EE101: Resonance in RLC circuits

M. B. Patil
mbpatil@ee.iitb.ac.in
www.ee.iitb.ac.in/~sequel

Department of Electrical Engineering
Indian Institute of Technology Bombay
Resonance in series RLC circuits

$I = \frac{V_m \angle 0}{R + j\omega L + 1/j\omega C} = \frac{V_m}{R + j(\omega L - 1/\omega C)} \equiv I_m \angle \theta$, where

$I_m = \frac{V_m}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}}, \quad \theta = -\tan^{-1}\left[\frac{\omega L - 1/\omega C}{R}\right]$.
Resonance in series RLC circuits

\[I = \frac{V_m \angle 0}{R + j\omega L + 1/j\omega C} = \frac{V_m}{R + j(\omega L - 1/\omega C)} \equiv I_m \angle \theta, \text{ where} \]

\[I_m = \frac{V_m}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}}, \quad \theta = -\tan^{-1} \left[\frac{\omega L - 1/\omega C}{R} \right]. \]

* As ω is varied, both I_m and θ change.
Resonance in series RLC circuits

\[I = \frac{V_m \angle 0}{R + j\omega L + 1/j\omega C} = \frac{V_m}{R + j(\omega L - 1/\omega C)} \equiv I_m \angle \theta, \text{ where} \]

\[I_m = \frac{V_m}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}}, \quad \theta = -\tan^{-1} \left[\frac{\omega L - 1/\omega C}{R} \right]. \]

- As ω is varied, both I_m and θ change.
- When $\omega L = 1/\omega C$, I_m reaches its maximum value, $I_m^{\text{max}} = V_m/R$, and θ becomes 0, i.e., the current I is in phase with the applied voltage.
Resonance in series RLC circuits

\[I = \frac{V_m \angle 0}{R + j\omega L + 1/j\omega C} = \frac{V_m}{R + j(\omega L - 1/\omega C)} \equiv I_m \angle \theta, \text{ where} \]

\[I_m = \frac{V_m}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}}, \quad \theta = -\tan^{-1} \left[\frac{\omega L - 1/\omega C}{R} \right]. \]

* As ω is varied, both I_m and θ change.
* When $\omega L = 1/\omega C$, I_m reaches its maximum value, $I_m^{\text{max}} = V_m/R$, and θ becomes 0, i.e., the current I is in phase with the applied voltage.
* The above condition is called “resonance,” and the corresponding frequency is called the “resonance frequency” (ω_0).

\[\omega_0 = 1/\sqrt{LC} \]
Resonance in series RLC circuits

\[I_m = \frac{V_m}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} \], \quad \theta = -\tan^{-1}\left[\frac{\omega L - 1/\omega C}{R}\right].

As ω deviates from ω_0, I_m decreases.

As $\omega \to 0$, the term $1/\omega C$ dominates, and $\theta \to \pi/2$.

As $\omega \to \infty$, the term ωL dominates, and $\theta \to -\pi/2$.
Resonance in series RLC circuits

\[I_m = \frac{V_m}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} , \quad \theta = -\tan^{-1} \left[\frac{\omega L - 1/\omega C}{R} \right]. \]

* As ω deviates from ω_0, I_m decreases.
Resonance in series RLC circuits

$$I_m = \frac{V_m}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}}, \quad \theta = -\tan^{-1} \left[\frac{\omega L - 1/\omega C}{R} \right].$$

* As ω deviates from ω_0, I_m decreases.

* As $\omega \to 0$, the term $1/\omega C$ dominates, and $\theta \to \pi/2$.

\[
\begin{align*}
R &= 10 \Omega \\
L &= 1 \text{ mH} \\
C &= 1 \mu \text{F}
\end{align*}
\]
Resonance in series RLC circuits

\[I_m = \frac{V_m}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}}, \quad \theta = -\tan^{-1}\left[\frac{\omega L - 1/\omega C}{R}\right]. \]

* As ω deviates from ω_0, I_m decreases.
* As $\omega \to 0$, the term $1/\omega C$ dominates, and $\theta \to \pi/2$.
* As $\omega \to \infty$, the term ωL dominates, and $\theta \to -\pi/2$.

$R = 10 \Omega$
$L = 1 \text{ mH}$
$C = 1 \mu\text{F}$
Resonance in series RLC circuits

\[l_m = \frac{V_m}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}}, \quad \theta = -\tan^{-1}\left[\frac{\omega L - 1/\omega C}{R}\right]. \]

* As ω deviates from ω_0, l_m decreases.
* As $\omega \to 0$, the term $1/\omega C$ dominates, and $\theta \to \pi/2$.
* As $\omega \to \infty$, the term ωL dominates, and $\theta \to -\pi/2$.

(SEQUEL file: ee101_reso_rlc_1.sqproj)
The maximum power that can be absorbed by the resistor is \(P_{\text{max}} = \frac{1}{2} \left(\frac{I_{\text{max}}}{\sqrt{2}} \right)^2 R = \frac{1}{2} \frac{V_m^2}{R} \).

Define \(\omega_1 \) and \(\omega_2 \) (see figure) as frequencies at which \(I_{\text{max}} = \frac{I_{\text{max}}}{\sqrt{2}} \), i.e., the power absorbed by \(R \) is \(P_{\text{max}}/2 \).

The bandwidth of a resonant circuit is defined as \(B = \omega_2 - \omega_1 \), and the quality factor as \(Q = \frac{\omega_0}{B} \). Quality is a measure of the sharpness of the \(I_{\text{m}} \) versus frequency relationship.
Resonance in series RLC circuits

* The maximum power that can be absorbed by the resistor is

$$P_{\text{max}} = \frac{1}{2} \left(I_{\text{m}}^{\text{max}} \right)^2 \ R = \frac{1}{2} \ V_m^2 / R.$$
The maximum power that can be absorbed by the resistor is
\[P_{\text{max}} = \frac{1}{2} (I_m^{\text{max}})^2 \]
\[R = \frac{1}{2} V_m^2 / R. \]

Define \(\omega_1 \) and \(\omega_2 \) (see figure) as frequencies at which \(I_m = I_m^{\text{max}} / \sqrt{2} \), i.e., the power absorbed by \(R \) is \(P_{\text{max}} / 2 \).
Resonance in series *RLC* circuits

* The maximum power that can be absorbed by the resistor is

\[P_{\text{max}} = \frac{1}{2} \left(I_m^{\text{max}} \right)^2 R = \frac{1}{2} V_m^2 / R. \]

* Define \(\omega_1 \) and \(\omega_2 \) (see figure) as frequencies at which \(I_m = I_m^{\text{max}} / \sqrt{2} \), i.e., the power absorbed by \(R \) is \(P_{\text{max}} / 2 \).

* The *bandwidth* of a resonant circuit is defined as \(B = \omega_2 - \omega_1 \), and the *quality factor* as \(Q = \omega_0 / B \). Quality is a measure of the sharpness of the \(I_m \) versus frequency relationship.
Resonance in series RLC circuits

\[I_m = \frac{V_m}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}}. \]

For $\omega = \omega_0$, $I_m = I_m^{\text{max}} = V_m / R$.

For $\omega = \omega_1$ or $\omega = \omega_2$, $I_m = I_m^{\text{max}} / \sqrt{2}$.
Resonance in series RLC circuits

\[I_m = \frac{V_m}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}}. \]

For $\omega = \omega_0$, \(I_m = I_m^{\text{max}} = V_m / R. \)

For $\omega = \omega_1$ or $\omega = \omega_2$, \(I_m = I_m^{\text{max}} / \sqrt{2}. \)

\[\Rightarrow \frac{1}{\sqrt{2}} \left(\frac{V_m}{R} \right) = \frac{V_m}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} \]

for $\omega = \omega_{1,2}$.

Bandwidth $B = \omega_2 - \omega_1 = \frac{R}{L}$.

Quality $Q = \frac{\omega_0}{B} = \frac{\omega_0 L}{R}$.

* Show that, at resonance (i.e., $\omega = \omega_0$), $|V_L| = |V_C| = Q V_m$.

* Show that $\omega_0 = \sqrt{\omega_1 \omega_2}$.

M. B. Patil, IIT Bombay
Resonance in series RLC circuits

$$I_m = \frac{V_m}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}}.$$

For $\omega = \omega_0$, $I_m = I_m^{\text{max}} = V_m/R$.

For $\omega = \omega_1$ or $\omega = \omega_2$, $I_m = I_m^{\text{max}} / \sqrt{2}$.

$$\Rightarrow \frac{1}{\sqrt{2}} \left(\frac{V_m}{R} \right) = \frac{V_m}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} \quad \text{for } \omega = \omega_{1,2}.$$

$$2R^2 = R^2 + (\omega L - 1/\omega C)^2 \rightarrow R = \pm(\omega L - 1/\omega C).$$
Resonance in series RLC circuits

$$I_m = \frac{V_m}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}}.$$

For $\omega = \omega_0$, $I_m = I_{m_{\text{max}}} = V_m/R$.

For $\omega = \omega_1$ or $\omega = \omega_2$, $I_m = I_{m_{\text{max}}}/\sqrt{2}$.

$$\Rightarrow \frac{1}{\sqrt{2}} \left(\frac{V_m}{R} \right) = \frac{V_m}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}}$$ for $\omega = \omega_{1,2}$.

$$2R^2 = R^2 + (\omega L - 1/\omega C)^2 \rightarrow R = \pm(\omega L - 1/\omega C).$$

Solving for ω (and discarding negative solutions), we get

$$\omega_{1,2} = \pm \frac{R}{2L} + \sqrt{\left(\frac{R}{2L} \right)^2 + \frac{1}{LC}}.$$
Resonance in series RLC circuits

$$I_m = \frac{V_m}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}}.$$

For $\omega = \omega_0$, $I_m = I_m^{\text{max}} = V_m/R$.

For $\omega = \omega_1$ or $\omega = \omega_2$, $I_m = I_m^{\text{max}}/\sqrt{2}$.

$$\Rightarrow \frac{1}{\sqrt{2}} \left(\frac{V_m}{R} \right) = \frac{V_m}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} \quad \text{for } \omega = \omega_{1,2}.$$

$$2\,R^2 = R^2 + (\omega L - 1/\omega C)^2 \rightarrow R = \pm(\omega L - 1/\omega C).$$

Solving for ω (and discarding negative solutions), we get

$$\omega_{1,2} = \pm \frac{R}{2L} + \sqrt{\left(\frac{R}{2L} \right)^2 + \frac{1}{LC}}.$$

* Bandwidth $B = \omega_2 - \omega_1 = R/L$.

\[\text{Graph:} \]
Resonance in series RLC circuits

\[I_m = \frac{V_m}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}}. \]

For $\omega = \omega_0$, \(I_m = I_m^{\text{max}} = V_m/R \).

For $\omega = \omega_1$ or $\omega = \omega_2$, \(I_m = I_m^{\text{max}}/\sqrt{2} \).

\[\Rightarrow \frac{1}{\sqrt{2}} \left(\frac{V_m}{R} \right) = \frac{V_m}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} \quad \text{for} \quad \omega = \omega_{1,2}. \]

\[2R^2 = R^2 + (\omega L - 1/\omega C)^2 \rightarrow R = \pm(\omega L - 1/\omega C). \]

Solving for ω (and discarding negative solutions), we get

\[\omega_{1,2} = \pm \frac{R}{2L} + \sqrt{\left(\frac{R}{2L} \right)^2 + \frac{1}{LC}}. \]

* Bandwidth $B = \omega_2 - \omega_1 = R/L$.
* Quality $Q = \omega_0/B = \omega_0 L/R$.
Resonance in series \(RLC \) circuits

\[I_m = \frac{V_m}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}}. \]

For \(\omega = \omega_0 \), \(I_m = I_m^{\text{max}} = \frac{V_m}{R} \).

For \(\omega = \omega_1 \) or \(\omega = \omega_2 \), \(I_m = \frac{I_m^{\text{max}}}{\sqrt{2}} \).

\[
\Rightarrow \frac{1}{\sqrt{2}} \left(\frac{V_m}{R} \right) = \frac{V_m}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} \quad \text{for} \quad \omega = \omega_{1,2}.
\]

\[2R^2 = R^2 + (\omega L - 1/\omega C)^2 \rightarrow R = \pm(\omega L - 1/\omega C). \]

Solving for \(\omega \) (and discarding negative solutions), we get

\[\omega_{1,2} = \pm \frac{R}{2L} + \sqrt{\left(\frac{R}{2L} \right)^2 + \frac{1}{LC}}. \]

* Bandwidth \(B = \omega_2 - \omega_1 = R/L \).
* Quality \(Q = \omega_0/B = \omega_0 L/R \).
* Show that, at resonance (i.e., \(\omega = \omega_0 \)), \(|V_L| = |V_C| = Q V_m \).
Resonance in series RLC circuits

\[I_m = \frac{V_m}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}}. \]

For $\omega = \omega_0$, $I_m = I_m^{\text{max}} = V_m/R$.

For $\omega = \omega_1$ or $\omega = \omega_2$, $I_m = I_m^{\text{max}}/\sqrt{2}$.

\[\Rightarrow \frac{1}{\sqrt{2}} \left(\frac{V_m}{R} \right) = \frac{V_m}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} \quad \text{for } \omega = \omega_{1,2}. \]

\[2R^2 = R^2 + (\omega L - 1/\omega C)^2 \rightarrow R = \pm(\omega L - 1/\omega C). \]

Solving for ω (and discarding negative solutions), we get

\[\omega_{1,2} = \pm \frac{R}{2L} \pm \sqrt{\left(\frac{R}{2L} \right)^2 + \frac{1}{LC}}. \]

* Bandwidth $B = \omega_2 - \omega_1 = R/L$.
* Quality $Q = \omega_0/B = \omega_0 L/R$.
* Show that, at resonance (i.e., $\omega = \omega_0$), $|V_L| = |V_C| = Q V_m$.
* Show that $\omega_0 = \sqrt{\omega_1 \omega_2}$.
As R is increased,
As R is increased,

* The quality factor $Q = \omega_0 L/R$ decreases, i.e., I_m versus ω curve becomes broader.
As R is increased,

- The quality factor $Q = \omega_0 L / R$ decreases, i.e., I_m versus ω curve becomes broader.

- The maximum current (at $\omega = \omega_0$) decreases (since $I_{m,max} = V_m / R$).
As R is increased,

* The quality factor $Q = \omega_0 L / R$ decreases, i.e., I_m versus ω curve becomes broader.

* The maximum current (at $\omega = \omega_0$) decreases (since $I_{m\text{max}} = V_m / R$).

* The resonance frequency ($\omega_0 = 1 / \sqrt{LC}$) is not affected.
Resonance in series RLC circuits

\[
I = \frac{V_m \angle 0}{R + j\omega L + 1/j\omega C} = \frac{V_m}{R + j(\omega L - 1/\omega C)} = I_m \angle \theta, \text{ where}
\]

\[
l_m = \frac{V_m}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}}, \quad \theta = -\tan^{-1} \left[\frac{\omega L - 1/\omega C}{R} \right].
\]
Resonance in series RLC circuits

I = \frac{V_m \angle 0}{R + j\omega L + 1/j\omega C} = \frac{V_m}{R + j(\omega L - 1/\omega C)} = I_m \angle \theta , \text{ where}

I_m = \frac{V_m}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} , \quad \theta = -\tan^{-1}\left[\frac{\omega L - 1/\omega C}{R}\right].

* For $\omega < \omega_0$, $\omega L < 1/\omega C$, the net impedance is capacitive, and the current leads the applied voltage.
Resonance in series RLC circuits

$$I = \frac{V_m \angle 0}{R + j\omega L + 1/j\omega C} = \frac{V_m}{R + j(\omega L - 1/\omega C)} \equiv I_m \angle \theta, \text{ where}$$

$$I_m = \frac{V_m}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}}, \quad \theta = -\tan^{-1}\left[\frac{\omega L - 1/\omega C}{R}\right].$$

* For $\omega < \omega_0$, $\omega L < 1/\omega C$, the net impedance is capacitive, and the current leads the applied voltage.

* For $\omega = \omega_0$, $\omega L = 1/\omega C$, the net impedance is purely resistive, and the current is in phase with the applied voltage.
Resonance in series RLC circuits

\[I = \frac{V_m \angle 0}{R + j\omega L + 1/j\omega C} = \frac{V_m}{R + j(\omega L - 1/\omega C)} \equiv I_m \angle \theta, \text{ where} \]

\[I_m = \frac{V_m}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}}, \quad \theta = -\tan^{-1}\left[\frac{\omega L - 1/\omega C}{R}\right]. \]

* For $\omega < \omega_0$, $\omega L < 1/\omega C$, the net impedance is capacitive, and the current leads the applied voltage.

* For $\omega = \omega_0$, $\omega L = 1/\omega C$, the net impedance is purely resistive, and the current is in phase with the applied voltage.

* For $\omega > \omega_0$, $\omega L > 1/\omega C$, the net impedance is inductive, and the current lags the applied voltage.
Resonance in series \(RLC \) circuits

\[
\begin{align*}
I &= \frac{V_m \angle 0}{R + j\omega L + 1/j\omega C} = \frac{V_m}{R + j(\omega L - 1/\omega C)} = I_m \angle \theta, \text{ where} \\
I_m &= \frac{V_m}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}}, \quad \theta = -\tan^{-1}\left[\frac{\omega L - 1/\omega C}{R}\right].
\end{align*}
\]

* For \(\omega < \omega_0, \omega L < 1/\omega C \), the net impedance is capacitive, and the current leads the applied voltage.

* For \(\omega = \omega_0, \omega L = 1/\omega C \), the net impedance is purely resistive, and the current is in phase with the applied voltage.

* For \(\omega > \omega_0, \omega L > 1/\omega C \), the net impedance is inductive, and the current lags the applied voltage.

* Let us look at an example (next slide).
Resonance in series RLC circuits

\[f = 4.3 \text{ kHz} \]

\[f = 5 \text{ kHz} \approx f_0 \]

\[f = 5.9 \text{ kHz} \]

$R = 10 \Omega$

$L = 1 \text{ mH}$

$C = 1 \mu\text{F}$

![Diagram of RLC circuit]

$V_s (V)$ (left axis)

$i (A)$ (right axis)
Resonance in series RLC circuits: phasor diagrams

$R = 10 \, \Omega$
$L = 1 \, \text{mH}$
$C = 1 \, \mu\text{F}$

$f = f_0 \approx 5 \, \text{kHz}$
$f = 4.3 \, \text{kHz}$
$f = 5.9 \, \text{kHz}$
Resonance in parallel RLC circuits

$I_m \angle 0 = Y V$, where $Y = G + j\omega C + 1/j\omega L$ ($G = 1/R$).

$V = \frac{I_m \angle 0}{G + j\omega C + 1/j\omega L} = \frac{I_m}{G + j(\omega C - 1/\omega L)} \equiv V_m \angle \theta$, where

$V_m = \frac{I_m}{\sqrt{G^2 + (\omega C - 1/\omega L)^2}}$, $\theta = -\tan^{-1}\left[\frac{\omega C - 1/\omega L}{G}\right]$.
Resonance in parallel RLC circuits

$I_m \angle 0 = YV$, where $Y = G + j\omega C + 1/j\omega L$ ($G = 1/R$).

$V = \frac{I_m \angle 0}{G + j\omega C + 1/j\omega L} = \frac{I_m}{G + j(\omega C - 1/\omega L)} \equiv V_m \angle \theta$, where

$V_m = \frac{I_m}{\sqrt{G^2 + (\omega C - 1/\omega L)^2}}$, \quad \theta = -\tan^{-1}\left[\frac{\omega C - 1/\omega L}{G}\right]$.

* As ω is varied, both V_m and θ change.
Resonance in parallel RLC circuits

$I_m \angle 0 = Y V$, where $Y = G + j\omega C + 1/j\omega L \ (G = 1/R)$.

$V = \frac{I_m \angle 0}{G + j\omega C + 1/j\omega L} = \frac{I_m}{G + j(\omega C - 1/\omega L)} \equiv V_m \angle \theta$, where

$V_m = \frac{I_m}{\sqrt{G^2 + (\omega C - 1/\omega L)^2}}, \quad \theta = -\tan^{-1}\left[\frac{\omega C - 1/\omega L}{G}\right].$

* As ω is varied, both V_m and θ change.

* When $\omega C = 1/\omega L$, V_m reaches its maximum value, $V_m^{\max} = I_m/G = I_mR$, and θ becomes 0, i.e., the voltage V is in phase with the source current.
Resonance in parallel RLC circuits

$I_m \angle 0 = Y V$, where $Y = G + j\omega C + 1/j\omega L \quad (G = 1/R)$.

$V = \frac{I_m \angle 0}{G + j\omega C + 1/j\omega L} = \frac{I_m}{G + j(\omega C - 1/\omega L)} \equiv V_m \angle \theta$, where

$V_m = \frac{I_m}{\sqrt{G^2 + (\omega C - 1/\omega L)^2}}$, \quad \theta = -\tan^{-1}\left[\frac{\omega C - 1/\omega L}{G}\right]$.

* As ω is varied, both V_m and θ change.
* When $\omega C = 1/\omega L$, V_m reaches its maximum value, $V_m^{\text{max}} = I_m/G = I_m R$, and θ becomes 0, i.e., the voltage V is in phase with the source current.
* The above condition is called “resonance,” and the corresponding frequency is called the “resonance frequency” (ω_0).

$\omega_0 = 1/\sqrt{LC}$
Resonance in parallel RLC circuits

Series RLC circuit: $I_m = \frac{V_m}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}}$, $\theta = -\tan^{-1}\left[\frac{\omega L - 1/\omega C}{R}\right]$.

Parallel RLC circuit: $V_m = \frac{I_m}{\sqrt{G^2 + (\omega C - 1/\omega L)^2}}$, $\theta = -\tan^{-1}\left[\frac{\omega C - 1/\omega L}{G}\right]$.

The two situations are identical if we make the following substitutions: $I \leftrightarrow V$, $R \leftrightarrow 1/R$, $L \leftrightarrow C$.

Thus, our results for series RLC circuits can be easily extended to parallel RLC circuits.

* Show that ω_1, $\omega_2 = \pm \sqrt{\frac{1}{2RC} + \frac{s}{2} - \frac{1}{LC}}$.

* Show that, at resonance (i.e., $\omega = \omega_0$), $|I_L| = |I_C| = Q I_m$.

* Show that $\omega_0 = \sqrt{\omega_1 \omega_2}$.

M. B. Patil, IIT Bombay
Resonance in parallel *RLC* circuits

Series *RLC* circuit: \(I_m = \frac{V_m}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} \), \(\theta = -\tan^{-1}\left[\frac{\omega L - 1/\omega C}{R}\right] \).

Parallel *RLC* circuit: \(V_m = \frac{I_m}{\sqrt{G^2 + (\omega C - 1/\omega L)^2}} \), \(\theta = -\tan^{-1}\left[\frac{\omega C - 1/\omega L}{G}\right] \).

* The two situations are identical if we make the following substitutions:
 - \(I \leftrightarrow V \),
 - \(R \leftrightarrow 1/R \),
 - \(L \leftrightarrow C \).
Resonance in parallel RLC circuits

Series RLC circuit: $I_m = \frac{V_m}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}}$, $\theta = -\tan^{-1}\left[\frac{\omega L - 1/\omega C}{R}\right]$.

Parallel RLC circuit: $V_m = \frac{I_m}{\sqrt{G^2 + (\omega C - 1/\omega L)^2}}$, $\theta = -\tan^{-1}\left[\frac{\omega C - 1/\omega L}{G}\right]$.

* The two situations are identical if we make the following substitutions:
 $I \leftrightarrow V$,
 $R \leftrightarrow 1/R$,
 $L \leftrightarrow C$.

* Thus, our results for series RLC circuits can be easily extended to parallel RLC circuits.
Resonance in parallel RLC circuits

Series RLC circuit: $I_m = \frac{V_m}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}}, \quad \theta = -\tan^{-1}\left[\frac{\omega L - 1/\omega C}{R}\right]$.

Parallel RLC circuit: $V_m = \frac{I_m}{\sqrt{G^2 + (\omega C - 1/\omega L)^2}}, \quad \theta = -\tan^{-1}\left[\frac{\omega C - 1/\omega L}{G}\right]$.

* The two situations are identical if we make the following substitutions:
 $I \leftrightarrow V,$
 $R \leftrightarrow 1/R,$
 $L \leftrightarrow C.$

* Thus, our results for series RLC circuits can be easily extended to parallel RLC circuits.

* Show that $\omega_{1,2} = \pm \frac{1}{2RC} + \sqrt{\left(\frac{1}{2RC}\right)^2 + \frac{1}{LC}}$

 \Rightarrow Bandwidth $B = 1/RC$.

M. B. Patil, IIT Bombay
Resonance in parallel \(RLC \) circuits

Series \(RLC \) circuit:
\[
I_m = \frac{V_m}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}}, \quad \theta = -\tan^{-1}\left[\frac{\omega L - 1/\omega C}{R}\right].
\]

Parallel \(RLC \) circuit:
\[
V_m = \frac{I_m}{\sqrt{G^2 + (\omega C - 1/\omega L)^2}}, \quad \theta = -\tan^{-1}\left[\frac{\omega C - 1/\omega L}{G}\right].
\]

* The two situations are identical if we make the following substitutions:
 \(I \leftrightarrow V \),
 \(R \leftrightarrow 1/R \),
 \(L \leftrightarrow C \).

* Thus, our results for series \(RLC \) circuits can be easily extended to parallel \(RLC \) circuits.

* Show that \(\omega_{1,2} = \pm \frac{1}{2RC} + \sqrt{\left(\frac{1}{2RC}\right)^2 + \frac{1}{LC}} \)
 \(\Rightarrow \) Bandwidth \(B = 1/RC \).

* Show that, at resonance (i.e., \(\omega = \omega_0 \)),
 \(|I_L| = |I_C| = Q I_m \).
Resonance in parallel RLC circuits

Series RLC circuit: $I_m = \frac{V_m}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}}$, $\theta = -\tan^{-1} \left[\frac{\omega L - 1/\omega C}{R} \right]$.

Parallel RLC circuit: $V_m = \frac{I_m}{\sqrt{G^2 + (\omega C - 1/\omega L)^2}}$, $\theta = -\tan^{-1} \left[\frac{\omega C - 1/\omega L}{G} \right]$.

* The two situations are identical if we make the following substitutions:
 $I \leftrightarrow V$,
 $R \leftrightarrow 1/R$,
 $L \leftrightarrow C$.

* Thus, our results for series RLC circuits can be easily extended to parallel RLC circuits.

* Show that $\omega_{1,2} = \pm \frac{1}{2RC} + \sqrt{\left(\frac{1}{2RC} \right)^2 + \frac{1}{LC}}$.
 \Rightarrow Bandwidth $B = 1/RC$.

* Show that, at resonance (i.e., $\omega = \omega_0$), $|I_L| = |I_C| = Q I_m$.

* Show that $\omega_0 = \sqrt{\omega_1 \omega_2}$.
Calculate ω_0, f_0, B, Q.

Calculate I_R, I_L, I_C at $\omega = \omega_0$, ω_1, ω_2.

Verify graphically that $I_R + I_L + I_C = I_s$ in each case.

Plot the power absorbed by R as a function of frequency for $f_0/10 < f < 10 f_0$.

$I_m = 50$ mA

$R = 2$ kΩ

$L = 40$ mH

$C = 0.25$ μF