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Sinusoidal steady state

Vp, coswt

R(CV)+ Vc=Vycoswt, t>0. (1)
The solution V(t) is made up of two components, V(t) = Vc(h)(t) + Vc(p)(t).
Vc(h)(t) satisfies the homogeneous differential equation,

RCV/+Vc=0, (2)

from which, Vc(h)(t) = A exp(—t/7), with 7 = RC.
Vc(p)(t) is a particular solution of (1). Since the forcing function is Vj, cos wt, we try
Vép)(t) = (1 cos wt + G sin wt.
Substituting in (1), we get,
wR C (=G sin wt + G cos wt) + Gy cos wt + Co sin wt = Vi cos wt .

C1 and G, can be found by equating the coefficients of sin wt and cos wt on the left
and right sides.
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* The complete solution is Vc(t) = A exp(—t/7) + Ci cos wt + Co sin wt.

* As t — 00, the exponential term becomes zero, and we are left with
Ve(t) = G cos wt + Co sin wt.
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* The complete solution is Vc(t) = A exp(—t/7) + Ci cos wt + Co sin wt.

* As t — 00, the exponential term becomes zero, and we are left with
Ve(t) = G cos wt + Co sin wt.

* This is known as the “sinusoidal steady state” response since all quantities
(currents and voltages) in the circuit are sinusoidal in nature.
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Sinusoidal steady state

(SEQUEL file: ee101_rc5.sqproj) time (ms)

* The complete solution is Vc(t) = A exp(—t/7) + Ci cos wt + Co sin wt.
* As t — 00, the exponential term becomes zero, and we are left with

Ve(t) = G cos wt + Co sin wt.
* This is known as the “sinusoidal steady state” response since all quantities

(currents and voltages) in the circuit are sinusoidal in nature.

* Any circuit containing resistors, capacitors, inductors, sinusoidal voltage and
current sources (of the same frequency), dependent (linear) sources behaves in a
similar manner, viz., each current and voltage in the circuit becomes purely
sinusoidal as t — oo.
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* A phasor is a complex number,
X = Xm0 = Xm exp(jO),
with the following interpretation in the time domain.
x(t) = Re [X &/#t]
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= Xm cos (wt + 0)
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state.
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Sinusoidal steady state: phasors

* In the sinusoidal steady state, “phasors” can be used to represent currents and
voltages.
* A phasor is a complex number,
X = Xm0 = Xm exp(jO),
with the following interpretation in the time domain.
x(t) = Re [X &/#t]
= Re [Xp &/? e/¥t]
= Re [Xm e/(@t+0)]
= Xm cos (wt + 0)
* Use of phasors substantially simplifies analysis of circuits in the sinusoidal steady
state.
* Note that a phasor can be written in the polar form or rectangular form,
X = Xm0 = Xm exp(jO) = Xm cos 0 + j X sin 6.
The term wt is always implicit.

Im (X)

+o
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Phasors: examples

Time domain

v1(t)=3.2 cos (wt+30°) V

i(t) = —1.5cos (wt +60°) A
=15cos(wt+m/3—7)A
= 1.5cos (wt —27/3) A

vo(t) = —0.1cos (wt) V
=0.1cos (wt+m) V

ir(t) = 0.18sin (wt) A
=0.18cos (wt — 7/2) A

i3(t) = V2 cos (wt + 45°) A

Frequency domain

Vi =3.2/30° = 3.2exp (jr/6) V

| =15/(—27/3)A

V,=01/7V

l, =018 (—1/2) A

ls=1+j1A

=/2/45° A
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v(t) = vi(t) + vo(t)

= Vpm1 cos (wt + 01) + Vm2 cos (wt + 67)
Now consider addition of the phasors corresponding to vi(t) and vo(t).
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ddition of phasors

Consider addition of two sinusoidal quantities:
v(t) = vi(t) + vo(t)

= Vpm1 cos (wt + 01) + Vm2 cos (wt + 67)
Now consider addition of the phasors corresponding to vi(t) and vo(t).
V=V;+V,

= V11 + Vypel?2

In the time domain, V corresponds to ¥(t), with
7(t) = Re [Ve/@t]

= Re [(Vin e + Vimaei®2) efet]

= Re [lee/'(WHGl) + sze(WHsz)]

= V1 cos (wt + 01) + Vipo cos (wt + 62)

which is the same as v(t).
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Addition of phasors

* Addition of sinusoidal quantities in the time domain can be replaced by addition
of the corresponding phasors in the sinusoidal steady state.

M. B. Patil, IIT Bombay



Addition of phasors

* Addition of sinusoidal quantities in the time domain can be replaced by addition
of the corresponding phasors in the sinusoidal steady state.

* The KCL and KVL equations,
> ik(t) =0 at a node, and
> vk(t) =0 in a loop,
amount to addition of sinusoidal quantities and can therefore be replaced by the
corresponding phasor equations,
> 1, =0 at a node, and
> Vi =0in a loop.
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Let i(t) = Im cos(wt + 0).
v(t) = Ri(t)
= R Iy cos (wt + 6)
= Vi cos (wt + 0).
The phasors corresponding to i(t) and v(t) are, respectively,
Il =1Inll, V=Rx Iy
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Impedance of a resistor
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i(t) R @ Iz

Let i(t) = Im cos(wt + 0).
v(t) = Ri(t)
= R Iy cos (wt + 6)
= Vi cos (wt + 0).
The phasors corresponding to i(t) and v(t) are, respectively,
Il =1nl8, V=RXIn L.
We have therefore the following relationship between V and I: V=R x I.
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Impedance of a resistor

+ v(t) — + Vv -
-1+
i(t) R @ Iz

Let i(t) = Im cos(wt + 0).
v(t) = Ri(t)
= R Iy cos (wt + 6)
= Vi cos (wt + 0).
The phasors corresponding to i(t) and v(t) are, respectively,
Il =1In, V=RX Iy L.
We have therefore the following relationship between V and I: V=R x I.
Thus, the impedance of a resistor, defined as, Z = V/I, is

Z=R+j0
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Impedance of a capacitor
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Impedance of a capacitor
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Let v(t) = Vi cos (wt + 6).

d
i(t) = Cd—: = —Cw Vpy sin(wt + 0).
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Impedance of a capacitor
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Let v(t) = Vi cos (wt + 0).
i(t) = C% = —Cw Vpy sin(wt +0).

Using the identity, cos (¢ + 7/2) = —sin ¢, we get
i(t) = Cw Vi cos(wt + 0+ m/2).
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d
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Impedance of a capacitor

+ vt — + v —
—{ — -
it) ¢ 1z

Let v(t) = Vin cos (wt + 0).

i(t) = C% = —Cw Vpy sin(wt +0).

Using the identity, cos (¢ + 7/2) = —sin ¢, we get

i(t) = Cw Vi cos(wt + 0+ m/2).

In terms of phasors, V. = V,, /0, | = wCV,, A0+7/2).

I can be rewritten as,

I = wCVp &0+7/2) = wCVp e &7/2 = jwC (Vi el?) = juCV
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Impedance of a capacitor

+ vt — + v —
—{ — -
it) ¢ 1z

Let v(t) = Vi cos (wt + 0).
d
i(t) = Cd—: = —Cw Vpy sin(wt +0).
Using the identity, cos (¢ + 7/2) = —sin ¢, we get
i(t) = Cw Vi cos(wt + 0+ m/2).
In terms of phasors, V. = V,, /0, | = wCV,, A0+7/2).

I can be rewritten as,
I = wCVp &0+7/2) = wCVp e &7/2 = jwC (Vi el?) = juCV

Thus, the impedance of a capacitor, Z =V/I, is| Z = 1/(jwC) |,
and the admittance of a capacitor, Y =1/V, is .
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Impedance of an inductor

+ () — + Vv -
= 5
i(t L VA
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Impedance of an inductor

+ () — + Vv -
= 5
i(t L VA

Let i(t) = Im cos(wt + 0).

v(t) = L% = —Lwlny sin(wt + 06).

Using the identity, cos (¢ + m/2) = —sin ¢, we get

v(t) = Lwly cos(wt+ 0+ w/2).
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Impedance of an inductor

+ () — + Vv -
= 5
i(t L VA

Let i(t) = Im cos(wt + 0).

v(t) = L% = —Lwly sin (wt + 06).

Using the identity, cos (¢ + m/2) = —sin ¢, we get

v(t) = Lwly cos(wt+ 0+ w/2).

In terms of phasors, | = I, /0, V = wlLly, A0+7/2),

V can be rewritten as,

V = whly &O0F7/2) = wiLiy & &7/2 = jwl (Ime?) = jwll

Thus, the impedance of an indcutor, Z = V/I, is ,
and the admittance of an inductor, Y = 1/V,is|Y = 1/(jwl) |.
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Sources

'S(t)éﬁ — éﬁls vs(t)#t) — (J[Dvs
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Sources

'S(t)éﬁ — éﬁls vs(t)#t) — (J[Dvs

* An independent sinusoidal current source, is(t) = Im cos (wt + @), can be
represented by the phasor I, /0 (i.e., a constant complex number).
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Sources

'S(t)éﬁ — éﬁls vs(t)#t) — (J[Dvs

* An independent sinusoidal current source, is(t) = Im cos (wt + @), can be
represented by the phasor I, /0 (i.e., a constant complex number).

* An independent sinusoidal voltage source, vs(t) = Vi, cos (wt + 0), can be
represented by the phasor Vi, 20 (i.e., a constant complex number).
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Sources

'S(t)éﬁ — éﬁls vs(t)#t) — (J[Dvs

* An independent sinusoidal current source, is(t) = Im cos (wt + @), can be
represented by the phasor I, /0 (i.e., a constant complex number).

* An independent sinusoidal voltage source, vs(t) = Vi, cos (wt + 0), can be
represented by the phasor Vi, 20 (i.e., a constant complex number).

* Dependent (linear) sources can be treated in the sinusoidal steady state in the
same manner as a resistor, i.e., by the corresponding phasor relationship.
For example, for a CCVS, we have,
v(t) = ric(t) in the time domain.
V = rl¢ in the frequency domain.
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Use of phasors in circuit analysis
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Use of phasors in circuit analysis

* The time-domain KCL and KVL equations > ik(t) = 0 and > v, (t) = 0 can be
written as Y I, = 0 and > Vi = 0 in the frequency domain.
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Use of phasors in circuit analysis

* The time-domain KCL and KVL equations > ik(t) = 0 and > v, (t) = 0 can be
written as Y I, = 0 and > Vi = 0 in the frequency domain.

* Resistors, capacitors, and inductors can be described by V = Z 1 in the frequency
domain, which is similar to V = R/ in DC conditions (except that we are
dealing with complex numbers in the frequency domain).
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Use of phasors in circuit analysis

* The time-domain KCL and KVL equations > ik(t) = 0 and > v, (t) = 0 can be
written as Y I, = 0 and > Vi = 0 in the frequency domain.

* Resistors, capacitors, and inductors can be described by V = Z 1 in the frequency
domain, which is similar to V = R/ in DC conditions (except that we are
dealing with complex numbers in the frequency domain).

* An independent sinusoidal source in the frequency domain behaves like a DC
source, e.g., Vs = constant (a complex number).
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Use of phasors in circuit analysis

* The time-domain KCL and KVL equations > ik(t) = 0 and > v, (t) = 0 can be
written as Y I, = 0 and > Vi = 0 in the frequency domain.

* Resistors, capacitors, and inductors can be described by V = Z 1 in the frequency
domain, which is similar to V = R/ in DC conditions (except that we are
dealing with complex numbers in the frequency domain).

* An independent sinusoidal source in the frequency domain behaves like a DC
source, e.g., Vs = constant (a complex number).

* For dependent sources, a time-domain relationship such as i(t) = Bic(t)
translates to | = Gl in the frequency domain.
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Use of phasors in circuit analysis

* The time-domain KCL and KVL equations > ik(t) = 0 and > v, (t) = 0 can be
written as Y I, = 0 and > Vi = 0 in the frequency domain.

* Resistors, capacitors, and inductors can be described by V = Z 1 in the frequency
domain, which is similar to V = R/ in DC conditions (except that we are
dealing with complex numbers in the frequency domain).

* An independent sinusoidal source in the frequency domain behaves like a DC
source, e.g., Vs = constant (a complex number).

* For dependent sources, a time-domain relationship such as i(t) = Bic(t)
translates to | = Gl in the frequency domain.

* Circuit analysis in the sinusoidal steady state using phasors is therefore very
similar to DC circuits with independent and dependent sources, and resistors.

M. B. Patil, IIT Bombay



Use of phasors in circuit analysis

* The time-domain KCL and KVL equations > ik(t) = 0 and > v, (t) = 0 can be
written as Y I, = 0 and > Vi = 0 in the frequency domain.

* Resistors, capacitors, and inductors can be described by V = Z 1 in the frequency
domain, which is similar to V = R/ in DC conditions (except that we are
dealing with complex numbers in the frequency domain).

* An independent sinusoidal source in the frequency domain behaves like a DC
source, e.g., Vs = constant (a complex number).

* For dependent sources, a time-domain relationship such as i(t) = Bic(t)
translates to | = Gl in the frequency domain.

* Circuit analysis in the sinusoidal steady state using phasors is therefore very
similar to DC circuits with independent and dependent sources, and resistors.

* Series/parallel formulas for resistors, nodal analysis, mesh analysis, Thevenin's
and Norton's theorems can be directly applied to circuits in the sinusoidal steady
state.
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RL circuit

Vm0° jwlL



R
Vm0° jwlL
VmZ0
= = I /(-0),
R+ jwL
Vv,
where I, = = , and 6 = tan"1(wL/R).

*’R2+w2L2



R
Vm0° jwlL
VmZ0
= T = ,/(-6),
R+ jwL
Vv,
where I, = = and 6 = tan"1(wL/R).

VR + w212’

In the time domain, i(t) = Im cos (wt — 0), which lags the source voltage since the
peak (or zero) of i(t) occurs t = 0/w seconds after that of the source voltage.



R
Vm0° jwlL
VmZ0
= T = ,/(-6),
R+ jwL
Vv,
where I, = ——=— and 0 = tan"(wL/R).
VR + w212

In the time domain, i(t) = Im cos (wt — 0), which lags the source voltage since the
peak (or zero) of i(t) occurs t = 0/w seconds after that of the source voltage.

ForR=1Q,L=1.6mH, f =50Hz, 6 = 26.6°, tag = 1.48 ms.
(SEQUEL file: ee101_rl_ac_1.sqproj)



R
Vi /0° ol R=1Q
m ! L=1.6mH
0 10 20 30
time (ms)
VmZ0
1= """ =,/£(-6),
R+ jwL
Vv,
where I, = ——=— and 0 = tan"(wL/R).
VR + w212

In the time domain, i(t) = Im cos (wt — 0), which lags the source voltage since the
peak (or zero) of i(t) occurs t = 0/w seconds after that of the source voltage.

ForR=1Q,L=1.6mH, f =50Hz, 6 = 26.6°, tag = 1.48 ms.
(SEQUEL file: ee101_rl_ac_1.sqproj)
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m

VR? + w212

where I, = , and 6 = tan"1(wL/R).



Vv,

where I, = ——=— and 0 = tan~ 1 (wL/R).
VR? + w212

VR =1 x R = Rlpn Z(—0),

VL =1 % jwl = whpL £(—0 + 7/2),



V,
where I, = ——=— and 0 = tan~ 1 (wL/R).
VR2 + w212
VR =IXR=RInZ(-0),
VL =1 X jwl =wlnl Z(—0+7/2),
The KVL equation, Vs = VR 4+ V|, can be represented in the complex plane by a
“phasor diagram.”



V,
where I, = ——=— and 0 = tan~ 1 (wL/R).
VR2 + w212
VR =IXR=RInZ(-0),
VL =1 X jwl =wlnl Z(—0+7/2),
The KVL equation, Vs = VR 4+ V|, can be represented in the complex plane by a
“phasor diagram.”
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VmZ0
T = I Z(-0),
R+ jwl
Vv,
where I, = ——=— and 0 = tan~ 1 (wL/R).

VR2 £ w212
VR =IXR=RInZ(-0),
VL =1 X jwl =wlnl Z(—0+7/2),
The KVL equation, Vs = VR 4+ V|, can be represented in the complex plane by a
“phasor diagram.”
, 60— 0, [VR| ~|Vs| = V.
, 0 — 7/2, V| ~ |Vs| = V.

If R>> |jwl
If R < |jwl
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Vm 20° 1/jwC



R
I
Vm £0° 1/jwC
VinZ
= ’"7,0 = In20,
R+1/jwC
V,
where I, = wCim and 0 = 7/2 — tan "} (wRC).

1+ (wRC)?



Vm 20° 1/jwC

VmZ0
= mi = 1,20,
R+1/jwC
wCVp

where I, = ———— and 6 = 7/2 — tan" }(wRC).
" 1+ (WRC)? / (WRO)

In the time domain, i(t) = Im cos (wt + 0), which leads the source voltage since the
peak (or zero) of i(t) occurs t = 0/w seconds before that of the source voltage.



Vm 20° 1/jwC

 Vm£0
T R+1/jwC

where I, =

= 1,20,
%, and 0 = 7/2 — tan "} (wRC).
1+ (wRC)?

In the time domain, i(t) = Im cos (wt + 0), which leads the source voltage since the
peak (or zero) of i(t) occurs t = 0/w seconds before that of the source voltage.

For R=1Q, C =5.3mF, f =50Hz, 0 = 31°, tjeaq = 1.72 ms.
(SEQUEL file: ee101_rc_ac_1.sqproj)



R T T
| 1 L vs(8) (VI
R=10Q
o 1/iwC O
Vim0 /o C=53mF
» i
0 10 20 30
time (ms)
VmZ0
1= —"—"  =,20,
R+1/jwC
\%
where I, = w(:im and 0 = 7/2 — tan "} (wRC).
1+ (wRC)?

In the time domain, i(t) = Im cos (wt + 0), which leads the source voltage since the
peak (or zero) of i(t) occurs t = 0/w seconds before that of the source voltage.

For R=1Q, C =5.3mF, f =50Hz, 0 = 31°, tjeaq = 1.72 ms.
(SEQUEL file: ee101_rc_ac_1.sqproj)
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Vm£0°

VinZ
)
R+1/jwC
cv,
where I, = —EEIm and 0= 7/2 —tan~Y(wRC).

1+ (wRC)?'



Vm£0°

VinZ0

== 49,
R+1/jwC "
Vim
where I, = L and 0 = 71/2 — tan~}(wRC).
1+ (wRC)?2

VR=IXR=RIn40,
Ve =1x (1/jwC) = (Im/wC) £(0 —7/2),



Vm£0°

VinZ0

== 49,
R+1/jwC "
Vim
where I, = L and 0 = 71/2 — tan~}(wRC).
1+ (wRC)?2

VR=IXR=RIn40,
Ve =1x (1/jwC) = (Im/wC) £(0 —7/2),

The KVL equation, Vs = VR 4+ V¢, can be represented in the complex plane by a
“phasor diagram.”



Im (V)

Vr

Vm£0°

VinZ0

== 49,
R+1/jwC "
Vim
where I, = L and 0 = 71/2 — tan~}(wRC).
1+ (wRC)?2

VR=IXR=RIn40,
Ve =1x (1/jwC) = (Im/wC) £(0 —7/2),

The KVL equation, Vs = VR 4+ V¢, can be represented in the complex plane by a
“phasor diagram.”
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Im (V)

Vr

Vm£0°

VinZ0

== 49,
R+1/jwC "
Vim
where I, = L and 0 = 71/2 — tan~}(wRC).
1+ (wRC)?2

VR=IXR=RIn40,
Ve =1x (1/jwC) = (Im/wC) £(0 —7/2),

The KVL equation, Vs = VR 4+ V¢, can be represented in the complex plane by a
“phasor diagram.”

If R>>|1/jwC|, 6 — 0, |Vg| ~ [Vs| = V.
If R < |1/jwC|, 0 — /2, |Vc| ~ |Vs| = V.
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Series/parallel connections

A A
025H & 7,
z
100 uF == 7,

B‘——l_ B

(w =100 rad/s)



Series/parallel connections

A A
025H 8 7, Z;=jx100x0.25 =250
z Z, = —j/(100 x 100 x 107) = —j100Q
100 pF Z, Z=71+2Z,=—j75Q

B‘——l_ B

(w =100 rad/s)



Series/parallel connections

A A
025H g 7, Z;=jx 100 x 0.25 =259
z Z, = —j/(100 x 100 x 107) = —j100Q
100 pF Z, Z=71+2Z,=—j75Q
s 8
(w =100 rad/s)
A A
0251y _LM00NF
AR 2
1 Z,
B B

(w =100 rad/s)



Series/parallel connections

A A
025H 8 7, Z;=jx 100 x 0.25 =259
z Z, = —j/(100 x 100 x 107) = —j100Q
100 pF Z, Z=71+2Z,=—j75Q
5] 5
(w =100 rad/s)
7,7,
A A =
21+ 27,
100 pF (j25) x (—j100)
0.25 H 1 /AR W ot
J— Z . —
Z % 7, j25—j100
~ 25x100
A
B B
=j33.3Q

(w =100 rad/s)
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Impedance example

Obtain Z in polar form.

A A
10;12 § % jZIZO Q .
B B

(w =100 rad/s)



Impedance example

Method 1:
1 j1 j1
Obtain Z in polar form. = lgijlg = %
1 1o
A A = i X —J
1+) 1-j
: 1 i1
100 j100 , S0 5 s
7 § % 2 2
Convert to polar form — Z =7.07 £/ 45° Q)
B B

(w =100 rad/s)



Impedance example

Obtain Z in polar form.

A

j10Q
loz?g % 2
B

(w =100 rad/s)

A

Method 1:
_10xj10 _ j10
T 104+j10 0 1+4j
_ o 1=
1+) 1—j
10 +j10
- J;J —5+j50

Convert to polar form — Z =7.07 £/ 45° Q)

Method 2:

_10xj10 _ 100/7/2
© 10410 10v2</7/4

=5V2/(n)2 —7/4) =7.07£45°Q
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Circuit example




Circuit example
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Circuit example

Zs =-j16Q

T i x2rx50%x2x 103
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Circuit example

Zs =-j16Q

T jx 27 x50 x 2 x 10-3
Z;, =21 x50x15x 1073 =,47Q
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Circuit example

Zs =-j16Q

T jx 27 x50 x 2 x 10-3
Z;, =21 x50x15x 1073 =,47Q

Zeg =21+ Z3 || (Z2+ Z4)
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Circuit example

i, 2Q 100
ic I
1040°V L
—_—2mF
f=50Hz 15 mH
1

Zs =-j16Q

T jx 27 x50 x 2 x 10-3
Z;, =21 x50x15x 1073 =,47Q

Zeg =21+ Z3 || (Z2+ Z4)

(—j1.6) x (10 +j4.7)

=2 —j1.6 1044.7) =2
F(J10) [ (10 +j47) =24 - LE PR
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Circuit example

i, 2Q 100
ic I
1040°V L
—_—2mF
f=50Hz 15 mH
1

Zs =-j16Q

T jx 27 x50 x 2 x 10-3
Z;, =21 x50x15x 1073 =,47Q

Zeg =21+ Z3 || (Z2+ Z4)

(=j1.6) x (10 +4.7)
—j16+10+j47

1.6£(—90°) x 11.05.(25.2°) 17.7/(—64.8°)

_> —2
+ 10,477 (17.2°) 10,47/ (17.2°)

=24+ (—j1.6) || (10+,4.7) =2+
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Circuit example

i, 2Q 100
ic I
1040°V L
—_—2mF
f=50Hz 15 mH
1

Zs =-j16Q

T jx 27 x50 x 2 x 10-3
Z;, =21 x50x15x 1073 =,47Q

Zeg =21+ Z3 || (Z2+ Z4)
(=j1.6) x (10 +4.7)
—j16+10+j47
., LBZ(-90°) x 1L05£(25.2°) _,  17.74(-64.8°)
10.47Z(17.2°) 10.47/(17.2°)

=24+1.69/(—82°) =2+ (0.235 — j 1.67)

=24+ (—j1.6) || (10+,4.7) =2+
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Circuit example

i, 2Q 100
ic I
1040°V L
—_—2mF
f=50Hz 15 mH
1

Zs =-j16Q

T jx 27 x50 x 2 x 10-3
Z;, =21 x50x15x 1073 =,47Q

Zeg =21+ Z3 || (Z2+ Z4)
(=j1.6) x (10 +4.7)
—j16+10+j47
., LBZ(-90°) x 1L05£(25.2°) _,  17.74(-64.8°)
10.47Z(17.2°) 10.47/(17.2°)

=24+1.69/(—82°) =2+ (0.235 — j 1.67)

=24+ (—j1.6) || (10+,4.7) =2+

=2.235—j1.67 =2.79/(—36.8°) Q

M. B. Patil, IIT Bombay



Circuit example (continued)

100
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Circuit example (continued)

2Q 100

Ve 10£(0°)
 Zegg 279 /(—36.8°)

Is

—=3.58.£(36.8°) A
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Circuit example (continued)

2Q 100

v, 10 £ (0°
=Yoo 10200 5553689 A
Zro  2.79(-36.8°)
(Z2 + Z4)

=_—" "7 xIls=3.79/(44.6°) A
¢ Z34+(Zo+2Z4)  ° ( )
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Circuit example (continued)

100

Vs 10 £ (0°
I — _ 1020 555,368 A
Zeo 279 Z(—36.8°)
Z,+2
Btz 3.79 £ (44.6°) A
Z3+(Z2+ Zy)
Z3

| =—— " x1s=0.546 £(—-70.6°) A
T Zs+ (Z2 4+ Z4) ( )
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Circuit example (continued)

2Q 100

Is

- Z3+(Z2+ Zy)

I

Vs 10 £(0°
S Vs 102(0°) 5553680 A
Zro  2.792(-36.8°)
(Z2 + Z4)

x 1 = 3.79 £ (44.6°) A

Z3

- O 1, =0546£(-T70.6°) A
Z3+(Z2 + Z4)

Im(1)
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Sinusoidal steady state: power computation

+ovo—
|
z
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Sinusoidal steady state: power computation

+ovo—
|
z

Let v(t) = Vi cos (wt +6), i.e., V=V, £0,
i(t) = Im cos(wt+ ¢), ie, | =InZLo.
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Sinusoidal steady state: power computation

+ovo—
|
z

Let v(t) = Vi cos (wt +6), i.e., V=V, £0,
i(t) = Im cos(wt+ ¢), ie, | =InZLo.
The instantaneous power absorbed by Z is,

P(t) = v(t)i(t)
= Vi Im cos (wt + 0) cos (wt + ¢)

= % Vin Im [cos (2wt + 0 + ¢) + cos (0 — ¢)] 1)
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Sinusoidal steady state: power computation

+ovo—
|
z

Let v(t) = Vi cos (wt +6), i.e., V=V, £0,
i(t) = Im cos(wt+ ¢), ie, | =InZLo.

The instantaneous power absorbed by Z is,

P(t) = v(t)i(t)
= Vi Im cos (wt + 0) cos (wt + ¢)

1
=5 Vin Im [cos (2wt + 0 + ¢) + cos (60 — ¢)] (1)
The average power absorbed by Z is
1 T
P = —/ P(t) dt, where T = 27 /w.
T Jo
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Sinusoidal steady state: power computation

+ovo—
|
z

Let v(t) = Vi cos (wt +6), i.e., V=V, £0,
i(t) = Im cos(wt+ ¢), ie, | =InZLo.
The instantaneous power absorbed by Z is,
P(t) = v(t)i(t)
Vi Im cos (wt + 0) cos (wt + ¢)
%vm I [cos (2wt + 0+ 6) + cos (0 — )] 1)

The average power absorbed by Z is
1 T

P = —/ P(t) dt, where T = 27 /w.
T Jo

The first term in Eq. (1) has an average value of zero and does not contribute to P.
Therefore,
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Sinusoidal steady state: power computation

+ovo—
|
z

Let v(t) = Vi cos (wt +6), i.e., V=V, £0,
i(t) = Im cos(wt+ ¢), ie, | =InZLo.
The instantaneous power absorbed by Z is,
P(t) = v(t)i(t)
Vi Im cos (wt + 0) cos (wt + ¢)
%vm I [cos (2wt + 0+ 6) + cos (0 — )] 1)

The average power absorbed by Z is
1 T

P = —/ P(t) dt, where T = 27 /w.
T Jo

The first term in Eq. (1) has an average value of zero and does not contribute to P.
Therefore,

1
P = > Vi Im cos (0 — ¢) | gives the average power absorbed by Z.
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Average power for R, L, C

General formula:

—_— V:\l/mzé,lzlmuﬁ
Iz P =2 Vohncos(6 - 9)



Average power for R, L, C

General formula:

+ Vv -
—_— V=V,/l0,l=1,,0
Iz P:%vmlmcos(eﬂp‘)
V =RI
+ Vv -
Forl=IlnZa, V=Rl L«
——AN—

I R P:%(le)lmcos(afa) —I2R_—V2/R



Average power for R, L, C

General formula:

+ v -
—_— V:\l/mzé,lzlmuﬁx
Iz P =2 Vohncos(6 - 9)
V =Rl
+ v -
Forl=I,Za, V=R, Za,
———AN—
L P:%(le)lmcos(afa) —I2R_—V2/R
V =jull
+ v -
Forl=In/a, V=wlly/(a+7/2),
—_— D ——

1
| L P =3 Vmlncos [(a+7/2) —a] =0



Average power for R, L, C

General formula:

+ Vv -
—_— V=V,/l0,l=1,,0
Iz P:%vmlmcos(eﬂp‘)
V =RI
+ Vv -
Forl=I,Za, V=R, Za,
———"W\—
L P:%(le)lmcos(afa) —I2R_—V2/R
V =jwLl
+ Vv -
Forl=In/a, V=wlly/(a+7/2),
— N ———
1
| L P =3 Vmlncos [(a+7/2) —a] =0
I =jwCV
+ Vv -
For V=Vn,/Za, | =wCVy L(a+7/2),
i :
C P:EVmImcos[af(a+7r/2)]:
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Average power: example

+ v B Given: | =2/45° A

VW £LLN Find the average power absorbed.
I 500 250
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Average power: example

+ v B Given: | =2/45° A
VW £LLN Find the average power absorbed.
| 500 j25Q
Method 1:

V = (50 + j25) x 2 £45°
= 55.0 £26.6° x 2 £ 45°
= 111.8 £ (45° + 26.6°)
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Average power: example

+ v B Given: | =2/45° A
VW £LLN Find the average power absorbed.
| 500 j25Q
Method 1:

V = (50 + j25) x 2 £45°
= 55.0 £26.6° x 2 £ 45°
= 111.8 £ (45° + 26.6°)

1
P =2 x111.8 x 2 x cos(26.6°) = 100 W.
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Average power: example

+ v B Given: | =2/45° A
VW £LLN Find the average power absorbed.
| 500 j25Q
Method 1:

V = (50 + j25) x 2 /45°
= 55.9/26.6° X 2 £ 45°
= 111.8 Z(45° 4 26.6°)

1
P= 3 x 111.8 X 2 X cos (26.6°) = 100 W.

Method 2:

No average power is absorbed by the inductor.
= P = Pg (average power absorbed by R)
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Average power: example

+ v B Given: | =2/45° A
VW £LLN Find the average power absorbed.
| 500 j25Q
Method 1:

V = (50 + j25) x 2 /45°
= 55.9/26.6° X 2 £ 45°
= 111.8 Z(45° 4 26.6°)

1
P= 3 x 111.8 X 2 X cos (26.6°) = 100 W.

Method 2:

No average power is absorbed by the inductor.
= P = Pg (average power absorbed by R)

1 1
=Z12R=2>x2>x50
2 2

=100 W.
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Maximum powe
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Maximum power transfer

Let ZL = RL +jXL, ZTh = RTh —I-jXTh, and | = Imé(z)
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Maximum power transfer

Let ZL = RL +jXL, ZTh = RTh —I-jXTh, and | = Imé(z)

The power absorbed by Z; is,

)
|
3N

Y
<

2
R

‘ Vi,
Zr+2;

IV 742
(R7n + RL)? + (X7n 4 X1)?

NI NIR N =

R,
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Maximum power transfer

Let ZL = RL +jXL, ZTh = RTh —I-jXTh, and | = Imé(z)
The power absorbed by Z; is,

1
P:E@m
1] Vv 2
_ - ‘i =
2|Zmp+ 2,
_1 IVl R,
2 (Rrn+ R0)? + (X7p + X0)2
For P to be maximum, (X7, + X.) must be zero. = X, = —X7y.
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Maximum power transfer

Let ZL = RL +jXL, ZTh = RTh —I-jXTh, and | = Imé(z)
The power absorbed by Z; is,

1
P:E@m
1] Vv 2
_ - ‘i =
2|Zmp+ 2,
_1 IVl R,
2 (Rrn+ R0)? + (X7p + X0)2
For P to be maximum, (X7, + X.) must be zero. = X, = —X7y.
With X, = — X7, we have,
1 |Vpl?

=3 7(,?7_[7 R L

which is maximum for R = Rp.
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Maximum power transfer

Let ZL = RL +jXL, ZTh = RTh —I-jXTh, and | = Imé(z)
The power absorbed by Z; is,

1
P:E@m
1] Vv 2
_ - ‘i =
2|Zmp+ 2,
_1 IVl R,
2 (Rrn+ R0)? + (X7p + X0)2
For P to be maximum, (X7, + X.) must be zero. = X, = —X7y.
With X, = — X7, we have,
1 V2

= -5 55 Ly
2 (RTh —+ RL)2
which is maximum for R = Rp.
Therefore, for maximum power transfer to the load Z;, we need,

RL = RThv XL = _XThv i.e., ZL = ZTFh
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Maximum powe

40 3Q

16£0°V -j6Q == Z




Maximum powe

4Q 3Q

16£0°V -j6Q == Z
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Maximum power transfer: example

40 3Q

16£0°V -j6Q == Z

Zrh=(—j6)| (4+j3)=576—,168Q.
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Maximum pow sfer: example

40 3Q

16£0°V -j6Q == Z

Zry,=(—j6) ] (44+,/3)=576—,1.68Q.
For maximum power transfer, Z; = Z%, =576 +,1.68Q2 = R, +j X, .
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Maximum power transfer: example

40 3Q

16£0°V -j6Q == Z

Zry,=(—j6) ] (44+,/3)=576—,1.68Q.
For maximum power transfer, Z; = Z%, =576 +,1.68Q2 = R, +j X, .
—j6

VT/7 =16£0° x —
(4+/3)+(—j6)

=19.2 /(—53.13°).
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Maximum power transfer: example

40 3Q

16£0°V -j6Q == Z

Zry,=(—j6) ] (44+,/3)=576—,1.68Q.

For maximum power transfer, Z; = Z%, =576 +,1.68Q2 = R, +j X, .
—j6
(4443)+(—j0)
j=_ Y _Vm

Zr,+2Z; 2R,

Vo, =16 £0° x =19.2 /(—53.13°).
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Maximum power transfer: example

40 3Q

16£0°V -j6Q == Z

Zry,=(—j6) ] (44+,/3)=576—,1.68Q.
For maximum power transfer, Z; = Z%, =576 +,1.68Q2 = R, +j X, .

7./6 o
Vi =16 £0° x ———=——— =19.2 /(—53.13°)..
(4+j3)+(—j6)
j—_VYmm _Vm
Zr,+2Z; 2R,
1 1 /19.2\2 1 (19.2)2
szl,%,RL:7< >><RL:7( ):8W.
2 2 \2R, 2 4R,
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Effective (rms) values of voltage/current

+ vt — + Ve —

——VW— ———AN—

it) R leff R
time-varying v and i constant v and i

Consider a periodic current i(t) passing through R.

M. B. Patil, IIT Bombay



Effective (rms) values of voltage/current

+ vt — + Ve —

——VW— ———AN—

it) R leff R
time-varying v and i constant v and i

Consider a periodic current i(t) passing through R.

The average power absorbed by R is,
1 to+T

P == [i(£)]? R dt,
T Jy

where tg is some reference time (we will take to to be 0).
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Effective (rms) values of voltage/current

+ vt — + Ve —

——VW— ———AN—

it) R leff R
time-varying v and i constant v and i

Consider a periodic current i(t) passing through R.

The average power absorbed by R is,
1 to+T
P == [i(£)]? R dt,
T Jg
where tg is some reference time (we will take to to be 0).
The average power absorbed by R in the DC case is,

Py =12 R.
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Effective (rms) values of voltage/current

+ vt — + Ve —

——VW— ———AN—

it) R leff R
time-varying v and i constant v and i

Consider a periodic current i(t) passing through R.

The average power absorbed by R is,
1 to+T 5
P == [i(t)]° Rdt,
T Jg
where tg is some reference time (we will take to to be 0).
The average power absorbed by R in the DC case is,
Py =12 R.
lofr, the effective value of i(t), is defined such that P; = P, i.e.,

2 1T
B R=7 [ 0P R,

T
lor =/ = |t ae.

M. B. Patil, IIT Bombay



Effective (rms) values of voltage/current

+ V(t) — + Veﬂr —

——VW— ———AN—

it) R leff R
time-varying v and i constant v and i

_
=17 |t ae.

lofr is called the root-mean-square (rms) value of i(t) because of the operations
(root, mean, and square) involved in its computation.
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Effective (rms) values of voltage/current

+ V(t) — + Veﬂr —

——VW— ———AN—

it) R leff R
time-varying v and i constant v and i

_
=17 |t ae.

lofr is called the root-mean-square (rms) value of i(t) because of the operations
(root, mean, and square) involved in its computation.

If i(t) is sinusoidal, i.e., i(t) = Im cos (wt + ¢),

I = \/ / lz cos2 (wt+ ¢)d \/ / —[1 + cos (2wt + 2¢)] dt

11
=In 75T:/m/ﬁ.
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Effective (rms) values of voltage/current

+ V(t) — + Veﬂr —

——VW— ———AN—

it) R leff R
time-varying v and i constant v and i

_
=17 |t ae.

lofr is called the root-mean-square (rms) value of i(t) because of the operations
(root, mean, and square) involved in its computation.

If i(t) is sinusoidal, i.e., i(t) = Im cos (wt + ¢),

I = \/ / lz cos2 (wt+ ¢)d \/ / —[1 + cos (2wt + 2¢)] dt

11
=In 75T:/m/ﬁ.

Similarly, Vegr = Vin/V/2.
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Apparent power, real power, and power factor

+ v - V =Vm /0
—] _
T I=ImZ6

The average (“real”) power absorbed by Z is,
1
P = Elem cos (0 — ¢) = — 7 cos (6 — ¢)

= Vet legr cos (6 — ¢) (Watts)
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Apparent power, real power, and power factor

+ v - V =Vm /0
—] _
T I=ImZ6

The average (“real”) power absorbed by Z is,
1
P= 5V,,,Im cos( —¢) = —= 7 cos (0 — )
= Vet legr cos (6 — ¢) (Watts)

Apparent power is defined as Papp = Vet ler (Volt-Amp).
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Apparent power, real power, and power factor

+ v - V =Vm /0
—] _
T I=ImZ6

The average (“real”) power absorbed by Z is,
1
P= 5V,,,Im cos (0 — ¢) = —= = cos (0 — ¢)
= Vet legr cos (6 — ¢) (Watts)

Apparent power is defined as Papp = Vet ler (Volt-Amp).

Average power

Power factor is defined as P.F. = ——————————— = cos (0 — ¢).
Apparent power
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Apparent power, real power, and power factor

+ v - V =Vm /0
—] _
T I=ImZ6

The average (“real”) power absorbed by Z is,
1
P= 5V,,,Im cos( —¢) = —= 7 cos (0 — )
= Vet legr cos (6 — ¢) (Watts)

Apparent power is defined as Papp = Vet ler (Volt-Amp).

Average power

= cos (6 — ¢).

Power factor is defined as P.F. = ——————
Apparent power

(60 — ¢) > 0: i(t) lags v(t), the P.F. is called a lagging P.F.

(inductive impedance)

M. B. Patil, IIT Bombay



Apparent power, real power, and power factor

+ v - V =Vm /0
—] _
T I=ImZ6

The average (“real”) power absorbed by Z is,

1 Vi Im
P = Elem cos (0 — ¢) = WAV cos (6 — ¢)

= Veff lesr cos (0 — ¢) (Watts)

Apparent power is defined as Papp = Vet ler (Volt-Amp).

Average power

= cos (6 — ¢).

Power factor is defined as P.F. = ——————
Apparent power

(60 — ¢) > 0: i(t) lags v(t), the P.F. is called a lagging P.F.
(inductive impedance)

(0 — @) < 0: i(t) leads v(t), the P.F. is called a leading P.F.

(capacitive impedance)
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Power factor: examples

+ v -
-
Iz

1. Given: V =120£0° V(rms), | =2 2£(—36.9°) A(rms).
Find Pspp, P.F., and P.
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Power factor: examples

+ v -
-
Iz

1. Given: V =120£0° V(rms), | =2 2£(—36.9°) A(rms).
Find Pspp, P.F., and P.

Papp = 120 X 2 = 240 V-A.
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Power factor: examples

1. Given: V =120£0° V(rms), | =2 2£(—36.9°) A(rms).
Find Pspp, P.F., and P.

Papp = 120 x 2 = 240 V-A.
P.F. = cos (0° — (—36.9°)) = 0.8 lagging (since | lags V).
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Power factor: examples

1. Given: V =120£0° V(rms), | =2 2£(—36.9°) A(rms).
Find Pspp, P.F., and P.

Papp = 120 x 2 = 240 V-A.
P.F. = cos (0° — (—36.9°)) = 0.8 lagging (since | lags V).
P = Papp x P.F. =192 W.
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Power factor: examples

1. Given: V =120£0° V(rms), | =2 2£(—36.9°) A(rms).
Find Pspp, P.F., and P.
Papp = 120 x 2 = 240 V-A.
P.F. = cos (0° — (—36.9°)) = 0.8 lagging (since | lags V).
P = Papp x P.F. =192 W.

2. Given: P =50 kW, P.F. =0.95 (lagging), V = 480 £0° V (rms).
Find I.
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Power factor: examples

1. Given: V =120£0° V(rms), | =2 2£(—36.9°) A(rms).
Find Pspp, P.F., and P.

Papp = 120 x 2 = 240 V-A.
P.F. = cos (0° — (—36.9°)) = 0.8 lagging (since | lags V).
P = Papp x P.F. =192 W.

2. Given: P =50 kW, P.F. =0.95 (lagging), V = 480 £0° V (rms).
Find I.

Veff X Ieff x P.F =50 x 103
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Power factor: examples

1. Given: V =120£0° V(rms), | =2 2£(—36.9°) A(rms).
Find Pspp, P.F., and P.

Papp = 120 x 2 = 240 V-A.
P.F. = cos (0° — (—36.9°)) = 0.8 lagging (since | lags V).
P = Papp x P.F. =192 W.

2. Given: P =50 kW, P.F. =0.95 (lagging), V = 480 £0° V (rms).

Find 1.

Veff X Ieff x P.F =50 x 103
50 x 103

I = —> "2 _ 1096 A.
480 x 0.95
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Power factor: examples

1. Given: V =120£0° V(rms), | =2 2£(—36.9°) A(rms).
Find Pspp, P.F., and P.
Papp = 120 x 2 = 240 V-A.
P.F. = cos (0° — (—36.9°)) = 0.8 lagging (since | lags V).
P = Papp x P.F. =192 W.

2. Given: P =50 kW, P.F. =0.95 (lagging), V = 480 £0° V (rms).

Find 1.

Veff X Ieff x P.F =50 x 103
50 x 103

I = —> "2 _ 1096 A.
480 x 0.95

Since P.F. is 0.95 (lagging), I lags V by cos™1(0.95) = 18.2°.
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Power factor: examples

1. Given: V =120£0° V(rms), | =2 2£(—36.9°) A(rms).
Find Pspp, P.F., and P.
Papp = 120 x 2 = 240 V-A.
P.F. = cos (0° — (—36.9°)) = 0.8 lagging (since | lags V).
P = Papp x P.F. =192 W.

2. Given: P =50 kW, P.F. =0.95 (lagging), V = 480 £0° V (rms).

Find 1.

Veff X Ieff x P.F =50 x 103
50 x 103

I = —> "2 _ 1096 A.
480 x 0.95

Since P.F. is 0.95 (lagging), I lags V by cos™1(0.95) = 18.2°.
= 1=109.6 £ (—18.2°) A (rms).

M. B. Patil, IIT Bombay



Why is power factor important?

R=0.1Q
A

+ +
. o vz

Consider a simplified model of a power system consisting of a generator (Vs),
transmission line (R), and load (Z,).

The load is specified as P = 50 kW, P.F.= 0.6 (lagging), V. = 480 £0° V (rms).
Note: lagging power factors are typical of industrial loads (motors).



hy is power factor important?

R=0.1Q
A

+ +
. o vz

Consider a simplified model of a power system consisting of a generator (Vs),
transmission line (R), and load (Z,).

The load is specified as P = 50 kW, P.F.= 0.6 (lagging), V. = 480 £0° V (rms).
Note: lagging power factors are typical of industrial loads (motors).

50 x 103
P =50x10% W = V.| x |I| x P.F. = |I| =

—————— =173.6 A (rms).
480 x 0.6



hy is power factor important?

R=0.1Q
A

+ +
. o vz

Consider a simplified model of a power system consisting of a generator (Vs),
transmission line (R), and load (Z,).

The load is specified as P = 50 kW, P.F.= 0.6 (lagging), V. = 480 £0° V (rms).
Note: lagging power factors are typical of industrial loads (motors).

50 x 103
480 x 0.6
Power loss in the transmission line Pogs = |I.|?R = (173.6)? x 0.1 = 3 kW.

P =50x10% W = V.| x |I| x P.F. = |I| = =173.6 A (rms).



hy is power factor important?

R=0.1Q
A

+ +
. o vz

Consider a simplified model of a power system consisting of a generator (Vs),
transmission line (R), and load (Z,).
The load is specified as P = 50 kW, P.F.= 0.6 (lagging), V. = 480 £0° V (rms).
Note: lagging power factors are typical of industrial loads (motors).

50 x 103
P=50x10% W = V| x |I| x P.F.= [l = ———
480 x 0.6
Power loss in the transmission line Pogs = |I.|?R = (173.6)? x 0.1 = 3 kW.
If the load power factor was 0.95 (lagging), we would have

50 x 103

480 x 0.95

=173.6 A (rms).

I = =109.6 A (rms), and Pl = (109.6)2 x 0.1 = 1.2 kW.
|




hy is power factor important?

R=0.1Q
A

+ +
. o vz

Consider a simplified model of a power system consisting of a generator (Vs),
transmission line (R), and load (Z,).

The load is specified as P = 50 kW, P.F.= 0.6 (lagging), V. = 480 £0° V (rms).
Note: lagging power factors are typical of industrial loads (motors).

50 x 103
480 x 0.6
Power loss in the transmission line Pogs = |I.|?R = (173.6)? x 0.1 = 3 kW.

P =50x10% W = V.| x |I| x P.F. = |I| = =173.6 A (rms).

If the load power factor was 0.95 (lagging), we would have

50 x 103
| = m —109.6 A (rms), and Pioss = (109.6)2 x 0.1 = 1.2 kW.

Thus, a higher power factor can substantially reduce transmission losses.




Why is power factor important?

R=0.1Q
I
+ +
Vs e Vi ZL C

Consider a simplified model of a power system consisting of a generator (Vs),
transmission line (R), and load (Z,).
The load is specified as P = 50 kW, P.F.= 0.6 (lagging), V, = 480 £0° V (rms).
Note: lagging power factors are typical of industrial loads (motors).

50 x 103
—————— =173.6 A (rms).
480 x 0.6
Power loss in the transmission line Pogs = |I.|?R = (173.6)? x 0.1 = 3 kW.

If the load power factor was 0.95 (lagging), we would have

50 x 103
X2 109.6 A (rms), and P = (109.6)2 x 0.1 = 1.2 k.
480 x 0.95

Thus, a higher power factor can substantially reduce transmission losses.
The effective power factor of an inductive load can be improved by connecting a
suitable capacitance in parallel.

P =50x10% W = V.| x |I| x P.F. = |I| =

1| =
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Power computation: home work

2Q 100

10 £0° V

* Find 11, 12, Is.
* Compute the average power absorbed by each element.

* Verify power balance.

(SEQUEL file: ee101_phasors_2.sqproj)
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