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Sinusoidal steady state

t=0

Vc

R

Vm cos ωt C

R (C V ′c ) + Vc = Vm cos ωt , t > 0 . (1)

The solution Vc (t) is made up of two components, Vc (t) = V
(h)
c (t) + V

(p)
c (t) .

V
(h)
c (t) satisfies the homogeneous differential equation,

R C V ′c + Vc = 0 , (2)

from which, V
(h)
c (t) = A exp(−t/τ) , with τ = RC .

V
(p)
c (t) is a particular solution of (1). Since the forcing function is Vm cos ωt, we try

V
(p)
c (t) = C1 cos ωt + C2 sin ωt .

Substituting in (1), we get,

ωR C (−C1 sin ωt + C2 cos ωt) + C1 cos ωt + C2 sin ωt = Vm cos ωt .

C1 and C2 can be found by equating the coefficients of sin ωt and cos ωt on the left

and right sides.

M. B. Patil, IIT Bombay



Sinusoidal steady state

t=0

Vc

R

Vm cos ωt C

R (C V ′c ) + Vc = Vm cos ωt , t > 0 . (1)

The solution Vc (t) is made up of two components, Vc (t) = V
(h)
c (t) + V

(p)
c (t) .

V
(h)
c (t) satisfies the homogeneous differential equation,

R C V ′c + Vc = 0 , (2)

from which, V
(h)
c (t) = A exp(−t/τ) , with τ = RC .

V
(p)
c (t) is a particular solution of (1). Since the forcing function is Vm cos ωt, we try

V
(p)
c (t) = C1 cos ωt + C2 sin ωt .

Substituting in (1), we get,

ωR C (−C1 sin ωt + C2 cos ωt) + C1 cos ωt + C2 sin ωt = Vm cos ωt .

C1 and C2 can be found by equating the coefficients of sin ωt and cos ωt on the left

and right sides.

M. B. Patil, IIT Bombay



Sinusoidal steady state

t=0

Vc

R

Vm cos ωt C

R (C V ′c ) + Vc = Vm cos ωt , t > 0 . (1)

The solution Vc (t) is made up of two components, Vc (t) = V
(h)
c (t) + V

(p)
c (t) .

V
(h)
c (t) satisfies the homogeneous differential equation,

R C V ′c + Vc = 0 , (2)

from which, V
(h)
c (t) = A exp(−t/τ) , with τ = RC .

V
(p)
c (t) is a particular solution of (1). Since the forcing function is Vm cos ωt, we try

V
(p)
c (t) = C1 cos ωt + C2 sin ωt .

Substituting in (1), we get,

ωR C (−C1 sin ωt + C2 cos ωt) + C1 cos ωt + C2 sin ωt = Vm cos ωt .

C1 and C2 can be found by equating the coefficients of sin ωt and cos ωt on the left

and right sides.

M. B. Patil, IIT Bombay



Sinusoidal steady state

t=0

Vc

R

Vm cos ωt C

R (C V ′c ) + Vc = Vm cos ωt , t > 0 . (1)

The solution Vc (t) is made up of two components, Vc (t) = V
(h)
c (t) + V

(p)
c (t) .

V
(h)
c (t) satisfies the homogeneous differential equation,

R C V ′c + Vc = 0 , (2)

from which, V
(h)
c (t) = A exp(−t/τ) , with τ = RC .

V
(p)
c (t) is a particular solution of (1). Since the forcing function is Vm cos ωt, we try

V
(p)
c (t) = C1 cos ωt + C2 sin ωt .

Substituting in (1), we get,

ωR C (−C1 sin ωt + C2 cos ωt) + C1 cos ωt + C2 sin ωt = Vm cos ωt .

C1 and C2 can be found by equating the coefficients of sin ωt and cos ωt on the left

and right sides.

M. B. Patil, IIT Bombay



Sinusoidal steady state

t=0

Vc

R

Vm cos ωt C

R (C V ′c ) + Vc = Vm cos ωt , t > 0 . (1)

The solution Vc (t) is made up of two components, Vc (t) = V
(h)
c (t) + V

(p)
c (t) .

V
(h)
c (t) satisfies the homogeneous differential equation,

R C V ′c + Vc = 0 , (2)

from which, V
(h)
c (t) = A exp(−t/τ) , with τ = RC .

V
(p)
c (t) is a particular solution of (1). Since the forcing function is Vm cos ωt, we try

V
(p)
c (t) = C1 cos ωt + C2 sin ωt .

Substituting in (1), we get,

ωR C (−C1 sin ωt + C2 cos ωt) + C1 cos ωt + C2 sin ωt = Vm cos ωt .

C1 and C2 can be found by equating the coefficients of sin ωt and cos ωt on the left

and right sides.

M. B. Patil, IIT Bombay



Sinusoidal steady state

t=0

Vc

R

Vm cos ωt C

R (C V ′c ) + Vc = Vm cos ωt , t > 0 . (1)

The solution Vc (t) is made up of two components, Vc (t) = V
(h)
c (t) + V

(p)
c (t) .

V
(h)
c (t) satisfies the homogeneous differential equation,

R C V ′c + Vc = 0 , (2)

from which, V
(h)
c (t) = A exp(−t/τ) , with τ = RC .

V
(p)
c (t) is a particular solution of (1). Since the forcing function is Vm cos ωt, we try

V
(p)
c (t) = C1 cos ωt + C2 sin ωt .

Substituting in (1), we get,

ωR C (−C1 sin ωt + C2 cos ωt) + C1 cos ωt + C2 sin ωt = Vm cos ωt .

C1 and C2 can be found by equating the coefficients of sin ωt and cos ωt on the left

and right sides.

M. B. Patil, IIT Bombay



Sinusoidal steady state

t=0

Vc

R

Vm cos ωt C

R (C V ′c ) + Vc = Vm cos ωt , t > 0 . (1)

The solution Vc (t) is made up of two components, Vc (t) = V
(h)
c (t) + V

(p)
c (t) .

V
(h)
c (t) satisfies the homogeneous differential equation,

R C V ′c + Vc = 0 , (2)

from which, V
(h)
c (t) = A exp(−t/τ) , with τ = RC .

V
(p)
c (t) is a particular solution of (1). Since the forcing function is Vm cos ωt, we try

V
(p)
c (t) = C1 cos ωt + C2 sin ωt .

Substituting in (1), we get,

ωR C (−C1 sin ωt + C2 cos ωt) + C1 cos ωt + C2 sin ωt = Vm cos ωt .

C1 and C2 can be found by equating the coefficients of sin ωt and cos ωt on the left

and right sides.

M. B. Patil, IIT Bombay



Sinusoidal steady state

(SEQUEL file: ee101_rc5.sqproj)

−0.2

0.2

t=0

R

C 0

 

 

 

 

 

 

time (ms)
 0  2  4  6  8  10

2 kΩ

0.5µF
Vm cos ωt

Vm = 1V
f = 1 kHz

Vc

Vc (V)

* The complete solution is Vc (t) = A exp(−t/τ) + C1 cos ωt + C2 sin ωt .

* As t →∞, the exponential term becomes zero, and we are left with
Vc (t) = C1 cos ωt + C2 sin ωt .

* This is known as the “sinusoidal steady state” response since all quantities
(currents and voltages) in the circuit are sinusoidal in nature.

* Any circuit containing resistors, capacitors, inductors, sinusoidal voltage and
current sources (of the same frequency), dependent (linear) sources behaves in a
similar manner, viz., each current and voltage in the circuit becomes purely
sinusoidal as t →∞.
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Sinusoidal steady state: phasors

* In the sinusoidal steady state, “phasors” can be used to represent currents and
voltages.

* A phasor is a complex number,

X = Xm 6 θ = Xm exp(jθ) ,

with the following interpretation in the time domain.

x(t) = Re
ˆ
X e jωt

˜
= Re

ˆ
Xm e jθ e jωt

˜
= Re

ˆ
Xm e j(ωt+θ)

˜
= Xm cos (ωt + θ)

* Use of phasors substantially simplifies analysis of circuits in the sinusoidal steady
state.

* Note that a phasor can be written in the polar form or rectangular form,
X = Xm 6 θ = Xm exp(jθ) = Xm cos θ + j Xm sin θ .

The term ωt is always implicit.

θ

Xm

Re (X)

X

Im (X)
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Phasors: examples

Frequency domainTime domain

v1(t)=3.2 cos (ωt+30◦) V

V1 = 3.2 6 30◦ = 3.2 exp (jπ/6) V

i(t) = −1.5 cos (ωt + 60◦) A

= 1.5 cos (ωt− 2π/3)A

= 1.5 cos (ωt + π/3− π) A

I = 1.5 6 (−2π/3)A

v2(t) = −0.1 cos (ωt) V

= 0.1 cos (ωt + π) V

V2 = 0.1 6 π V

i2(t) = 0.18 sin (ωt) A

= 0.18 cos (ωt− π/2) A

I2 = 0.18 6 (−π/2) A

I3 = 1 + j 1 A

=
√

2 6 45◦ A

i3(t) =
√

2 cos (ωt + 45◦) A
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Addition of phasors

Consider addition of two sinusoidal quantities:
v(t) = v1(t) + v2(t)

= Vm1 cos (ωt + θ1) + Vm2 cos (ωt + θ2)

Now consider addition of the phasors corresponding to v1(t) and v2(t).

V = V1 + V2

= Vm1e jθ1 + Vm2e jθ2

In the time domain, V corresponds to ṽ(t), with

ṽ(t) = Re
ˆ
Ve jωt

˜
= Re

ˆ`
Vm1e jθ1 + Vm2e jθ2

´
e jωt

˜
= Re

ˆ
Vm1e j(ωt+θ1) + Vm2e(ωt+jθ2)

˜
= Vm1 cos (ωt + θ1) + Vm2 cos (ωt + θ2)

which is the same as v(t).
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Addition of phasors

* Addition of sinusoidal quantities in the time domain can be replaced by addition
of the corresponding phasors in the sinusoidal steady state.

* The KCL and KVL equations,P
ik (t) = 0 at a node, andP
vk (t) = 0 in a loop,

amount to addition of sinusoidal quantities and can therefore be replaced by the
corresponding phasor equations,P

Ik = 0 at a node, andP
Vk = 0 in a loop.
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Impedance of a resistor

Ii(t)

Vv(t)

R Z

Let i(t) = Im cos (ωt + θ).

v(t) = R i(t)

= R Im cos (ωt + θ)

≡ Vm cos (ωt + θ).

The phasors corresponding to i(t) and v(t) are, respectively,

I = Im 6 θ, V = R × Im 6 θ.

We have therefore the following relationship between V and I: V = R × I.

Thus, the impedance of a resistor, defined as, Z = V/I, is

Z = R + j 0
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Impedance of a capacitor

C

v(t)

i(t) I

V

Z

Let v(t) = Vm cos (ωt + θ).

i(t) = C
dv

dt
= −C ω Vm sin (ωt + θ).

Using the identity, cos (φ+ π/2) = − sin φ, we get

i(t) = C ω Vm cos (ωt + θ + π/2).

In terms of phasors, V = Vm 6 θ, I = ωCVm 6 (θ+π/2).

I can be rewritten as,

I = ωCVm e j(θ+π/2) = ωCVm e jθ e jπ/2 = jωC
`
Vm e jθ

´
= jωC V

Thus, the impedance of a capacitor, Z = V/I, is Z = 1/(jωC) ,

and the admittance of a capacitor, Y = I/V, is Y = jωC .
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Impedance of an inductor

v(t)

Li(t)

V

I Z

Let i(t) = Im cos (ωt + θ).

v(t) = L
di

dt
= −Lω Im sin (ωt + θ).

Using the identity, cos (φ+ π/2) = − sin φ, we get

v(t) = Lω Im cos (ωt + θ + π/2).

In terms of phasors, I = Im 6 θ, V = ωLIm 6 (θ+π/2).

V can be rewritten as,

V = ωLIm e j(θ+π/2) = ωLIm e jθ e jπ/2 = jωL
`
Im e jθ

´
= jωL I

Thus, the impedance of an indcutor, Z = V/I, is Z = jωL ,

and the admittance of an inductor, Y = I/V, is Y = 1/(jωL) .
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Sources

Vsvs(t)Isis(t)

* An independent sinusoidal current source, is (t) = Im cos (ωt + θ), can be
represented by the phasor Im 6 θ (i.e., a constant complex number).

* An independent sinusoidal voltage source, vs (t) = Vm cos (ωt + θ), can be
represented by the phasor Vm 6 θ (i.e., a constant complex number).

* Dependent (linear) sources can be treated in the sinusoidal steady state in the
same manner as a resistor, i.e., by the corresponding phasor relationship.
For example, for a CCVS, we have,
v(t) = r ic (t) in the time domain.
V = r Ic in the frequency domain.
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Use of phasors in circuit analysis

* The time-domain KCL and KVL equations
P

ik (t) = 0 and
P

vk (t) = 0 can be
written as

P
Ik = 0 and

P
Vk = 0 in the frequency domain.

* Resistors, capacitors, and inductors can be described by V = Z I in the frequency
domain, which is similar to V = R I in DC conditions (except that we are
dealing with complex numbers in the frequency domain).

* An independent sinusoidal source in the frequency domain behaves like a DC
source, e.g., Vs = constant (a complex number).

* For dependent sources, a time-domain relationship such as i(t) = β ic (t)
translates to I = β Ic in the frequency domain.

* Circuit analysis in the sinusoidal steady state using phasors is therefore very
similar to DC circuits with independent and dependent sources, and resistors.

* Series/parallel formulas for resistors, nodal analysis, mesh analysis, Thevenin’s
and Norton’s theorems can be directly applied to circuits in the sinusoidal steady
state.
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RL circuit

I

Vm 6 0◦

R

jωL

0

1

−1
 
 
 
 
 
 
 
 
 
 
 

time (ms)
 0  10  20  30

R = 1 Ω

L = 1.6 mH

vs(t) (V)

i(t) (A)

I =
Vm∠0

R + jωL
≡ Im∠(−θ),

where Im =
Vmp

R2 + ω2L2
, and θ = tan−1(ωL/R).

In the time domain, i(t) = Im cos (ωt − θ), which lags the source voltage since the
peak (or zero) of i(t) occurs t = θ/ω seconds after that of the source voltage.

For R = 1 Ω, L = 1.6 mH, f = 50 Hz, θ = 26.6◦, tlag = 1.48 ms.

(SEQUEL file: ee101 rl ac 1.sqproj)
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RL circuit

I

VR

VLVs

R

jωLVm 6 0◦

Re (V)

Im (V)

θ

VR

VL

Vs

I =
Vm∠0

R + jωL
≡ Im∠(−θ),

where Im =
Vmp

R2 + ω2L2
, and θ = tan−1(ωL/R).

VR = I× R = R Im ∠(−θ) ,

VL = I× jωL = ωImL ∠(−θ + π/2) ,

The KVL equation, Vs = VR + VL, can be represented in the complex plane by a
“phasor diagram.”

If R � |jωL|, θ → 0, |VR| ' |Vs| = Vm.

If R � |jωL|, θ → π/2, |VL| ' |Vs| = Vm.
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RC circuit
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Vm∠0

R + 1/jωC
≡ Im∠θ,

where Im =
ωCVmp

1 + (ωRC)2
, and θ = π/2− tan−1(ωRC).

In the time domain, i(t) = Im cos (ωt + θ), which leads the source voltage since the
peak (or zero) of i(t) occurs t = θ/ω seconds before that of the source voltage.

For R = 1 Ω, C = 5.3 mF, f = 50 Hz, θ = 31◦, tlead = 1.72 ms.
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Series/parallel connections

A

B

A

B

(ω = 100 rad/s)

Z
0.25 H

100 µF

Z1

Z2

Z1 = j× 100× 0.25 = j 25Ω

Z2 = −j/(100× 100× 10−6) = −j 100Ω

Z = Z1 + Z2 = −j 75Ω

A

B

A

B

(ω = 100 rad/s)

Z
0.25 H

100 µF

Z1 Z2

Z =
Z1Z2

Z1 + Z2

=
25× 100

−j 75

=
(j 25)× (−j 100)

j 25− j 100

= j 33.3Ω
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Impedance example

A

B

A

B

Obtain Z in polar form.

(ω = 100 rad/s)

j 10 Ω
Z

10 Ω
Z1

Z2

Z =
10× j10

10 + j10
=

j10

1 + j

=
j10

1 + j
× 1− j

1− j

Method 1:

Convert to polar form → Z = 7.07 6 45◦ Ω

=
10 + j10

2
= 5 + j5Ω

Method 2:

= 5
√

2 6 (π/2− π/4) = 7.07 6 45◦ Ω

Z =
10× j10

10 + j10
=

100 6 π/2

10
√

2 6 π/4
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Circuit example

iL

is

iC

15 mH
2 mF

10 Ω2 Ω

10 6 0◦ V
f = 50 Hz

Z1

Z3

IC

Vs

Z2

Z4

Is

IL

Vs

Is

ZEQ

Z3 =
1

j × 2π × 50× 2× 10−3
= −j 1.6 Ω

Z4 = 2π × 50× 15× 10−3 = j 4.7 Ω

ZEQ = Z1 + Z3 ‖ (Z2 + Z4)

= 2 + (−j 1.6) ‖ (10 + j 4.7) = 2 +
(−j 1.6)× (10 + j 4.7)

−j 1.6 + 10 + j 4.7

= 2 +
1.6∠ (−90◦)× 11.05∠ (25.2◦)

10.47∠ (17.2◦)
= 2 +

17.7∠ (−64.8◦)

10.47∠ (17.2◦)

= 2 + 1.69∠ (−82◦) = 2 + (0.235− j 1.67)

= 2.235− j 1.67 = 2.79∠ (−36.8◦) Ω
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Circuit example (continued)
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iC

15 mH
2 mF

10 Ω2 Ω

10 6 0◦ V
f = 50 Hz

Is =
Vs

ZEQ
=

10 ∠ (0◦)

2.79 ∠ (−36.8◦)
= 3.58 ∠ (36.8◦) A

IC =
(Z2 + Z4)

Z3 + (Z2 + Z4)
× Is = 3.79 ∠ (44.6◦) A

IL =
Z3

Z3 + (Z2 + Z4)
× Is = 0.546 ∠ (−70.6◦) A

3

2

1

0

−1
10 2 3

 

 

 

 

 

 

 

      

Is

IL

IC

Re(I)

Im
(I

)
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Circuit example (continued)
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Circuit example (continued)

Z1

Z3

IC

Vs Vs

Z2

Z4

Is

IL

Is

ZEQ

iL

is

iC

15 mH
2 mF

10 Ω2 Ω

10 6 0◦ V
f = 50 Hz

Is =
Vs

ZEQ
=

10 ∠ (0◦)

2.79 ∠ (−36.8◦)
= 3.58 ∠ (36.8◦) A

IC =
(Z2 + Z4)

Z3 + (Z2 + Z4)
× Is = 3.79 ∠ (44.6◦) A

IL =
Z3

Z3 + (Z2 + Z4)
× Is = 0.546 ∠ (−70.6◦) A

3

2

1

0

−1
10 2 3

 

 

 

 

 

 

 

      

Is

IL

IC

Re(I)

Im
(I

)

M. B. Patil, IIT Bombay



Circuit example (continued)
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Sinusoidal steady state: power computation

V

I Z

Let v(t) = Vm cos (ωt + θ), i.e., V = Vm ∠ θ ,

i(t) = Im cos (ωt + φ), i.e., I = Im ∠φ .

The instantaneous power absorbed by Z is,

P(t) = v(t) i(t)

= Vm Im cos (ωt + θ) cos (ωt + φ)

=
1

2
Vm Im [cos (2ωt + θ + φ) + cos (θ − φ)] (1)

The average power absorbed by Z is

P =
1

T

Z T

0
P(t) dt, where T = 2π/ω.

The first term in Eq. (1) has an average value of zero and does not contribute to P.
Therefore,

P =
1

2
Vm Im cos (θ − φ) gives the average power absorbed by Z.
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Average power for R, L, C

General formula:
V

I Z P =
1

2
Vm Im cos (θ − φ)

V = Vm 6 θ , I = Im 6 φ

V

I R

For I = Im 6 α, V = R Im 6 α ,

V = R I

P =
1

2
(R Im) Im cos (α− α) =

1

2
I2m R =

1

2
V2

m/R

V

I L

For I = Im 6 α, V = ωL Im 6 (α + π/2) ,

P =
1

2
Vm Im cos [(α + π/2)− α] = 0

V = jωL I

V

I
C

For V = Vm 6 α, I = ωC Vm 6 (α + π/2) ,

P =
1

2
Vm Im cos [α− (α + π/2)] = 0

I = jωCV
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Average power: example

Find the average power absorbed.

V

50Ω j25ΩI

Given: I = 2 6 45◦ A

Method 1:

V = (50 + j25)× 2 ∠ 45◦

= 55.9 ∠ 26.6◦ × 2 ∠ 45◦

= 111.8 ∠ (45◦ + 26.6◦)

P =
1

2
× 111.8× 2× cos (26.6◦) = 100 W .

Method 2:

No average power is absorbed by the inductor.

⇒ P = PR (average power absorbed by R)

=
1

2
I 2
m R =

1

2
× 22 × 50

= 100 W .
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Maximum power transfer

ZLVTh

IZTh

Let ZL = RL + jXL, ZTh = RTh + jXTh, and I = Im ∠φ .

The power absorbed by ZL is,

P =
1

2
I 2
mRL

=
1

2

˛̨̨̨
VTh

ZTh + ZL

˛̨̨̨2
RL

=
1

2

|VTh|2
(RTh + RL)2 + (XTh + XL)2

RL .

For P to be maximum, (XTh + XL) must be zero. ⇒ XL = −XTh.

With XL = −XTh, we have,

P =
1

2

|VTh|2
(RTh + RL)2

RL ,

which is maximum for RL = RTh.

Therefore, for maximum power transfer to the load ZL, we need,

RL = RTh, XL = −XTh, i.e., ZL = Z∗Th.
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Maximum power transfer: example

A

B

ZL

j3Ω4 Ω

-j6Ω16 6 0◦ V

A

B

ZLVTh

ZTh

ZTh = (−j 6) ‖ (4 + j 3) = 5.76− j 1.68 Ω .

For maximum power transfer, ZL = Z∗Th = 5.76 + j 1.68 Ω ≡ RL + j XL .

VTh = 16 ∠ 0◦ × −j 6

(4 + j 3) + (−j 6)
= 19.2 ∠(−53.13◦) .

I =
VTh

ZTh + ZL
=

VTh

2 RL
.

P =
1

2
I 2
mRL =

1

2

„
19.2

2 RL

«2

× RL =
1

2

(19.2)2

4 RL
= 8 W .
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Effective (rms) values of voltage/current

R Ri(t)

v(t) Veff

Ieff

time-varying v and i constant v and i

Consider a periodic current i(t) passing through R.

The average power absorbed by R is,

P1 =
1

T

Z t0+T

t0

[i(t)]2 R dt ,

where t0 is some reference time (we will take t0 to be 0).

The average power absorbed by R in the DC case is,

P2 = I 2
eff R.

Ieff , the effective value of i(t), is defined such that P1 = P2, i.e.,

I 2
eff R =

1

T

Z T

0
[i(t)]2 R dt ,

Ieff =

s
1

T

Z T

0
[i(t)]2 dt .
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Effective (rms) values of voltage/current

R Ri(t)

v(t) Veff

Ieff

time-varying v and i constant v and i

Ieff =

s
1

T

Z T

0
[i(t)]2 dt .

Ieff is called the root-mean-square (rms) value of i(t) because of the operations
(root, mean, and square) involved in its computation.

If i(t) is sinusoidal, i.e., i(t) = Im cos (ωt + φ),

Ieff =

s
1

T

Z T

0
I 2
m cos2(ωt + φ) dt = Im

s
1

T

Z T

0

1

2
[1 + cos (2ωt + 2φ)] dt

= Im

r
1

T

1

2
T = Im/

√
2 .

Similarly, Veff = Vm/
√

2 .
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Apparent power, real power, and power factor

V

ZI

V = Vm 6 θ

I = Im 6 φ

The average (“real”) power absorbed by Z is,

P =
1

2
Vm Im cos (θ − φ) =

Vm√
2

Im√
2

cos (θ − φ)

= Veff Ieff cos (θ − φ) (Watts)

Apparent power is defined as Papp = Veff Ieff (Volt-Amp).

Power factor is defined as P.F . =
Average power

Apparent power
= cos (θ − φ).

(θ − φ) > 0: i(t) lags v(t), the P. F. is called a lagging P. F.

(inductive impedance)

(θ − φ) < 0: i(t) leads v(t), the P. F. is called a leading P. F.

(capacitive impedance)
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Power factor: examples

V

ZI

1. Given: V = 120 ∠ 0◦ V (rms), I = 2 ∠ (−36.9◦) A (rms).
Find Papp , P.F., and P.

Papp = 120× 2 = 240 V-A.

P.F. = cos (0◦ − (−36.9◦)) = 0.8 lagging (since I lags V).

P = Papp × P.F. = 192 W .

2. Given: P = 50 kW , P.F. = 0.95 (lagging), V = 480 ∠ 0◦ V (rms).
Find I.

Veff × Ieff × P.F = 50× 103

Ieff =
50× 103

480× 0.95
= 109.6 A.

Since P.F. is 0.95 (lagging), I lags V by cos−1(0.95) = 18.2◦.

⇒ I = 109.6 ∠ (−18.2◦) A (rms).
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Why is power factor important?

Vs VL ZL

IL

R = 0.1Ω

IC

C

Consider a simplified model of a power system consisting of a generator (Vs ),
transmission line (R), and load (ZL).

The load is specified as P = 50 kW , P.F.= 0.6 (lagging), VL = 480 ∠ 0◦ V (rms).
Note: lagging power factors are typical of industrial loads (motors).

P = 50× 103 W = |VL| × |IL| × P.F.⇒ |IL| =
50× 103

480× 0.6
= 173.6 A (rms).

Power loss in the transmission line Ploss = |IL|2R = (173.6)2 × 0.1 = 3 kW .

If the load power factor was 0.95 (lagging), we would have

|IL| =
50× 103

480× 0.95
= 109.6 A (rms), and Ploss = (109.6)2 × 0.1 = 1.2 kW .

Thus, a higher power factor can substantially reduce transmission losses.
The effective power factor of an inductive load can be improved by connecting a
suitable capacitance in parallel.
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Power computation: home work

I1

Is

I2

j5Ω−j2Ω

2Ω 10Ω

10 6 0◦ V

* Find I1, I2, Is .

* Compute the average power absorbed by each element.

* Verify power balance.

(SEQUEL file: ee101 phasors 2.sqproj)
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