 1 X X 1

0 X X 0 1 X

1 X X X1 1

1 0 X 0 XX

1 0 0 0

Q2Q1

Q2Q1 Q2Q1

Q2Q1

Q2Q1Q2Q1

Q0

Q0 Q0

Q0

Q0Q0

K0

K0

J0

J0

K1

K1

J1

J1

K2

K2

J2

J2Q2 Q1 Q0

1

1

11

1

1 1

1 1

1 1

1 1

1

0 X

X

X

X

X

X X

X

X X

0 X

X

00

0 X

X XX X

0 0 X

X X

X X X

0 0

0

0 XX

X X

0 X

X X

X

X

0 X

* We treat the unused states (Q2Q1Q0 = 101, 110, 111) as (additional) don’t care conditions.
Since these are different from the don’t care conditions arising from the state transition
table, we mark them with a different colour.

* We will assume that a suitable initialization facility is provided to ensure that the counter
starts up in one of the five allowed states (say, Q2Q1Q0 = 000).

* From the K-maps, J2 = Q1Q0, K2 = 1, J1 = Q0, K1 = Q0, J0 = Q2, K0 = 1.

M. B. Patil, IIT Bombay

Design of synchronous counters: verification

CLK

J

K

J

K

J

K

1

(SEQUEL file: ee101_counter_6.sqproj)

CLK

 0.04 0.14 0.24 0.34
time (msec)

K0K1K2

J0J1J2

Q

Q
Q0

Q

Q
Q1

Q

Q
Q2

Q0

Q1

Q2

* J2 = Q1Q0, K2 = 1, J1 = Q0, K1 = Q0, J0 = Q2, K0 = 1.

* Note that the design is independent of whether positive or negative edge-triggered flip-flops
are used.

M. B. Patil, IIT Bombay

Design of synchronous counters: verification

CLK

J

K

J

K

J

K

1

(SEQUEL file: ee101_counter_6.sqproj)

CLK

 0.04 0.14 0.24 0.34
time (msec)

K0K1K2

J0J1J2

Q

Q
Q0

Q

Q
Q1

Q

Q
Q2

Q0

Q1

Q2

* J2 = Q1Q0, K2 = 1, J1 = Q0, K1 = Q0, J0 = Q2, K0 = 1.

* Note that the design is independent of whether positive or negative edge-triggered flip-flops
are used.

M. B. Patil, IIT Bombay

Design of synchronous counters: verification

CLK

J

K

J

K

J

K

1

(SEQUEL file: ee101_counter_6.sqproj)

CLK

 0.04 0.14 0.24 0.34
time (msec)

K0K1K2

J0J1J2

Q

Q
Q0

Q

Q
Q1

Q

Q
Q2

Q0

Q1

Q2

* J2 = Q1Q0, K2 = 1, J1 = Q0, K1 = Q0, J0 = Q2, K0 = 1.

* Note that the design is independent of whether positive or negative edge-triggered flip-flops
are used.

M. B. Patil, IIT Bombay

Combination of counters

Clock 1
Counter 1

Counter 2
Clock 2

mod-k2

mod-k1

Clock 1
Counter 1 Decoding Counter 2

logic Clock 2 mod-k2mod-k1

Counter 1 Counter 2

common
clock

mod-k1 mod-k2

* Consider two counters, Counter 1 (mod-k1) and Counter 2 (mod-k2).
(Each of them can be ripple or synchronous type.)

* Since Counter 1 has k1 states and Counter 2 has k2 states, we can get a new counter with
k1k2 states if appropriate synchronisation is provided between the two clocks.

* There are two ways of providing synchronisation:

- derive Clock 2 from Clock 1 (using some decoding logic, if necessary)

- drive the two counters with the same clock

M. B. Patil, IIT Bombay

Combination of counters

Clock 1
Counter 1

Counter 2
Clock 2

mod-k2

mod-k1

Clock 1
Counter 1 Decoding Counter 2

logic Clock 2 mod-k2mod-k1

Counter 1 Counter 2

common
clock

mod-k1 mod-k2

* Consider two counters, Counter 1 (mod-k1) and Counter 2 (mod-k2).
(Each of them can be ripple or synchronous type.)

* Since Counter 1 has k1 states and Counter 2 has k2 states, we can get a new counter with
k1k2 states if appropriate synchronisation is provided between the two clocks.

* There are two ways of providing synchronisation:

- derive Clock 2 from Clock 1 (using some decoding logic, if necessary)

- drive the two counters with the same clock

M. B. Patil, IIT Bombay

Combination of counters

Clock 1
Counter 1

Counter 2
Clock 2

mod-k2

mod-k1

Clock 1
Counter 1 Decoding Counter 2

logic Clock 2 mod-k2mod-k1

Counter 1 Counter 2

common
clock

mod-k1 mod-k2

* Consider two counters, Counter 1 (mod-k1) and Counter 2 (mod-k2).
(Each of them can be ripple or synchronous type.)

* Since Counter 1 has k1 states and Counter 2 has k2 states, we can get a new counter with
k1k2 states if appropriate synchronisation is provided between the two clocks.

* There are two ways of providing synchronisation:

- derive Clock 2 from Clock 1 (using some decoding logic, if necessary)

- drive the two counters with the same clock

M. B. Patil, IIT Bombay

Combination of counters

Clock 1
Counter 1

Counter 2
Clock 2

mod-k2

mod-k1

Clock 1
Counter 1 Decoding Counter 2

logic Clock 2 mod-k2mod-k1

Counter 1 Counter 2

common
clock

mod-k1 mod-k2

* Consider two counters, Counter 1 (mod-k1) and Counter 2 (mod-k2).
(Each of them can be ripple or synchronous type.)

* Since Counter 1 has k1 states and Counter 2 has k2 states, we can get a new counter with
k1k2 states if appropriate synchronisation is provided between the two clocks.

* There are two ways of providing synchronisation:

- derive Clock 2 from Clock 1 (using some decoding logic, if necessary)

- drive the two counters with the same clock

M. B. Patil, IIT Bombay

Combination of counters

Clock 1
Counter 1

Counter 2
Clock 2

mod-k2

mod-k1

Clock 1
Counter 1 Decoding Counter 2

logic Clock 2 mod-k2mod-k1

Counter 1 Counter 2

common
clock

mod-k1 mod-k2

* Consider two counters, Counter 1 (mod-k1) and Counter 2 (mod-k2).
(Each of them can be ripple or synchronous type.)

* Since Counter 1 has k1 states and Counter 2 has k2 states, we can get a new counter with
k1k2 states if appropriate synchronisation is provided between the two clocks.

* There are two ways of providing synchronisation:

- derive Clock 2 from Clock 1 (using some decoding logic, if necessary)

- drive the two counters with the same clock

M. B. Patil, IIT Bombay

Combination of counters

Clock 1
Counter 1

Counter 2
Clock 2

mod-k2

mod-k1

Clock 1
Counter 1 Decoding Counter 2

logic Clock 2 mod-k2mod-k1

Counter 1 Counter 2

common
clock

mod-k1 mod-k2

* Consider two counters, Counter 1 (mod-k1) and Counter 2 (mod-k2).
(Each of them can be ripple or synchronous type.)

* Since Counter 1 has k1 states and Counter 2 has k2 states, we can get a new counter with
k1k2 states if appropriate synchronisation is provided between the two clocks.

* There are two ways of providing synchronisation:

- derive Clock 2 from Clock 1 (using some decoding logic, if necessary)

- drive the two counters with the same clock

M. B. Patil, IIT Bombay

Combination of counters

Clock 1
Counter 1

Counter 2
Clock 2

mod-k2

mod-k1

Clock 1
Counter 1 Decoding Counter 2

logic Clock 2 mod-k2mod-k1

Counter 1 Counter 2

common
clock

mod-k1 mod-k2

* Consider two counters, Counter 1 (mod-k1) and Counter 2 (mod-k2).
(Each of them can be ripple or synchronous type.)

* Since Counter 1 has k1 states and Counter 2 has k2 states, we can get a new counter with
k1k2 states if appropriate synchronisation is provided between the two clocks.

* There are two ways of providing synchronisation:

- derive Clock 2 from Clock 1 (using some decoding logic, if necessary)

- drive the two counters with the same clock

M. B. Patil, IIT Bombay

Combination of counters

CLK

J

K

J

K

J

K

1

CLK

t

t

t

t

CLK

t

t

CLK

1

J

K

mod−2 counter mod−5 counter

Q1

Q2

Q0Q0

K0K1K2K0

J0J1J2J0

Q

Q
Q0

Q

Q
Q1

Q

Q
Q2

Q

Q
Q0

* Let us combine the mod-2 and mod-5 counters to make a mod-10 counter.
* We will follow two approaches (as described earlier):

A: The clock for the second (mod-5) counter is derived from the first (mod-2) counter.

B: A common clock is used to drive the mod-2 and mod-5 counters.

M. B. Patil, IIT Bombay

Combination of counters

CLK

J

K

J

K

J

K

1

CLK

t

t

t

t

CLK

t

t

CLK

1

J

K

mod−2 counter mod−5 counter

Q1

Q2

Q0Q0

K0K1K2K0

J0J1J2J0

Q

Q
Q0

Q

Q
Q1

Q

Q
Q2

Q

Q
Q0

* Let us combine the mod-2 and mod-5 counters to make a mod-10 counter.

* We will follow two approaches (as described earlier):

A: The clock for the second (mod-5) counter is derived from the first (mod-2) counter.

B: A common clock is used to drive the mod-2 and mod-5 counters.

M. B. Patil, IIT Bombay

Combination of counters

CLK

J

K

J

K

J

K

1

CLK

t

t

t

t

CLK

t

t

CLK

1

J

K

mod−2 counter mod−5 counter

Q1

Q2

Q0Q0

K0K1K2K0

J0J1J2J0

Q

Q
Q0

Q

Q
Q1

Q

Q
Q2

Q

Q
Q0

* Let us combine the mod-2 and mod-5 counters to make a mod-10 counter.
* We will follow two approaches (as described earlier):

A: The clock for the second (mod-5) counter is derived from the first (mod-2) counter.

B: A common clock is used to drive the mod-2 and mod-5 counters.

M. B. Patil, IIT Bombay

Approach A

CLK

1

J

K

J

K

J

K

J

K

1

CLK

(SEQUEL file: ee101_counter_7.sqproj)

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4

 0.04 0.24 0.44 0.64 0.84 1.04
time (msec)

QA

Q1

Q2

Q0

K0 K0K1K2

J0 J0J1J2

Q

Q
QA

Q

Q
Q0

Q

Q
Q1

Q

Q
Q2

M. B. Patil, IIT Bombay

Approach B

J

K

J

K

J

K

1

1

CLK

CLK

2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 41

(SEQUEL file: ee101_counter_8.sqproj)

J

K

 0.04 0.24 0.44 0.64 0.84 1.04
time (msec)

QA

Q1

Q2

Q0

K0K1K2K0

J0J1J2J0

Q

Q
Q0

Q

Q
Q1

Q

Q
Q2

Q

Q
QA

M. B. Patil, IIT Bombay

Combination of counters

* Show that, by connecting the Q output of the mod-2 counter (instead of the Q
output) to the clock input of the mod-5 counter in the ripple connection
(“Approach A”) circuit, we get a decade counter, counting up from 0000 to
1001.

* Derive appropriate decoding logic for each of the ten counters states (i.e., the
output should be 1 for only that particular state and 0 otherwise).

* Derive appropriate decoding logic which will give a symmetrical square wave (i.e.,
a duty cycle of 50 %) with a frequency of fc/10, where fc is the clock frequency.

* Verify your design by simulation.

M. B. Patil, IIT Bombay

Combination of counters

* Show that, by connecting the Q output of the mod-2 counter (instead of the Q
output) to the clock input of the mod-5 counter in the ripple connection
(“Approach A”) circuit, we get a decade counter, counting up from 0000 to
1001.

* Derive appropriate decoding logic for each of the ten counters states (i.e., the
output should be 1 for only that particular state and 0 otherwise).

* Derive appropriate decoding logic which will give a symmetrical square wave (i.e.,
a duty cycle of 50 %) with a frequency of fc/10, where fc is the clock frequency.

* Verify your design by simulation.

M. B. Patil, IIT Bombay

Combination of counters

* Show that, by connecting the Q output of the mod-2 counter (instead of the Q
output) to the clock input of the mod-5 counter in the ripple connection
(“Approach A”) circuit, we get a decade counter, counting up from 0000 to
1001.

* Derive appropriate decoding logic for each of the ten counters states (i.e., the
output should be 1 for only that particular state and 0 otherwise).

* Derive appropriate decoding logic which will give a symmetrical square wave (i.e.,
a duty cycle of 50 %) with a frequency of fc/10, where fc is the clock frequency.

* Verify your design by simulation.

M. B. Patil, IIT Bombay

Combination of counters

* Show that, by connecting the Q output of the mod-2 counter (instead of the Q
output) to the clock input of the mod-5 counter in the ripple connection
(“Approach A”) circuit, we get a decade counter, counting up from 0000 to
1001.

* Derive appropriate decoding logic for each of the ten counters states (i.e., the
output should be 1 for only that particular state and 0 otherwise).

* Derive appropriate decoding logic which will give a symmetrical square wave (i.e.,
a duty cycle of 50 %) with a frequency of fc/10, where fc is the clock frequency.

* Verify your design by simulation.

M. B. Patil, IIT Bombay

