EE101: Op Amp circuits (Part 3)

M. B. Patil
mbpatil@ee.iitb.ac.in
www.ee.iitb.ac.in/~sequel

Department of Electrical Engineering Indian Institute of Technology Bombay

Consider $v(t) = v_1(t) + v_2(t) = V_{m1} \sin \omega_1 t + V_{m2} \sin \omega_2 t$.

Consider $v(t) = v_1(t) + v_2(t) = V_{m1} \sin \omega_1 t + V_{m2} \sin \omega_2 t$.

A low-pass filter with a cut-off frequency $\omega_1 < \omega_c < \omega_2$ will pass the low-frequency component $v_1(t)$ and remove the high-frequency component $v_2(t)$.

Consider $v(t) = v_1(t) + v_2(t) = V_{m1} \sin \omega_1 t + V_{m2} \sin \omega_2 t$.

A low-pass filter with a cut-off frequency $\omega_1 < \omega_c < \omega_2$ will pass the low-frequency component $v_1(t)$ and remove the high-frequency component $v_2(t)$.

A high-pass filter with a cut-off frequency $\omega_1 < \omega_c < \omega_2$ will pass the high-frequency component $v_2(t)$ and remove the low-frequency component $v_1(t)$.

Consider
$$v(t) = v_1(t) + v_2(t) = V_{m1} \sin \omega_1 t + V_{m2} \sin \omega_2 t$$
.

A low-pass filter with a cut-off frequency $\omega_1 < \omega_c < \omega_2$ will pass the low-frequency component $v_1(t)$ and remove the high-frequency component $v_2(t)$.

A high-pass filter with a cut-off frequency $\omega_1 < \omega_c < \omega_2$ will pass the high-frequency component $v_2(t)$ and remove the low-frequency component $v_1(t)$.

There are some other types of filters, as we will see.

Ideal low-pass filter

$$V_o(j\omega) = H(j\omega) V_i(j\omega)$$
.

Ideal low-pass filter

$$V_o(j\omega) = H(j\omega) V_i(j\omega)$$
.

Ideal low-pass filter

$$V_o(j\omega) = H(j\omega) V_i(j\omega)$$
.

All components with $\omega < \omega_c$ appear at the output without attenuation.

All components with $\omega > \omega_c$ get eliminated.

(Note that the ideal low-pass filter has $\angle H(j\omega)=1$, i.e., $H(j\omega)=1+j0$.)

Let us see the effect of a few filters on v(t).

1 H(jω)

Practical filter circuits

* In practical filter circuits, the ideal filter response is approximated with a suitable $H(j\omega)$ that can be obtained with circuit elements. For example,

$$H(s) = \frac{1}{a_5 s^5 + a_4 s^4 + a_3 s^3 + a_2 s^2 + a_1 s + a_0}$$

represents a 5th-order low-pass filter.

Practical filter circuits

* In practical filter circuits, the ideal filter response is approximated with a suitable $H(j\omega)$ that can be obtained with circuit elements. For example,

$$H(s) = \frac{1}{a_5 s^5 + a_4 s^4 + a_3 s^3 + a_2 s^2 + a_1 s + a_0}$$

represents a 5th-order low-pass filter.

* Some commonly used approximations (polynomials) are the Butterworth, Chebyshev, Bessel, and elliptic functions.

Practical filter circuits

* In practical filter circuits, the ideal filter response is approximated with a suitable $H(j\omega)$ that can be obtained with circuit elements. For example,

$$H(s) = \frac{1}{a_5 s^5 + a_4 s^4 + a_3 s^3 + a_2 s^2 + a_1 s + a_0}$$

represents a 5th-order low-pass filter.

- * Some commonly used approximations (polynomials) are the Butterworth, Chebyshev, Bessel, and elliptic functions.
- * Coefficients for these filters listed in filter handbooks. Also, programs for filter design are available on the internet.

* A practical filter may exhibit a ripple. $A_{\rm max}$ is called the maximum passband ripple, e.g., $A_{\rm max}=1$ dB.

- * A practical filter may exhibit a ripple. $A_{\rm max}$ is called the maximum passband ripple, e.g., $A_{\rm max}=1$ dB.
- * A_{\min} is the minimum attenuation to be provided by the filter, e.g., $A_{\min} = 60$ dB.

- * A practical filter may exhibit a ripple. $A_{\rm max}$ is called the maximum passband ripple, e.g., $A_{\rm max}=1$ dB.
- * A_{\min} is the minimum attenuation to be provided by the filter, e.g., $A_{\min} = 60$ dB.
- * ω_s : edge of the stop band.

- * A practical filter may exhibit a ripple. $A_{\rm max}$ is called the maximum passband ripple, e.g., $A_{\rm max}=1$ dB.
- * A_{\min} is the minimum attenuation to be provided by the filter, e.g., $A_{\min} = 60$ dB.
- * ω_s : edge of the stop band.
- * ω_s/ω_c (for a low-pass filter): selectivity factor, a measure of the sharpness of the filter.

- * A practical filter may exhibit a ripple. $A_{\rm max}$ is called the maximum passband ripple, e.g., $A_{\rm max}=1$ dB.
- * $A_{\rm min}$ is the minimum attenuation to be provided by the filter, e.g., $A_{\rm min}=60$ dB.
- * ω_s : edge of the stop band.
- * ω_s/ω_c (for a low-pass filter): selectivity factor, a measure of the sharpness of the filter.
- * $\omega_c < \omega < \omega_s$: transition band.

For a low-pass filter,
$$H(s) = \frac{1}{\displaystyle\sum_{i=0}^{n} a_i (s/\omega_c)^i}$$
 .

Coefficients (a_i) for various types of filters are tabulated in handbooks. We now look at $|H(j\omega)|$ for two commonly used filters.

For a low-pass filter,
$$H(s) = \frac{1}{\displaystyle\sum_{i=0}^{n} a_i (s/\omega_c)^i}$$
 .

Coefficients (a_i) for various types of filters are tabulated in handbooks. We now look at $|H(j\omega)|$ for two commonly used filters.

Butterworth filters:

$$|H(j\omega)| = \frac{1}{\sqrt{1+\epsilon^2(\omega/\omega_c)^{2n}}} \, .$$

For a low-pass filter,
$$H(s) = \frac{1}{\displaystyle\sum_{i=0}^{n} a_i (s/\omega_c)^i}$$
.

Coefficients (a_i) for various types of filters are tabulated in handbooks. We now look at $|H(j\omega)|$ for two commonly used filters.

Butterworth filters:

$$|H(j\omega)| = \frac{1}{\sqrt{1 + \epsilon^2 (\omega/\omega_c)^{2n}}}$$
.

Chebyshev filters:

$$|H(j\omega)| = \frac{1}{\sqrt{1+\epsilon^2 C_n^2(\omega/\omega_c)}}$$
 where

$$C_n(x) = \cos \left[n \cos^{-1}(x) \right] \text{ for } x \le 1,$$

$$C_n(x) = \cosh \left[n \cosh^{-1}(x) \right] \text{ for } x \ge 1,$$

For a low-pass filter,
$$H(s) = \frac{1}{\displaystyle\sum_{i=0}^{n} a_i (s/\omega_c)^i}$$
 .

Coefficients (a_i) for various types of filters are tabulated in handbooks. We now look at $|H(j\omega)|$ for two commonly used filters.

Butterworth filters:

$$|H(j\omega)| = \frac{1}{\sqrt{1 + \epsilon^2 (\omega/\omega_c)^{2n}}}$$
.

Chebyshev filters:

$$|H(j\omega)| = \frac{1}{\sqrt{1 + \epsilon^2 C_p^2(\omega/\omega_c)}}$$
 where

$$C_n(x) = \cos\left[n\cos^{-1}(x)\right] \text{ for } x \le 1,$$

$$C_n(x) = \cosh \left[n \cosh^{-1}(x) \right] \text{ for } x \ge 1,$$

H(s) for a high-pass filter can be obtained from H(s) of the corresponding low-pass filter by $(s/\omega_c) \to (\omega_c/s)$.

Practical filters (low-pass)

Chebyshev filters:

n=1

10

100

Practical filters (high-pass)

$$H(s) = \frac{(1/sC)}{R + (1/sC)} = \frac{1}{1 + (s/\omega_0)},$$

with $\omega_0=1/{\rm RC}$. (Low-pass filter)

$$\mathsf{H}(\mathsf{s}) = \frac{(1/\mathsf{sC})}{\mathsf{R} + (1/\mathsf{sC})} = \frac{1}{1 + (\mathsf{s}/\omega_0)},$$

with $\omega_0=1/{
m RC}$.

(Low-pass filter)

(SEQUEL file: ee101_rc_ac_2.sqproj)

$$\begin{split} H(s) &= \frac{(sL) \parallel (1/sC)}{R + (sL) \parallel (1/sC)} = \frac{s(L/R)}{1 + s(L/R) + s^2L^4} \\ \text{with } \omega_0 &= 1/\sqrt{LC} \,. \end{split}$$

(Band-pass filter)

$$\begin{split} H(s) &= \frac{(sL) \parallel (1/sC)}{R + (sL) \parallel (1/sC)} = \frac{s(L/R)}{1 + s(L/R) + s^2LC} \\ \text{with } \omega_0 &= 1/\sqrt{LC} \,. \end{split}$$

(Band-pass filter)

(SEQUEL file: ee101_lc_1.sqproj)

* Op Amp filters can be designed without using inductors. This is a significant advantage since inductors are bulky and expensive. Inductors also exhibit nonlinear behaviour (arising from the core properties) which is undesirable in a filter circuit.

- * Op Amp filters can be designed without using inductors. This is a significant advantage since inductors are bulky and expensive. Inductors also exhibit nonlinear behaviour (arising from the core properties) which is undesirable in a filter circuit.
- * With Op Amps, a filter circuit can be designed with a pass-band gain.

- * Op Amp filters can be designed without using inductors. This is a significant advantage since inductors are bulky and expensive. Inductors also exhibit nonlinear behaviour (arising from the core properties) which is undesirable in a filter circuit.
- * With Op Amps, a filter circuit can be designed with a pass-band gain.
- * Op Amp filters can be easily incorporated in an integrated circuit.

- * Op Amp filters can be designed without using inductors. This is a significant advantage since inductors are bulky and expensive. Inductors also exhibit nonlinear behaviour (arising from the core properties) which is undesirable in a filter circuit.
- * With Op Amps, a filter circuit can be designed with a pass-band gain.
- * Op Amp filters can be easily incorporated in an integrated circuit.
- * However, at high frequencies (\sim MHz), Op Amps no longer have a high gain \rightarrow passive filters.

- * Op Amp filters can be designed without using inductors. This is a significant advantage since inductors are bulky and expensive. Inductors also exhibit nonlinear behaviour (arising from the core properties) which is undesirable in a filter circuit.
- * With Op Amps, a filter circuit can be designed with a pass-band gain.
- * Op Amp filters can be easily incorporated in an integrated circuit.
- * However, at high frequencies (\sim MHz), Op Amps no longer have a high gain \rightarrow passive filters.
- * Also, if the power requirement is high, Op Amp filters cannot be used \rightarrow passive filters.

Op Amp filters are designed for Op Amp operation in the linear region \rightarrow Our analysis of the inverting amplifier applies, and we get,

Op Amp filters are designed for Op Amp operation in the linear region \rightarrow Our analysis of the inverting amplifier applies, and we get,

$$\mathbf{V_o} = -rac{R_2 \parallel (1/sC)}{R_1}\,\mathbf{V_s}\,$$
 ($\mathbf{V_s}$ and $\mathbf{V_o}$ are phasors)

$$H(s) = -\frac{R_2}{R_1} \, \frac{1}{1 + sR_2C}$$

This is a low-pass filter, with $\omega_0=1/R_2\,{\it C}$.

Op Amp filters are designed for Op Amp operation in the linear region \rightarrow Our analysis of the inverting amplifier applies, and we get,

$$\mathbf{V_o} = -rac{R_2 \parallel \left(1/s\mathcal{C}
ight)}{R_1}\,\mathbf{V_s}\,\,\left(\mathbf{V_s}\,\,\mathrm{and}\,\,\mathbf{V_o}\,\,\mathrm{are}\,\,\mathrm{phasors}
ight)$$

$$H(s) = -\frac{R_2}{R_1} \, \frac{1}{1 + s R_2 C}$$

This is a low-pass filter, with $\omega_0=1/R_2\,{\it C}$.

Op Amp filters are designed for Op Amp operation in the linear region \rightarrow Our analysis of the inverting amplifier applies, and we get,

$$\mathbf{V_o} = -rac{R_2 \parallel (1/sC)}{R_1}\,\mathbf{V_s}\,$$
 ($\mathbf{V_s}$ and $\mathbf{V_o}$ are phasors)

$$H(s) = -\frac{R_2}{R_1} \, \frac{1}{1 + s R_2 C}$$

This is a low-pass filter, with $\omega_0=1/R_2\,{\it C}$.

(SEQUEL file: ee101_op_filter_1.sqproj)

$$H(s) = -\frac{R_2}{R_1 + (1/sC)} = \frac{sR_2C}{1 + sR_1C}$$
.

$$H(s) = -\frac{R_2}{R_1 + (1/sC)} = \frac{sR_2C}{1 + sR_1C}$$
.

This is a high-pass filter, with $\omega_0=1/R_1\mathit{C}$.

$$H(s) = -\frac{R_2}{R_1 + (1/sC)} = \frac{sR_2C}{1 + sR_1C}$$
.

This is a high-pass filter, with $\omega_0=1/R_1\mathit{C}$.

$$H(s) = -\frac{R_2}{R_1 + (1/sC)} = \frac{sR_2C}{1 + sR_1C}$$
.

This is a high-pass filter, with $\omega_0=1/R_1\,C$.

(SEQUEL file: ee101_op_filter_2.sqproj)

$$H(s) = -\frac{R_2 \parallel (1/sC_2)}{R_1 + (1/sC_1)} = -\frac{R_2}{R_1} \frac{sR_1C_1}{(1 + sR_1C_1)(1 + sR_2C_2)}.$$

$$H(s) = -\frac{R_2 \parallel (1/sC_2)}{R_1 + (1/sC_1)} = -\frac{R_2}{R_1} \frac{sR_1\,C_1}{(1+sR_1\,C_1)(1+sR_2\,C_2)} \; .$$

This is a band-pass filter, with $\omega_L=1/R_1\,C_1$ and $\omega_H=1/R_2\,C_2$.

$$H(s) = -\frac{R_2 \parallel (1/sC_2)}{R_1 + (1/sC_1)} = -\frac{R_2}{R_1} \, \frac{sR_1\,C_1}{(1+sR_1\,C_1)(1+sR_2\,C_2)} \,.$$

This is a band-pass filter, with $\omega_L=1/R_1\,C_1$ and $\omega_H=1/R_2\,C_2$.

$$H(s) = -\frac{R_2 \parallel (1/sC_2)}{R_1 + (1/sC_1)} = -\frac{R_2}{R_1} \frac{sR_1C_1}{(1 + sR_1C_1)(1 + sR_2C_2)} \,.$$

This is a band-pass filter, with $\omega_L=1/R_1\, C_1$ and $\omega_H=1/R_2\, C_2$.

(SEQUEL file: ee101_op_filter_3.sqproj)

Graphic equalizer

(Ref.: S. Franco, "Design with Op Amps and analog ICs")

Graphic equalizer

* Equalizers are implemented as arrays of narrow-band filters, each with an

adjustable gain (attenuation) around a centre frequency.

Graphic equalizer

(Ref.: S. Franco, "Design with Op Amps and analog ICs")

- * Equalizers are implemented as arrays of narrow-band filters, each with an adjustable gain (attenuation) around a centre frequency.
- * The circuit shown above represents one of the equalizer sections.
 (SEQUEL file: ee101_op_filter_4.sqproj)

(Ref.: S. Franco, "Design with Op Amps and analog ICs")

(Ref.: S. Franco, "Design with Op Amps and analog ICs")

$$V_{+} = V_{-} = V_{o} \, rac{R_{A}}{R_{A} + R_{B}} \equiv V_{o} / K \, .$$

(Ref.: S. Franco, "Design with Op Amps and analog ICs")

$$egin{aligned} V_+ &= V_- = V_o \, rac{R_A}{R_A + R_B} \equiv V_o / K \, . \ \\ ext{Also, } V_+ &= rac{(1/sC_2)}{R_2 + (1/sC_2)} \, V_1 = rac{1}{1 + sR_2\,C_2} \, V_1 \, . \end{aligned}$$

(Ref.: S. Franco, "Design with Op Amps and analog ICs")

$$\begin{split} V_+ &= V_- = V_o \, \frac{R_A}{R_A + R_B} \equiv V_o / K \, . \\ \text{Also, } V_+ &= \frac{(1/sC_2)}{R_2 + (1/sC_2)} \, V_1 = \frac{1}{1 + sR_2\,C_2} \, V_1 \, . \\ \text{KCL at } V_1 &\to \frac{1}{R_1} (V_s - V_1) + sC_1 (V_o - V_1) + \frac{1}{R_2} (V_+ - V_1) = 0 \, . \end{split}$$

(Ref.: S. Franco, "Design with Op Amps and analog ICs")

$$V_{+} = V_{-} = V_{o} \frac{R_{A}}{R_{A} + R_{B}} \equiv V_{o}/K.$$
Also, $V_{+} = \frac{(1/sC_{2})}{R_{2} + (1/sC_{2})} V_{1} = \frac{1}{1 + sR_{2}C_{2}} V_{1}.$

KCL at $V_{1} \rightarrow \frac{1}{R_{1}}(V_{s} - V_{1}) + sC_{1}(V_{o} - V_{1}) + \frac{1}{R_{2}}(V_{+} - V_{1}) = 0.$

Combining the above equations, $H(s) = \frac{K}{1 + s[(R_{1} + R_{2})C_{2} + (1 - K)R_{1}C_{1}] + s^{2}R_{1}C_{1}R_{2}C_{2}}$

(SEQUEL file: ee101_op_filter_5.sqproj)

Sixth-order Chebyshev low-pass filter (cascade design)

(Ref.: S. Franco, "Design with Op Amps and analog ICs")

SEQUEL file: ee101_op_filter_6.sqproj

Third-order Chebyshev high-pass filter

(Ref.: S. Franco, "Design with Op Amps and analog ICs")

SEQUEL file: ee101_op_filter_7.sqproj

Band-pass filter example

Notch filter example

