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JK flip-flop: asynchronous inputs
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* Clocked flip-flops are also provided with asynchronous or direct Set and Reset
inputs, Sd and Rd , (also called Preset and Clear, respectively) which override all
other inputs (J, K, CLK).

* The Sd and Rd inputs may be active low; in that case, they are denoted by
Sd and Rd .

* The asynchronous inputs are convenient for “starting up” a circuit in a known
state.
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D flip-flop
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* The D flip-flop can be used to delay the Data (D) signal by one clock period.

* With J = D, K = D, we have either J = 0, K = 1 or J = 1, K = 0; the next Q is 0 in the first
case, 1 in the second case.

* Instead of a JK flip-flop, an RS flip-flop can also be used to make a D flip-flop, with
S = D, R = D.
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Shift register
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* The data (D) keeps shifting right after each active clock edge.
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Parallel transfer between shift registers
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* After the active clock edge, the contents of the A register (A3A2A1A0) are
copied to the B register.
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Bidirectional shift register
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* When the mode input (M) is 1, we have
D0 = DR , D1 = Q0, D2 = Q1, D3 = Q2.

* When the mode input (M) is 0, we have
D0 = Q1, D1 = Q2, D2 = Q3, D3 = DL.

* M = 1 → shift right operation.
M = 0 → shift left operation.
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Multiplication using shift and add

(decimal 11)

(decimal 13)

since B0 = 1

since B1 = 0

addition

since B2 = 1

addition

since B3 = 1

(decimal 143)

Note that Z = 0. We use Z to denote 0s which are
independent of the numbers being multiplied.

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 10

0 0 00 Z

0

Z Z

1 1 1 1 10

ZZZ

11110001

A3A2A1A0
B3B2B1B0

addition

initializeZ Z Z Z Z Z Z Z

Register 2 Register 1

since B0 = 1
load 10111 1 10

add1 1 10 ZZZZ

shift1 0 1 1Z Z Z Z

since B1 = 0
load 00000 0 0 0

add0 01 1 1 Z Z Z

shiftZ 0 01 1 1 Z Z

since B2 = 1
load 10111 1 10

add1 1 10 1 1 Z Z

shiftZ 1 1 0 1 1 1 Z

since B3 = 1
load 10111 1 10

add1 1 1 1 1 Z0 0 0

shiftZ 1 0 0 0 1 1 1 1
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Parallel in-serial out data movement

Clear
CLK

Load

0

1

J

K

J

K

J

K

J

K

t

t

t

CLK

Clear

Load

RdRd

Sd Sd

Rd

Sd

Rd

Sd
Q3

A0A1A2A3

Q0
Q

Q0 = A0 Q0 = A1 Q0 = A3Q0 = A2

Q1
Q

QQQ

Q
Q2

Q

Q

0 00 00 0 00 0 0 0

* All flip-flops are cleared in the beginning (with Rd = Clear = 1, Sd = 0).

* When Load = 1, Sd = Ai , Rd = 0 → Ai gets loaded into the i th flip-flop. (We will assume
that CLK has been made 0 in this initial phase.)

* Subsequently, with every clock pulse, the data shifts right and appears serially at the
output Q0.
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Counters

Decoding
logic

State transition diagram General configuration

CounterClock
k

1

2

3

4
Reset

Q0
Q1
Q2

QN-1

* A counter with k states is called a modulo-k (mod-k) counter.

* A counter can be made with flip-flops, each flip-flop serving as a memory element with two
states (0 or 1).

* If there are N flip-flops in a counter, there are 2N possible states (since each flip-flop can
have Q = 0 or Q = 1). It is possible to exclude some of these states.

→ N flip-flops can be used to make a mod-k counter with k ≤ 2N .

* Typically, a reset facility is also provided, which can be used to force a certain state to
initialize the counter.
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X is 1 for state 3; else, it is 0.

* The counter outputs (i.e., the flip-flop outputs, Q0, Q1, · · · QN−1) can be decoded using
appropriate logic.

* In particular, it is possible to have a decoder output (say, X ) which is 1 only for state i , and
0 otherwise.
→ For k clock pulses, we get a single pulse at X , i.e., the clock frequency has been divided
by k. For this reason, a mod-k counter is also called a divide-by-k counter.
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A binay ripple counter

J

K

J

K

J

K

CLK

1

CLK

FF0 FF1 FF2

t

t

t

t

Q1

Q2

Q0 Q1 Q2

Q0

Q

Q

Q

Q

Q

Q

0

1

0

1

0

0

1

1

0

0

0

0

0

1

1

1

1

0

0

0

1

1

0

0

1

1

0 repeats

Q2 Q1 Q0

* J = K = 1 for all flip-flops. Let Q0 = Q1 = Q2 = 0 initially.

* Since J = K = 1, each flip-flop will toggle when an active (in this case, negative) clock edge
arrives.

* For FF1 and FF2, Q0 and Q1, respectively, provide the clock.

* Note that the direct inputs Sd and Rd (not shown) are assumed to be Sd = Rd = 0 for all
flip-flops, allowing normal flip-flip operation.
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* The counter has 8 states, Q2Q1Q0 = 000, 001, 010, 011, 100, 101, 110, 111.
→ it is a mod-8 counter. In particular, it is a binary, mod-8, up counter (since it counts up
from 000 to 111).

* If the clock frequency is fc , the frequency at the Q0, Q1, Q2 outputs is fc/2, fc/4, fc/8,
respectively. For this counter, therefore, div-by-2, div-by-4, div-by-8 outputs are already
available, without requring decoding logic.

* This type of counter is called a “ripple” counter since the clock transitions ripple through
the flip-flops.
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* If positive edge-triggered flip-flops are used, we get a binary down counter (counting down
from 1111 to 0000).
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Binay ripple counters
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* Home work: Sketch the waveforms (CLK, Q0, Q1, Q2), and tabulate the counter states in
each case.
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Up-down binay ripple counters
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* When Mode (M) = 1, the counter counts up; else, it counts down.
(SEQUEL file: ee101 counter 3.sqproj)
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Decade counter using direct inputs
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* When the counter reaches Q3Q2Q1Q0 = 1010 (i.e., decmial 10), Q3Q1 = 1, and the flip-flops
are cleared to Q3Q2Q1Q0 = 0000.

* The counter counts from 0000 (decimal 0) to 1001 (decimal 9) → “decade counter.”
(SEQUEL file: ee101 counter 5.sqproj)

M. B. Patil, IIT Bombay



Decade counter using direct inputs

J

K

FF0

J

K

FF1

J

K

FF2

J

K

FF3

1

0

CLK

0

1

0

1

0

0

1

1

0

0

0

1

1

0

0

1

1

0

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

1

0

0

0 01 1

repeats00 0 0

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8
time (msec)

Q3

Q2

Q1

Q0

Q2Q3 Q1

Q0 Q1 Q2 Q3

Q0

Q

Q

Sd

Rd

Q

Q

Sd

Rd

Q

Q

Sd

Rd

Q

Q

Sd

Rd

* When the counter reaches Q3Q2Q1Q0 = 1010 (i.e., decmial 10), Q3Q1 = 1, and the flip-flops
are cleared to Q3Q2Q1Q0 = 0000.

* The counter counts from 0000 (decimal 0) to 1001 (decimal 9) → “decade counter.”
(SEQUEL file: ee101 counter 5.sqproj)

M. B. Patil, IIT Bombay



Decade counter using direct inputs

J

K

FF0

J

K

FF1

J

K

FF2

J

K

FF3

1

0

CLK

0

1

0

1

0

0

1

1

0

0

0

1

1

0

0

1

1

0

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

1

0

0

0 01 1

repeats00 0 0

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8
time (msec)

Q3

Q2

Q1

Q0

Q2Q3 Q1

Q0 Q1 Q2 Q3

Q0

Q

Q

Sd

Rd

Q

Q

Sd

Rd

Q

Q

Sd

Rd

Q

Q

Sd

Rd

* When the counter reaches Q3Q2Q1Q0 = 1010 (i.e., decmial 10), Q3Q1 = 1, and the flip-flops
are cleared to Q3Q2Q1Q0 = 0000.

* The counter counts from 0000 (decimal 0) to 1001 (decimal 9) → “decade counter.”
(SEQUEL file: ee101 counter 5.sqproj)

M. B. Patil, IIT Bombay



A synchronous counter
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* Since all flip-flops are driven by the same clock, the counter is called a “synchronous”
counter.

* J0 = K0 = 1, J1 = K1 = Q0, J2 = K2 = Q1Q0, J3 = K3 = Q2Q1Q0.
* FF0 toggles at every active edge.

FF1 toggles if Q0 = 1 (just before the active clock edge); else, it retains its previous state.
Similar comments apply to FF2 and FF3.

* From the waveforms, we see that it is a binary up counter.

M. B. Patil, IIT Bombay



A synchronous counter

J

K

J

K

J

K

CLK

J

K

FF3

1

CLK

FF0 FF1 FF2

t

t

t

t

t

Q1

Q2

Q3

Q3Q0 Q1 Q2

Q0

Q

Q

Q

Q

Q

Q

Q

Q

* Since all flip-flops are driven by the same clock, the counter is called a “synchronous”
counter.

* J0 = K0 = 1, J1 = K1 = Q0, J2 = K2 = Q1Q0, J3 = K3 = Q2Q1Q0.
* FF0 toggles at every active edge.

FF1 toggles if Q0 = 1 (just before the active clock edge); else, it retains its previous state.
Similar comments apply to FF2 and FF3.

* From the waveforms, we see that it is a binary up counter.

M. B. Patil, IIT Bombay



A synchronous counter

J

K

J

K

J

K

CLK

J

K

FF3

1

CLK

FF0 FF1 FF2

t

t

t

t

t

Q1

Q2

Q3

Q3Q0 Q1 Q2

Q0

Q

Q

Q

Q

Q

Q

Q

Q

* Since all flip-flops are driven by the same clock, the counter is called a “synchronous”
counter.

* J0 = K0 = 1, J1 = K1 = Q0, J2 = K2 = Q1Q0, J3 = K3 = Q2Q1Q0.

* FF0 toggles at every active edge.
FF1 toggles if Q0 = 1 (just before the active clock edge); else, it retains its previous state.
Similar comments apply to FF2 and FF3.

* From the waveforms, we see that it is a binary up counter.

M. B. Patil, IIT Bombay



A synchronous counter

J

K

J

K

J

K

CLK

J

K

FF3

1

CLK

FF0 FF1 FF2

t

t

t

t

t

Q1

Q2

Q3

Q3Q0 Q1 Q2

Q0

Q

Q

Q

Q

Q

Q

Q

Q

* Since all flip-flops are driven by the same clock, the counter is called a “synchronous”
counter.

* J0 = K0 = 1, J1 = K1 = Q0, J2 = K2 = Q1Q0, J3 = K3 = Q2Q1Q0.
* FF0 toggles at every active edge.

FF1 toggles if Q0 = 1 (just before the active clock edge); else, it retains its previous state.
Similar comments apply to FF2 and FF3.

* From the waveforms, we see that it is a binary up counter.

M. B. Patil, IIT Bombay



A synchronous counter

J

K

J

K

J

K

CLK

J

K

FF3

1

CLK

FF0 FF1 FF2

t

t

t

t

t

Q1

Q2

Q3

Q3Q0 Q1 Q2

Q0

Q

Q

Q

Q

Q

Q

Q

Q

* Since all flip-flops are driven by the same clock, the counter is called a “synchronous”
counter.

* J0 = K0 = 1, J1 = K1 = Q0, J2 = K2 = Q1Q0, J3 = K3 = Q2Q1Q0.
* FF0 toggles at every active edge.

FF1 toggles if Q0 = 1 (just before the active clock edge); else, it retains its previous state.
Similar comments apply to FF2 and FF3.

* From the waveforms, we see that it is a binary up counter.

M. B. Patil, IIT Bombay



A synchronous counter

J

K

J

K

J

K

CLK

J

K

FF3

1

CLK

FF0 FF1 FF2

t

t

t

t

t

Q1

Q2

Q3

Q3Q0 Q1 Q2

Q0

Q

Q

Q

Q

Q

Q

Q

Q

* Since all flip-flops are driven by the same clock, the counter is called a “synchronous”
counter.

* J0 = K0 = 1, J1 = K1 = Q0, J2 = K2 = Q1Q0, J3 = K3 = Q2Q1Q0.
* FF0 toggles at every active edge.

FF1 toggles if Q0 = 1 (just before the active clock edge); else, it retains its previous state.
Similar comments apply to FF2 and FF3.

* From the waveforms, we see that it is a binary up counter.

M. B. Patil, IIT Bombay



A synchronous counter

J

K

J

K

J

K

CLK

J

K

FF3

1

CLK

FF0 FF1 FF2

t

t

t

t

t

Q1

Q2

Q3

Q3Q0 Q1 Q2

Q0

Q

Q

Q

Q

Q

Q

Q

Q

* Since all flip-flops are driven by the same clock, the counter is called a “synchronous”
counter.

* J0 = K0 = 1, J1 = K1 = Q0, J2 = K2 = Q1Q0, J3 = K3 = Q2Q1Q0.
* FF0 toggles at every active edge.

FF1 toggles if Q0 = 1 (just before the active clock edge); else, it retains its previous state.
Similar comments apply to FF2 and FF3.

* From the waveforms, we see that it is a binary up counter.

M. B. Patil, IIT Bombay



A synchronous counter

J

K

J

K

J

K

CLK

J

K

FF3

1

CLK

FF0 FF1 FF2

t

t

t

t

t

Q1

Q2

Q3

Q3Q0 Q1 Q2

Q0

Q

Q

Q

Q

Q

Q

Q

Q

* Since all flip-flops are driven by the same clock, the counter is called a “synchronous”
counter.

* J0 = K0 = 1, J1 = K1 = Q0, J2 = K2 = Q1Q0, J3 = K3 = Q2Q1Q0.
* FF0 toggles at every active edge.

FF1 toggles if Q0 = 1 (just before the active clock edge); else, it retains its previous state.
Similar comments apply to FF2 and FF3.

* From the waveforms, we see that it is a binary up counter.

M. B. Patil, IIT Bombay



A synchronous counter

J

K

J

K

J

K

CLK

J

K

FF3

1

CLK

FF0 FF1 FF2

t

t

t

t

t

Q1

Q2

Q3

Q3Q0 Q1 Q2

Q0

Q

Q

Q

Q

Q

Q

Q

Q

* Since all flip-flops are driven by the same clock, the counter is called a “synchronous”
counter.

* J0 = K0 = 1, J1 = K1 = Q0, J2 = K2 = Q1Q0, J3 = K3 = Q2Q1Q0.
* FF0 toggles at every active edge.

FF1 toggles if Q0 = 1 (just before the active clock edge); else, it retains its previous state.
Similar comments apply to FF2 and FF3.

* From the waveforms, we see that it is a binary up counter.
M. B. Patil, IIT Bombay



Design of synchronous counters
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* Consider the reverse problem: We are given Qn and the next desired state (Qn+1). What
should J and K be in order to make that happen?

* Qn = 0, Qn+1 = 0: We can either force Qn+1 = 0 with J = 0, K = 1, or let Qn+1 = Qn = 0 by
making J = 0, K = 0.

→ J = 0, K = X (i.e., K can be 0 or 1).

* Similarly, work out the other entries in the table.

* The table for a negative edge-triggered flip-flop would be identical excpet for the active
edge.
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Design a synchronous mod-5 counter with the given state transition table.

Outline of method:

* State 1 → State 2 means
Q2: 0→ 0,
Q1: 0→ 0,
Q0: 0→ 1.

* Refer to the right table. For Q2: 0→ 0, we must have J2 = 0, K2 = X , and so on.

* When we cover all transitions in the left table, we have the truth tables for J0, K0, J1, K1,
J2, K2 in terms of Q1, Q2, Q3.

* The last step is to come up with suitable functions for J0, K0, J1, K1, J2, K2 in terms of Q1,
Q2, Q3. This can be done with K-maps. (If the number of flip-flops is more than 4, other
techniques can be employed.)
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* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2.
The next step is to find logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of
Q0, Q1, Q2 which do not occur in the state transition table (such as
Q2Q1Q0 = 110). We treat these as don’t care conditions (next slide).
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Q0, Q1, Q2 which do not occur in the state transition table (such as
Q2Q1Q0 = 110). We treat these as don’t care conditions (next slide).
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* We treat the unused states (Q2Q1Q0 = 101, 110, 111) as (additional) don’t care conditions.
Since these are different from the don’t care conditions arising from the state transition
table, we mark them with a different colour.

* We will assume that a suitable initialization facility is provided to ensure that the counter
starts up in one of the five allowed states (say, Q2Q1Q0 = 000).

* From the K-maps, J2 = Q1Q0, K2 = 1, J1 = Q0, K1 = Q0, J0 = Q2, K0 = 1.
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Design of synchronous counters: verification

CLK

J

K

J

K

J

K

1

(SEQUEL file: ee101_counter_6.sqproj)

CLK

 0.04  0.14  0.24  0.34
time (msec)

K0K1K2

J0J1J2

Q

Q
Q0

Q

Q
Q1

Q

Q
Q2

Q0

Q1

Q2

* J2 = Q1Q0, K2 = 1, J1 = Q0, K1 = Q0, J0 = Q2, K0 = 1.

* Note that the design is independent of whether positive or negative edge-triggered flip-flops
are used.
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Combination of counters

Clock 1
Counter 1

Counter 2
Clock 2

mod-k2

mod-k1

Clock 1
Counter 1 Decoding Counter 2

logic Clock 2 mod-k2mod-k1

Counter 1 Counter 2

common
clock

mod-k1 mod-k2

* Consider two counters, Counter 1 (mod-k1) and Counter 2 (mod-k2).
(Each of them can be ripple or synchronous type.)

* Since Counter 1 has k1 states and Counter 2 has k2 states, we can get a new counter with
k1k2 states if appropriate synchronisation is provided between the two clocks.

* There are two ways of providing synchronisation:

- derive Clock 2 from Clock 1 (using some decoding logic, if necessary)

- drive the two counters with the same clock
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* Since Counter 1 has k1 states and Counter 2 has k2 states, we can get a new counter with
k1k2 states if appropriate synchronisation is provided between the two clocks.

* There are two ways of providing synchronisation:

- derive Clock 2 from Clock 1 (using some decoding logic, if necessary)
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* Let us combine the mod-2 and mod-5 counters to make a mod-10 counter.
* We will follow two approaches (as described earlier):

A: The clock for the second (mod-5) counter is derived from the first (mod-2) counter.

B: A common clock is used to drive the mod-2 and mod-5 counters.
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Combination of counters

* Show that, by connecting the Q output of the mod-2 counter (instead of the Q
output) to the clock input of the mod-5 counter in the ripple connection
(“Approach A”) circuit, we get a decade counter, counting up from 0000 to
1001.

* Derive appropriate decoding logic for each of the ten counters states (i.e., the
output should be 1 for only that particular state and 0 otherwise).

* Derive appropriate decoding logic which will give a symmetrical square wave (i.e.,
a duty cycle of 50 %) with a frequency of fc/10, where fc is the clock frequency.

* Verify your design by simulation.

M. B. Patil, IIT Bombay



Combination of counters

* Show that, by connecting the Q output of the mod-2 counter (instead of the Q
output) to the clock input of the mod-5 counter in the ripple connection
(“Approach A”) circuit, we get a decade counter, counting up from 0000 to
1001.

* Derive appropriate decoding logic for each of the ten counters states (i.e., the
output should be 1 for only that particular state and 0 otherwise).

* Derive appropriate decoding logic which will give a symmetrical square wave (i.e.,
a duty cycle of 50 %) with a frequency of fc/10, where fc is the clock frequency.

* Verify your design by simulation.

M. B. Patil, IIT Bombay



Combination of counters

* Show that, by connecting the Q output of the mod-2 counter (instead of the Q
output) to the clock input of the mod-5 counter in the ripple connection
(“Approach A”) circuit, we get a decade counter, counting up from 0000 to
1001.

* Derive appropriate decoding logic for each of the ten counters states (i.e., the
output should be 1 for only that particular state and 0 otherwise).

* Derive appropriate decoding logic which will give a symmetrical square wave (i.e.,
a duty cycle of 50 %) with a frequency of fc/10, where fc is the clock frequency.

* Verify your design by simulation.

M. B. Patil, IIT Bombay



Combination of counters

* Show that, by connecting the Q output of the mod-2 counter (instead of the Q
output) to the clock input of the mod-5 counter in the ripple connection
(“Approach A”) circuit, we get a decade counter, counting up from 0000 to
1001.

* Derive appropriate decoding logic for each of the ten counters states (i.e., the
output should be 1 for only that particular state and 0 otherwise).

* Derive appropriate decoding logic which will give a symmetrical square wave (i.e.,
a duty cycle of 50 %) with a frequency of fc/10, where fc is the clock frequency.

* Verify your design by simulation.

M. B. Patil, IIT Bombay


