A Field-Effect Transistor (FET) has a gate (G) terminal which controls the current flow between the other two terminals, viz., source (S) and drain (D).

In simple terms, a FET can be thought of as a resistance connected between S and D, which is a function of the gate voltage V_G.

The mechanism of gate control varies in different types of FETs, e.g., JFET, MESFET, MOSFET, HEMT.

FETs can be used for analog and digital applications. In each case, the fact that the gate is used to control current flow between S and D plays a crucial role.

M. B. Patil, IIT Bombay
A Field-Effect Transistor (FET) has a gate (G) terminal which controls the current flow between the other two terminals, viz., source (S) and drain (D).
A Field-Effect Transistor (FET) has a gate \((G)\) terminal which controls the current flow between the other two terminals, viz., source \((S)\) and drain \((D)\).

In simple terms, a FET can be thought of as a resistance connected between \(S\) and \(D\), which is a function of the gate voltage \(V_G\).
A Field-Effect Transistor (FET) has a gate (G) terminal which controls the current flow between the other two terminals, viz., source (S) and drain (D).

In simple terms, a FET can be thought of as a resistance connected between S and D, which is a function of the gate voltage V_G.

The mechanism of gate control varies in different types of FETs, e.g., JFET, MESFET, MOSFET, HEMT.
* A Field-Effect Transistor (FET) has a gate (G) terminal which controls the current flow between the other two terminals, viz., source (S) and drain (D).

* In simple terms, a FET can be thought of as a resistance connected between S and D, which is a function of the gate voltage V_G.

* The mechanism of gate control varies in different types of FETs, e.g., JFET, MESFET, MOSFET, HEMT.

* FETs can be used for analog and digital applications. In each case, the fact that the gate is used to control current flow between S and D plays a crucial role.
The n-type region between the top and bottom p⁺ regions offers a resistance to current flow. The resistance depends on \(V_G \).

We will first consider the case, \(V_D = V_S = 0 \).
* The n-type region between the top and bottom p^+ regions offers a resistance to current flow. The resistance depends on V_G.
* The \(n\)-type region between the top and bottom \(p^+\) regions offers a resistance to current flow. The resistance depends on \(V_G\).
* We will first consider the case, \(V_D = V_S = 0 \, V\).
JFET with $V_S = V_D = 0 \, V$

- Neutral depletion
- Depleted region

$V_G = 0 \, V$

- $V_G = -1 \, V$
- $V_G = -2 \, V$

The bias across the $p-n$ junction is $(V_G - V_S)$, i.e., V_G, since $V_S = V_D = 0 \, V$.

As the reverse bias across the junction is increased (by making V_G more negative), the depletion region widens, and the resistance offered by the n-region increases.

When the reverse bias becomes large enough, the depletion region consumes the entire n-region. The corresponding V_G is called the "pinch-off" voltage.
JFET with $V_S = V_D = 0 \, V$

* The bias across the p-n junction is $(V_G - V_S)$, i.e., V_G, since $V_S = V_D = 0 \, V$.

M. B. Patil, IIT Bombay
JFET with $V_S = V_D = 0 \, V$

- The bias across the p-n junction is $(V_G - V_S)$, i.e., V_G, since $V_S = V_D = 0 \, V$.
- As the reverse bias across the junction is increased (by making V_G more negative), the depletion region widens, and the resistance offered by the n-region increases.
The bias across the p-n junction is \((V_G - V_S)\), i.e., \(V_G\), since \(V_S = V_D = 0\) V.

As the reverse bias across the junction is increased (by making \(V_G\) more negative), the depletion region widens, and the resistance offered by the n-region increases.

When the reverse bias becomes large enough, the depletion region consumes the entire n-region. The corresponding \(V_G\) is called the “pinch-off” voltage.
JFET: pinch-off voltage

For a p+−n junction,

\[W = s^2 \varepsilon (V_{bi} - V) \]

\[q N_d \]

For pinch-off,

\[W = a = s^2 \varepsilon (V_{bi} - V) \]

\[q N_d \]

\[V_P = V_{bi} - q N_d a^2 \varepsilon \]
For a $p^+ - n$ junction, $W = s_2 \varepsilon (V_{bi} - V) q N_d$, where V_{bi} is the built-in potential of the junction.

For pinch-off, $W = a = s_2 \varepsilon (V_{bi} - V) q N_d \Rightarrow V_P = V_{bi} - q N_d a^2 s_2 \varepsilon$.

* $V_P = V_G$ for which $h = 0$, i.e., $W = a$.

M. B. Patil, IIT Bombay
* $V_P = V_G$ for which $h = 0$, i.e., $W = a$.

* For a $p^+\text{-}n$ junction, $W = \sqrt{\frac{2 \epsilon (V_{bi} - V)}{q N_d}}$, where V_{bi} is the built-in potential of the junction.
JFET: pinch-off voltage

- \(V_P = V_G \) for which \(h = 0 \), i.e., \(W = a \).
- For a \(p^+ - n \) junction, \(W = \sqrt{\frac{2 \epsilon (V_{bi} - V)}{q N_d}} \), where \(V_{bi} \) is the built-in potential of the junction.
- For pinch-off, \(W = a = \sqrt{\frac{2 \epsilon (V_{bi} - V)}{q N_d}} \)

\[\Rightarrow V_P = V_{bi} - \frac{q N_d a^2}{2 \epsilon} . \]
For pinch-off, \(W = a = \frac{s}{2} \epsilon (V_{bi} - V) \).

\[W = 0.8 - (1.6 \times 10^{-19} \text{Coul})(2 \times 10^{15} \text{cm}^{-3})((1.5 \times 10^{-4})^2 \text{cm}) = 0.8 - 3.48 \approx -2.7 \text{V}. \]

⇒ If a gate voltage \(V_G = -2.7 \text{V} \) is applied, the n-channel gets pinched off, and the device resistance becomes very large.
For pinch-off, \(W = a = \sqrt{\frac{2 \epsilon (V_{bi} - V)}{q N_d}} \) \(\Rightarrow V_P = V_{bi} - \frac{q N_d a^2}{2 \epsilon} \).
For pinch-off, $W = a = \sqrt{\frac{2 \varepsilon (V_{bi} - V)}{q N_d}} \Rightarrow V_P = V_{bi} - \frac{q N_d a^2}{2 \varepsilon}$.

Example: $N_d = 2 \times 10^{15} \text{ cm}^{-3}$, $a = 1.5 \mu\text{m}$, $V_{bi} = 0.8 \text{ V}$.
JFET: pinch-off voltage

* For pinch-off, \(W = a = \sqrt{\frac{2 \epsilon (V_{bi} - V)}{q N_d}} \) \(\Rightarrow V_P = V_{bi} - \frac{q N_d a^2}{2 \epsilon} \).

* Example: \(N_d = 2 \times 10^{15} \text{ cm}^{-3}, \ a = 1.5 \mu \text{m}, \ V_{bi} = 0.8 \text{ V} \).

\[W = 0.8 - \frac{(1.6 \times 10^{-19} \text{ Coul})(2 \times 10^{15} \text{ cm}^{-3})(1.5 \times 10^{-4})^2 \text{ cm}^2}{2 \times 11.7 \times 8.85 \times 10^{-14} \text{ F/cm}} \]

\[= 0.8 - 3.48 \approx -2.7 \text{ V} . \]
For pinch-off, \(W = a = \sqrt{\frac{2 \epsilon (V_{bi} - V)}{q N_d}} \Rightarrow V_P = V_{bi} - \frac{q N_d a^2}{2 \epsilon} \).

Example: \(N_d = 2 \times 10^{15} \text{ cm}^{-3}, a = 1.5 \mu \text{m}, V_{bi} = 0.8 \text{ V.} \)

\[
W = 0.8 - \frac{(1.6 \times 10^{-19} \text{ Coul}) (2 \times 10^{15} \text{ cm}^{-3}) ((1.5 \times 10^{-4})^2 \text{ cm}^2)}{2 \times 11.7 \times 8.85 \times 10^{-14} \text{ F/cm}}
\]

\[
= 0.8 - 3.48 \approx -2.7 \text{ V.}
\]

\(\Rightarrow \) If a gate voltage \(V_G = -2.7 \text{ V} \) is applied, the \(n \)-channel gets pinched off, and the device resistance becomes very large.
Consider an n-JFET with V_G constant (and not in pinch-off mode). If a positive V_D is applied, the potential $V(x)$ inside the channel from S to D (along the dashed line) increases from 0 V to V_D. Note that W and h are now functions of x such that, $W(x) + h(x) = a$.

Since the p-n junction bias at a given x is $(V_G - V(x))$, the drain end of the channel has a larger reverse bias than the source end. ⇒ the depletion region is wider at the drain.

M. B. Patil, IIT Bombay
Consider an n-JFET with V_G constant (and not in pinch-off mode).
JFET with $V_G = \text{constant}$, $V_D \neq 0 \text{ V}$

* Consider an n-JFET with V_G constant (and not in pinch-off mode). If a positive V_D is applied, the potential $V(x)$ inside the channel from S to D (along the dashed line) increases from 0 V to V_D.

M. B. Patil, IIT Bombay
Consider an n-JFET with V_G constant (and not in pinch-off mode). If a positive V_D is applied, the potential $V(x)$ inside the channel from S to D (along the dashed line) increases from 0 V to V_D. Note that W and h are now functions of x such that, $W(x) + h(x) = a$.

M. B. Patil, IIT Bombay
Consider an n-JFET with V_G constant (and not in pinch-off mode). If a positive V_D is applied, the potential $V(x)$ inside the channel from S to D (along the dashed line) increases from 0 V to V_D. Note that W and h are now functions of x such that, $W(x) + h(x) = a$.

Since the p-n junction bias at a given x is $(V_G - V(x))$, the drain end of the channel has a larger reverse bias than the source end.
Consider an n-JFET with V_G constant (and not in pinch-off mode). If a positive V_D is applied, the potential $V(x)$ inside the channel from S to D (along the dashed line) increases from 0 V to V_D. Note that W and h are now functions of x such that, $W(x) + h(x) = a$.

Since the p-n junction bias at a given x is $(V_G - V(x))$, the drain end of the channel has a larger reverse bias than the source end. \(\Rightarrow\) the depletion region is wider at the drain.
Consider a slice of the device. The current density at any point in the neutral region is assumed to be in the x direction, and given by,

$$J_n = q \mu_n n E + q D n \frac{dn}{dx} \approx q \mu_n n E = q \mu_n N d \frac{dV}{dx},$$

where we have neglected the diffusion current, since $n \approx N_d \Rightarrow \frac{dn}{dx} = 0$.

Note that only the neutral part of the n-Si conducts since there are no carriers in the depletion regions.

At a given x, the current I_D is obtained by integrating J_n over the area of the neutral channel region (see figure on the right). Since J_n is constant over this area,

$$I_D(x) = \int_{-h}^{h} J_n dx \approx \int_{-h}^{h} q \mu_n N d \frac{dV}{dx} \approx qZ \mu_n N d a \frac{dV}{dx},$$

where we have used $h = a - W$, i.e., $h = a(1 - W/a)$.

M. B. Patil, IIT Bombay
Consider a slice of the device. The current density at any point in the neutral region is assumed to be in the x direction, and given by,

$$J_n = q\mu_n nE + qD_n \frac{dn}{dx} \approx q\mu_n nE = q\mu_n N_d \frac{dV}{dx},$$

where we have neglected the diffusion current, since $n \approx N_d \Rightarrow \frac{dn}{dx} = 0$.

Note that only the neutral part of the n-Si conducts since there are no carriers in the depletion regions. At a given x, the current I_D is obtained by integrating J_n over the area of the neutral channel region (see figure on the right). Since J_n is constant over this area,

$$I_D(x) = \int J_n \, dx \approx 2hZ \times q\mu_n N_d \frac{dV}{dx},$$

where we have used $h = a - W$, i.e., $h = a\left(1 - \frac{W}{a}\right)$.

M. B. Patil, IIT Bombay
Consider a slice of the device. The current density at any point in the neutral region is assumed to be in the x direction, and given by,

$$J_n = q\mu_n nE + qD_n \frac{dn}{dx} \approx q\mu_n nE = q\mu_n N_d \frac{dV}{dx},$$

where we have neglected the diffusion current, since $n \approx N_d \Rightarrow \frac{dn}{dx} = 0$.

Note that only the neutral part of the n-Si conducts since there are no carriers in the depletion regions.
Consider a slice of the device. The current density at any point in the neutral region is assumed to be in the x direction, and given by,

$$J_n = q\mu_n nE + qD_n \frac{dn}{dx} \approx q\mu_n nE = q\mu_n N_d \frac{dV}{dx} ,$$

where we have neglected the diffusion current, since $n \approx N_d \Rightarrow \frac{dn}{dx} = 0$.

Note that only the neutral part of the n-Si conducts since there are no carriers in the depletion regions.
Consider a slice of the device. The current density at any point in the neutral region is assumed to be in the x direction, and given by,

$$J_n = q\mu_n nE + qD_n \frac{dn}{dx} \approx q\mu_n nE = q\mu_n N_d \frac{dV}{dx},$$

where we have neglected the diffusion current, since $n \approx N_d \Rightarrow \frac{dn}{dx} = 0$.

Note that only the neutral part of the n-Si conducts since there are no carriers in the depletion regions.

*At a given x, the current I_D is obtained by integrating J_n over the area of the neutral channel region (see figure on the right). Since J_n is constant over this area,
 Consider a slice of the device. The current density at any point in the neutral region is assumed to be in the x direction, and given by,

$$J_n = q\mu_n nE + qD_n \frac{dn}{dx} \approx q\mu_n nE = q\mu_n N_d \frac{dV}{dx} ,$$

where we have neglected the diffusion current, since $n \approx N_d \Rightarrow \frac{dn}{dx} = 0$.

Note that only the neutral part of the n-Si conducts since there are no carriers in the depletion regions.

At a given x, the current I_D is obtained by integrating J_n over the area of the neutral channel region (see figure on the right). Since J_n is constant over this area,

$$I_D(x) = \int J_n dxdz = 2hZ \times \left(q\mu_n N_d \frac{dV}{dx} \right) = 2qZ\mu_n N_d a \frac{dV}{dx} \left(1 - \frac{W}{a} \right) ,$$

where we have used $h = a - W$, i.e., $h = a(1 - W/a)$.
JFET: derivation of I_D equation

\[I_D(x) = 2 q Z \mu_n N_d a \frac{dV}{dx} \left(1 - \frac{W}{a} \right). \]
JFET: derivation of I_D equation

\[I_D(x) = 2qZ\mu_n N_d a \frac{dV}{dx} \left(1 - \frac{W}{a}\right). \]

Since $I_D(x)$ is constant from $x = 0$ to $x = L$, we get,

\[\int_0^L I_D dx = I_D L = 2qZ\mu_n N_d a \int_0^{V_D} \left(1 - \sqrt{\frac{2\epsilon}{qN_d a^2}} \sqrt{V_{bi} - (V_G - V)}\right) dV, \]

where we have used, for the depletion width W,

\[W(x) = \sqrt{\frac{2\epsilon}{qN_d}} \left[V_{bi} - (V_G - V]\right]. \]
JFET: derivation of I_D equation

$$I_D(x) = 2qZ \mu_n N_d a \frac{dV}{dx} \left(1 - \frac{W}{a}\right).$$

Since $I_D(x)$ is constant from $x = 0$ to $x = L$, we get,

$$\int_0^L I_D dx = I_D L = 2qZ \mu_n N_d a \int_0^{V_D} \left(1 - \sqrt{\frac{2\epsilon}{qN_d a^2}} \sqrt{V_{bi} - (V_G - V)}\right) dV,$$

where we have used, for the depletion width W,

$$W(x) = \sqrt{\frac{2\epsilon}{qN_d}} [V_{bi} - (V_G - V)].$$

Evaluating the integral and using $V_{bi} - V_P = \frac{qN_d a^2}{2\epsilon}$, we get (do this!)

$$I_D = G_0 \left\{ V_D - \frac{2}{3} (V_{bi} - V_P) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\},$$

where $G_0 = 2qZ \mu_n N_d a/L$.

M. B. Patil, IIT Bombay
JFET: derivation of I_D equation

$$I_D(x) = 2qZ \mu_n N_d a \frac{dV}{dx} \left(1 - \frac{W}{a}\right).$$

Since $I_D(x)$ is constant from $x = 0$ to $x = L$, we get,

$$\int_0^L I_D dx = I_D L = 2qZ \mu_n N_d a \int_0^{V_D} \left(1 - \sqrt{\frac{2\epsilon}{qN_d a^2}} \sqrt{V_{bi} - (V_G - V)} \right) dV,$$

where we have used, for the depletion width W,

$$W(x) = \sqrt{\frac{2\epsilon}{qN_d} [V_{bi} - (V_G - V)].}$$

Evaluating the integral and using $V_{bi} - V_P = \frac{qN_d a^2}{2\epsilon}$, we get (do this!)

$$I_D = G_0 \left\{ V_D - \frac{2}{3} (V_{bi} - V_P) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\},$$

where $G_0 = 2qZ \mu_n N_d a / L$.

Note that G_0 is the channel conductance if there was no depletion, i.e., if $h(x) = a$ throughout the channel.
Special case: \(V_D \approx 0 \, V \)

\[
I_D = G_0 \left\{ V_D - \frac{2}{3} (V_{bi} - V_P) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}
\]

Since \(W = 2 \epsilon q N d \left(V_{bi} - V_G \right)^{1/2} \), and \(a = 2 \epsilon q N d \left(V_{bi} - V_P \right)^{1/2} \), we get

\(I_D = G_0 V_D \left(1 - \frac{W}{a} \right) \).

This simply shows that the channel conductance reduces linearly with \(W \) (as seen before the \(V_S = V_S = 0 \, V \) condition), and for \(V_G = V_P \) (i.e., \(W = a \)), the conductance becomes zero.
Special case: $V_D \approx 0\, V$

\[I_D = G_0 \left\{ V_D - \frac{2}{3} (V_{bi} - V_P) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\} \]

\[\approx G_0 \left\{ V_D - \frac{2}{3} (V_{bi} - V_P)^{-1/2} \left[\frac{3}{2} V_D (V_{bi} - V_G)^{1/2} \right] \right\} \quad \text{(using Taylor's series)} \]
Special case: $V_D \approx 0 \, V$

\[I_D = G_0 \left\{ V_D - \frac{2}{3} (V_{bi} - V_P) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\} \]

\[\approx G_0 \left\{ V_D - \frac{2}{3} (V_{bi} - V_P)^{-1/2} \left[\frac{3}{2} V_D (V_{bi} - V_G)^{1/2} \right] \right\} \quad \text{(using Taylor’s series)} \]

\[= G_0 V_D \left\{ 1 - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{1/2} \right\}. \]
Special case: $V_D \approx 0 \, V$

$$
I_D = G_0 \left\{ V_D - \frac{2}{3} (V_{bi} - V_P) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}
$$

$$
\approx G_0 \left\{ V_D - \frac{2}{3} (V_{bi} - V_P)^{-1/2} \left[\frac{3}{2} V_D (V_{bi} - V_G)^{1/2} \right] \right\} \quad \text{(using Taylor's series)}
$$

$$
= G_0 V_D \left\{ 1 - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{1/2} \right\}.
$$

Since $W = \frac{2\epsilon}{qN_d} (V_{bi} - V_G)^{1/2}$, and $a = \frac{2\epsilon}{qN_d} (V_{bi} - V_P)^{1/2}$, we get
Special case: $V_D \approx 0\, V$

\[I_D = G_0 \left\{ V_D - \frac{2}{3} (V_{bi} - V_P) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\} \]

\[\approx G_0 \left\{ V_D - \frac{2}{3} (V_{bi} - V_P)^{-1/2} \left[\frac{3}{2} V_D (V_{bi} - V_G)^{1/2} \right] \right\} \quad \text{(using Taylor’s series)} \]

\[= G_0 V_D \left\{ 1 - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{1/2} \right\}. \]

Since $W = \frac{2\epsilon}{qN_d} (V_{bi} - V_G)^{1/2}$, and $a = \frac{2\epsilon}{qN_d} (V_{bi} - V_P)^{1/2}$, we get

\[I_D = G_0 V_D \left\{ 1 - \frac{W}{a} \right\}. \]
Special case: \(V_D \approx 0 \, V \)

\[
I_D = G_0 \left\{ V_D - \frac{2}{3} (V_{bi} - V_P) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}
\]

\[
\approx G_0 \left\{ V_D - \frac{2}{3} (V_{bi} - V_P)^{-1/2} \left[\frac{3}{2} V_D (V_{bi} - V_G)^{1/2} \right] \right\} \quad \text{(using Taylor's series)}
\]

\[
= G_0 V_D \left\{ 1 - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{1/2} \right\}.
\]

Since \(W = \frac{2\epsilon}{qN_d} (V_{bi} - V_G)^{1/2} \), and \(a = \frac{2\epsilon}{qN_d} (V_{bi} - V_P)^{1/2} \), we get

\[
I_D = G_0 V_D \left\{ 1 - \frac{W}{a} \right\}.
\]

This simply shows that the channel conductance reduces linearly with \(W \) (as seen before the \(V_S = V_S = 0 \, V \) condition), and for \(V_G = V_P \) (i.e., \(W = a \)), the conductance becomes zero.
JFET: pinch-off near drain

\[I_D = G_0 \left\{ V_D - \frac{2}{3} (V_{bi} - V_P) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\} . \]
JFET: pinch-off near drain

\[I_D = G_0 \left\{ \frac{2}{3} (V_{bi} - V_P) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\} \]

For a given \(V_G \), \(I_D \) reaches a maximum at \(V_D = V_G - V_P \) (show this by differentiating the above equation).
\[I_D = G_0 \left\{ V_D - \frac{2}{3} (V_{bi} - V_P) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}. \]

For a given \(V_G \), \(I_D \) reaches a maximum at \(V_D = V_G - V_P \) (show this by differentiating the above equation).

At this value of \(V_D \), the bias across the \(p-n \) junction at the drain end is \(V_G - V_D = V_P \).
\[I_D = G_0 \left\{ V_D - \frac{2}{3} (V_{bi} - V_P) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\} \]

For a given \(V_G \), \(I_D \) reaches a maximum at \(V_D = V_G - V_P \) (show this by differentiating the above equation).

At this value of \(V_D \), the bias across the \(p-n \) junction at the drain end is \(V_G - V_D = V_P \). In other words, the drain end of the channel has just reached pinch-off.
JFET: pinch-off near drain

\[I_D = G_0 \left\{ V_D - \frac{2}{3} (V_{bi} - V_P) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}. \]

For a given \(V_G \), \(I_D \) reaches a maximum at \(V_D = V_G - V_P \) (show this by differentiating the above equation).

At this value of \(V_D \), the bias across the p-n junction at the drain end is \(V_G - V_D = V_P \). In other words, the drain end of the channel has just reached pinch-off.
\[I_D = G_0 \left\{ V_D - \frac{2}{3} (V_{bi} - V_P) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\} \]

For a given \(V_G \), \(I_D \) reaches a maximum at \(V_D = V_G - V_P \) (show this by differentiating the above equation).

At this value of \(V_D \), the bias across the \(p-n \) junction at the drain end is \(V_G - V_D = V_P \).

In other words, the drain end of the channel has just reached pinch-off.

What happens if \(V_D \) is increased further?
Consider a fixed V_G with V_D varying from ~ 0 V to a value beyond condition C.
Consider a fixed V_G with V_D varying from $\sim 0 \text{ V}$ to a value beyond condition C.

In this situation, i.e., $V_D > V_{D}^{\text{sat}}$, a short high-field region develops near the drain end, and the “excess” voltage, $V_D - V_{D}^{\text{sat}}$ drops across this region.
Consider a fixed V_G with V_D varying from $\sim 0\, V$ to a value beyond condition C.

In this situation, i.e., $V_D > V_D^{sat}$, a short high-field region develops near the drain end, and the “excess” voltage, $V_D - V_D^{sat}$ drops across this region.

Because the high-filed region is confined to a very small distance, the conditions in the device are almost identical in C and D.
Consider a fixed V_G with V_D varying from $\sim 0\ V$ to a value beyond condition C.

In this situation, i.e., $V_D > V_D^{sat}$, a short high-field region develops near the drain end, and the “excess” voltage, $V_D - V_D^{sat}$ drops across this region.

Because the high-filed region is confined to a very small distance, the conditions in the device are almost identical in C and D.

\Rightarrow The current in case D is almost the same as that for case C.
Consider a fixed V_G with V_D varying from $\sim 0 \, \text{V}$ to a value beyond condition C.

In this situation, i.e., $V_D > V_D^{\text{sat}}$, a *short* high-field region develops near the drain end, and the “excess” voltage, $V_D - V_D^{\text{sat}}$, drops across this region.

Because the high-filed region is confined to a very small distance, the conditions in the device are almost identical in C and D.

\Rightarrow The current in case D is almost the same as that for case C.

The region $V_D > V_D^{\text{sat}}$ is therefore called the “saturation region.”
An n-channel silicon JFET has the following parameters (at $T = 300 \, K$): $a = 1.5 \, \mu m$, $L = 5 \, \mu m$, $Z = 50 \, \mu m$, $N_d = 2 \times 10^{15} \, cm^{-3}$, $V_{bi} = 0.8 \, V$, $\mu_n = 300 \, cm^2/V$-sec.

(a) What is the pinch-off voltage?

(b) Write a program to generate I_D-V_D characteristics for $V_G = 0 \, V$, $-0.5 \, V$, $-1 \, V$, $-1.5 \, V$, $-2 \, V$.

(c) For each of the above V_G values, compute V_{Dsat}, and show it on the I_D-V_D plot. The part of an I_D-V_D corresponding to $V_D < V_{Dsat}$ is called the “linear” region, and that corresponding to $V_D > V_{Dsat}$ is called the “saturation” region.
An n-channel silicon JFET has the following parameters (at $T = 300 \, K$): $a = 1.5 \, \mu m$, $L = 5 \, \mu m$, $Z = 50 \, \mu m$, $N_d = 2 \times 10^{15} \, cm^{-3}$, $V_{bi} = 0.8 \, V$, $\mu_n = 300 \, cm^2/V$-sec.

(a) What is the pinch-off voltage?

(b) Write a program to generate I_D-V_D characteristics for $V_G = 0 \, V, -0.5 \, V, -1 \, V, -1.5 \, V, -2 \, V$.

(c) For each of the above V_G values, compute V_{D}^{sat}, and show it on the I_D-V_D plot. The part of an I_D-V_D corresponding to $V_D < V_{D}^{sat}$ is called the “linear” region, and that corresponding to $V_D > V_{D}^{sat}$ is called the “saturation” region.

Answer:

(a) $V_P = -2.68 \, V$.

(b)
\[I_D = G_0 \left\{ V_D - \frac{2}{3} (V_{bi} - V_P) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}. \]
\[I_D = G_0 \left\{ V_D - \frac{2}{3} (V_{bi} - V_P) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}. \]

At saturation, \(V_D^{sat} = V_G - V_P \), giving

\[I_D^{sat} = G_0 \left\{ V_D - \frac{2}{3} (V_{bi} - V_P) \left[1 - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}. \]
\[I_D = G_0 \left\{ V_D - \frac{2}{3} (V_{bi} - V_P) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}. \]

At saturation, \(V_{D}^{\text{sat}} = V_G - V_P \), giving
\[I_D^{\text{sat}} = G_0 \left\{ V_D - \frac{2}{3} (V_{bi} - V_P) \left[1 - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}. \]

The following approximate model is found to be adequate in circuit design:
\[I_D^{\text{sat}}(V_G) = I_{DSS} \left(1 - \frac{V_G}{V_P} \right)^2, \] where \(I_{DSS} = I_D^{\text{sat}}(V_G = 0 \, V) \).
\[I_D = G_0 \left\{ V_D - \frac{2}{3} (V_{bi} - V_P) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}. \]

At saturation, \(V_D^{sat} = V_G - V_P \), giving

\[I_D^{sat} = G_0 \left\{ V_D - \frac{2}{3} (V_{bi} - V_P) \left[1 - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}. \]

The following approximate model is found to be adequate in circuit design:

\[I_D^{sat}(V_G) = I_{DSS} \left(1 - \frac{V_G}{V_P} \right)^2, \text{ where } I_{DSS} = I_D^{sat}(V_G = 0 \text{ V}). \]

In amplifier design, we are interested in \(g_m = \frac{\partial I_D}{\partial V_G} \bigg|_{V_D=\text{constant}}, \) which is obtained as:
\[I_D = G_0 \left\{ V_D - \frac{2}{3} (V_{bi} - V_P) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}. \]

At saturation, \(V_{Dsat} = V_G - V_P \), giving
\[I_{Dsats} = G_0 \left\{ V_D - \frac{2}{3} (V_{bi} - V_P) \left[1 - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}. \]

The following approximate model is found to be adequate in circuit design:
\[I_{Dsat}(V_G) = I_{DSS} (1 - V_G / V_P)^2, \text{ where } I_{DSS} = I_{Dsats}(V_G = 0 \text{ V}). \]

In amplifier design, we are interested in \(g_m = \left. \frac{\partial I_D}{\partial V_G} \right|_{V_D=\text{constant}}, \) which is obtained as:
\[g_m = g_{m0} (1 - V_G / V_P), \]
where \(g_{m0} = -2I_{DSS} / V_P = g_m(V_G = 0 \text{ V}). \)
In real JFETs, there is a separation between the source/drain contacts and the active channel. The n-type semiconductor regions between the active channel and the source/drain contacts can be modelled by resistances R_S and R_D.

Cross-sectional view

(Not drawn to scale. Typically, $L \gg 2a$.)
In real JFETs, there is a separation between the source/drain contacts and the active channel. The n-type semiconductor regions between the active channel and the source/drain contacts can be modelled by resistances R_S and R_D.
A small-signal model of a JFET is required in analysis of an amplifier.
A small-signal model of a JFET is required in analysis of an amplifier. The DC gate current, which is the reverse current of a p-n junction, is generally insignificant and is therefore ignored.

* $g_m = \frac{\partial I_D}{\partial V_G}$ with V_D = constant.
* $g_d = \frac{\partial I_D}{\partial V_D}$ with V_G = constant.

g_m and g_d can be obtained by differentiating $I_D(V_G, V_D)$. Note that, in our simple model, short-channel effects have not been included; we would therefore obtain $g_d = 0$ Ω in saturation. However, a real device would show a small increase in I_D with an increase in V_D in saturation, giving rise to a non-zero g_d.

The capacitances C_{gs} and C_{gd} are depletion capacitances of the p-n junction.

M. B. Patil, IIT Bombay
A small-signal model of a JFET is required in analysis of an amplifier.

The DC gate current, which is the reverse current of a p-n junction, is generally insignificant and is therefore ignored.

\[g_m = \frac{\partial I_D}{\partial V_G} \] with \(V_D = \text{constant} \).
A small-signal model of a JFET is required in the analysis of an amplifier.

- The DC gate current, which is the reverse current of a p-n junction, is generally insignificant and is therefore ignored.

- \(g_m = \frac{\partial I_D}{\partial V_G} \) with \(V_D = \text{constant} \).

- \(g_d = \frac{\partial I_D}{\partial V_D} \) with \(V_G = \text{constant} \).
A small-signal model of a JFET is required in analysis of an amplifier.

The DC gate current, which is the reverse current of a p-n junction, is generally insignificant and is therefore ignored.

\[g_m = \frac{\partial I_D}{\partial V_G} \] with \(V_D = \text{constant} \).

\[g_d = \frac{\partial I_D}{\partial V_D} \] with \(V_G = \text{constant} \).

\(g_m \) and \(g_d \) can be obtained by differentiating \(I_D(V_G, V_D) \). Note that, in our simple model, short-channel effects have not been included; we would therefore obtain \(g_d = 0 \) in saturation. However, a real device would show a small increase in \(I_D \) with an increase in \(V_D \) in saturation, giving rise to a non-zero \(g_d \).
A small-signal model of a JFET is required in analysis of an amplifier.

The DC gate current, which is the reverse current of a p-n junction, is generally insignificant and is therefore ignored.

\[g_m = \frac{\partial I_D}{\partial V_G} \text{ with } V_D = \text{constant}. \]

\[g_d = \frac{\partial I_D}{\partial V_D} \text{ with } V_G = \text{constant}. \]

\(g_m \) and \(g_d \) can be obtained by differentiating \(I_D(V_G, V_D) \). Note that, in our simple model, short-channel effects have not been included; we would therefore obtain \(g_d = 0 \) in saturation. However, a real device would show a small increase in \(I_D \) with an increase in \(V_D \) in saturation, giving rise to a non-zero \(g_d \).

The capacitances \(C_{gs} \) and \(C_{gd} \) are depletion capacitances of the p-n junction.