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* In practice, capacitors are available in a wide range of shapes and values, and
they differ significantly in the way they are fabricated.
(http://en.wikipedia.org/wiki/Capacitor)

* To make C larger, we need (a) high ε, (b) large area, (c) small thickness.

* For a constant capacitance,

Q(t) = C v(t) ,
dQ

dt
= C

dv

dt
, i.e, i(t) = C

dv

dt
.

* If v = constant, i = 0, i.e., a capacitor behaves like an open circuit in DC
conditions as one would expect from two conducting plates separated by an
insulator.
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Home work
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* For the given source current, plot v(t), p(t), and W (t), assuming v(0) = 0 V ,
C = 5 mF .

* Verify your results with circuit simulation.
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Inductors

core Magnetic field lines

v

i L

Symbol

Units: Henry (H)

* An inductor is basically a conducting coil wound around a “core.”

* V = N
dφ

dt
= N

d

dt
(B · A) = N

d

dt

»„
µN i

l

«
A

–
.

Compare with v = L
di

dt
.

⇒ L = µN2 A

l
= µrµ0 N2 A

l
.

* To make L larger, we need (a) high µr , (b) large area, (c) large number of turns.

* For 99.8 % pure iron, µr ' 5, 000 .
For “supermalloy” (Ni: 79 %, Mo: 5 %, Fe): µr ' 106 .

* If i = constant, v = 0, i.e., an inductor behaves like a short circuit in DC
conditions as one would expect from a highly conducting coil.

* Note: B = µH is an approximation. In practice, B may be a nonlinear function
of H, depending on the core material.
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RC circuits with DC sources

i

C
v

A

B

Circuit
(resistors,
voltage sources,
current sources,
CCVS, CCCS,
VCVS, VCCS)

i

C
v

A

B

≡ VTh

RTh

* If all sources are DC (constant), VTh = constant .

* KVL: VTh = RTh i + v → VTh = RThC
dv

dt
+ v .

* Homogeneous solution:

dv

dt
+

1

τ
v = 0 , where τ = RTh C is the “time constant.”

→ v (h) = K exp(−t/τ) .

* Particular solution is a specific function that satisfies the differntial equation. We
know that all time derivatives will vanish as t →∞ , making i = 0, and we get
v (p) = VTh as a particular solution (which happens to be simply a constant).

* v = v (h) + v (p) = K exp(−t/τ) + VTh .

* In general, v(t) = A exp(−t/τ) + B , where A and B can be obtained from
known conditions on v .
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RC circuits with DC sources (continued)

i i
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≡ VTh

RTh

* If all sources are DC (constant), we have
v(t) = A exp(−t/τ) + B , τ = RC .

* i(t) = C
dv

dt
= C × A exp(−t/τ)

„
− 1

τ

«
≡ A′ exp(−t/τ) .

* As t →∞, i → 0, i.e., the capacitor behaves like an open circuit since all
derivatives vanish.

* Since the circuit in the black box is linear, any variable (current or voltage) in
the circuit can be expressed as
x(t) = K1 exp(−t/τ) + K2 ,
where K1 and K2 can be obtained from suitable conditions on x(t).
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* If all sources are DC (constant), VTh = constant .

* KVL: VTh = RTh i + L
di

dt
.

* Homogeneous solution:

di

dt
+

1

τ
i = 0 , where τ = L/RTh

→ i (h) = K exp(−t/τ) .

* Particular solution is a specific function that satisfies the differntial equation. We
know that all time derivatives will vanish as t →∞ , making v = 0, and we get
i (p) = VTh/RTh as a particular solution (which happens to be simply a constant).

* i = i (h) + i (p) = K exp(−t/τ) + VTh/RTh .

* In general, i(t) = A exp(−t/τ) + B , where A and B can be obtained from
known conditions on i .
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RL circuits with DC sources (continued)
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* If all sources are DC (constant), we have
i(t) = A exp(−t/τ) + B , τ = L/R .

* v(t) = L
di

dt
= L× A exp(−t/τ)

„
− 1

τ

«
≡ A′ exp(−t/τ) .

* As t →∞, v → 0, i.e., the inductor behaves like a short circuit since all
derivatives vanish.

* Since the circuit in the black box is linear, any variable (current or voltage) in
the circuit can be expressed as
x(t) = K1 exp(−t/τ) + K2 ,
where K1 and K2 can be obtained from suitable conditions on x(t).
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RC circuits: Can Vc change “suddenly?”

i

t0 V

5 V

C = 1 µF
Vc

Vs

Vs

R = 1 k

Vc(0)=0 V

* Vs changes from 0 V (at t = 0−), to 5 V (at t = 0+). As a result of this
change, Vc will rise. How fast can Vc change?

* For example, what would happen if Vc changes by 1 V in 1 µs at a constant
rate of 1 V /1 µs = 106 V /s?

* i = C
dVc

dt
= 1 µF × 106 V

s
= 1 A .

* With i = 1 A, the voltage drop across R would be 1000 V ! Not allowed by KVL.

* We conclude that Vc (0+) = Vc (0−)⇒ A capacitor does not allow abrupt
changes in Vc if there is a finite resistance in the circuit.

* Similarly, an inductor does not allow abrupt changes in iL.

M. B. Patil, IIT Bombay



RC circuits: Can Vc change “suddenly?”

i

t0 V

5 V

C = 1 µF
Vc

Vs

Vs

R = 1 k

Vc(0)=0 V

* Vs changes from 0 V (at t = 0−), to 5 V (at t = 0+). As a result of this
change, Vc will rise. How fast can Vc change?

* For example, what would happen if Vc changes by 1 V in 1 µs at a constant
rate of 1 V /1 µs = 106 V /s?

* i = C
dVc

dt
= 1 µF × 106 V

s
= 1 A .

* With i = 1 A, the voltage drop across R would be 1000 V ! Not allowed by KVL.

* We conclude that Vc (0+) = Vc (0−)⇒ A capacitor does not allow abrupt
changes in Vc if there is a finite resistance in the circuit.

* Similarly, an inductor does not allow abrupt changes in iL.

M. B. Patil, IIT Bombay



RC circuits: Can Vc change “suddenly?”

i

t0 V

5 V

C = 1 µF
Vc

Vs

Vs

R = 1 k

Vc(0)=0 V

* Vs changes from 0 V (at t = 0−), to 5 V (at t = 0+). As a result of this
change, Vc will rise. How fast can Vc change?

* For example, what would happen if Vc changes by 1 V in 1 µs at a constant
rate of 1 V /1 µs = 106 V /s?

* i = C
dVc

dt
= 1 µF × 106 V

s
= 1 A .

* With i = 1 A, the voltage drop across R would be 1000 V ! Not allowed by KVL.

* We conclude that Vc (0+) = Vc (0−)⇒ A capacitor does not allow abrupt
changes in Vc if there is a finite resistance in the circuit.

* Similarly, an inductor does not allow abrupt changes in iL.

M. B. Patil, IIT Bombay



RC circuits: Can Vc change “suddenly?”

i

t0 V

5 V

C = 1 µF
Vc

Vs

Vs

R = 1 k

Vc(0)=0 V

* Vs changes from 0 V (at t = 0−), to 5 V (at t = 0+). As a result of this
change, Vc will rise. How fast can Vc change?

* For example, what would happen if Vc changes by 1 V in 1 µs at a constant
rate of 1 V /1 µs = 106 V /s?

* i = C
dVc

dt
= 1 µF × 106 V

s
= 1 A .

* With i = 1 A, the voltage drop across R would be 1000 V ! Not allowed by KVL.

* We conclude that Vc (0+) = Vc (0−)⇒ A capacitor does not allow abrupt
changes in Vc if there is a finite resistance in the circuit.

* Similarly, an inductor does not allow abrupt changes in iL.

M. B. Patil, IIT Bombay



RC circuits: Can Vc change “suddenly?”

i

t0 V

5 V

C = 1 µF
Vc

Vs

Vs

R = 1 k

Vc(0)=0 V

* Vs changes from 0 V (at t = 0−), to 5 V (at t = 0+). As a result of this
change, Vc will rise. How fast can Vc change?

* For example, what would happen if Vc changes by 1 V in 1 µs at a constant
rate of 1 V /1 µs = 106 V /s?

* i = C
dVc

dt
= 1 µF × 106 V

s
= 1 A .

* With i = 1 A, the voltage drop across R would be 1000 V ! Not allowed by KVL.

* We conclude that Vc (0+) = Vc (0−)⇒ A capacitor does not allow abrupt
changes in Vc if there is a finite resistance in the circuit.

* Similarly, an inductor does not allow abrupt changes in iL.

M. B. Patil, IIT Bombay



RC circuits: Can Vc change “suddenly?”

i

t0 V

5 V

C = 1 µF
Vc

Vs

Vs

R = 1 k

Vc(0)=0 V

* Vs changes from 0 V (at t = 0−), to 5 V (at t = 0+). As a result of this
change, Vc will rise. How fast can Vc change?

* For example, what would happen if Vc changes by 1 V in 1 µs at a constant
rate of 1 V /1 µs = 106 V /s?

* i = C
dVc

dt
= 1 µF × 106 V

s
= 1 A .

* With i = 1 A, the voltage drop across R would be 1000 V ! Not allowed by KVL.

* We conclude that Vc (0+) = Vc (0−)⇒ A capacitor does not allow abrupt
changes in Vc if there is a finite resistance in the circuit.

* Similarly, an inductor does not allow abrupt changes in iL.

M. B. Patil, IIT Bombay



RC circuits: Can Vc change “suddenly?”

i

t0 V

5 V

C = 1 µF
Vc

Vs

Vs

R = 1 k

Vc(0)=0 V

* Vs changes from 0 V (at t = 0−), to 5 V (at t = 0+). As a result of this
change, Vc will rise. How fast can Vc change?

* For example, what would happen if Vc changes by 1 V in 1 µs at a constant
rate of 1 V /1 µs = 106 V /s?

* i = C
dVc

dt
= 1 µF × 106 V

s
= 1 A .

* With i = 1 A, the voltage drop across R would be 1000 V ! Not allowed by KVL.

* We conclude that Vc (0+) = Vc (0−)⇒ A capacitor does not allow abrupt
changes in Vc if there is a finite resistance in the circuit.

* Similarly, an inductor does not allow abrupt changes in iL.

M. B. Patil, IIT Bombay



Analysis of RC/RL circuits with a piece-wise constant source

* Identify intervals in which the source voltages/currents are constant.
For example,

(1) t < t1

(3) t > t2

(2) t1 < t < t2

0 t2t1

Vs

* For any current or voltage x(t), write general expressions such as,
x(t) = A1 exp(−t/τ) + B1 , t < t1 ,
x(t) = A2 exp(−t/τ) + B2 , t1 < t < t2 ,
x(t) = A3 exp(−t/τ) + B3 , t > t2 .

* Work out suitable conditions on x(t) at specific time points using

(a) If the source voltage/current has not changed for a “long” time
(long compared to τ), all derivatives are zero.

⇒ iC = C
dVc

dt
= 0 , and VL = L

diL

dt
= 0 .

(b) When a source voltage (or current) changes, say, at t = t0 ,
Vc (t) or iL(t) cannot change abruptly, i.e.,

Vc (t+
0 ) = Vc (t−0 ) , and iL(t+
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RC circuits: charging and discharging transients

i

t0 V

C
v

R

Vs

Vs

V0

(A)Let v(t) = A exp(−t/τ) + B, t > 0

(1)

(2)

Conditions on v(t):

v(0−) = Vs(0
−) = 0 V

v(0+) ≃ v(0−) = 0 V

Note that we need the condition at 0+ (and not at 0−)

because Eq. (A) applies only for t > 0.

As t→∞ , i→ 0 → v(∞) = Vs(∞) = V0

Imposing (1) and (2) on Eq. (A), we get

i.e., A = V0 , B = −V0

t = 0+: 0 = A + B ,

t→∞: V0 = B .

v(t) = V0 [1− exp(−t/τ)]

i

t0 V

C
v

R

Vs

Vs

V0

(A)Let v(t) = A exp(−t/τ) + B, t > 0

(1)

(2)

Conditions on v(t):

Note that we need the condition at 0+ (and not at 0−)

because Eq. (A) applies only for t > 0.

v(0−) = Vs(0
−) = V0

v(0+) ≃ v(0−) = V0

As t→∞ , i→ 0 → v(∞) = Vs(∞) = 0 V

Imposing (1) and (2) on Eq. (A), we get

t = 0+: V0 = A + B ,

i.e., A = V0 , B = 0
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v(t) = V0 exp(−t/τ)
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RC circuits: charging and discharging transients
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Compute i(t), t > 0 .

(A) i(t) = C
d

dt
V0 [1− exp(−t/τ)]

=
CV0

τ
exp(−t/τ) =

V0

R
exp(−t/τ)

Using these conditions, we obtain

(B) Let i(t) = A′ exp(−t/τ) + B′ , t > 0 .

t = 0+: v = 0 , Vs = V0 ⇒ i(0+) = V0/R .

t→∞: i(t) = 0 .

A′ =
V0

R
, B′ = 0 ⇒ i(t) =

V0

R
exp(−t/τ)
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Significance of the time constant (τ)

x e−x 1− e−x

0.0 1.0 0.0

1.0 0.3679 0.6321

2.0 0.1353 0.8647

3.0 4.9787×10−2 0.9502

4.0 1.8315×10−2 0.9817

5.0 6.7379×10−3 0.9933

* For x = 5, e−x ' 0, 1− e−x ' 1.

* In RC circuits, x = t/τ ⇒ When t = 5 τ , the charging (or discharging) process
is almost complete.
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RC circuits: charging and discharging transients

i i
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RL circuit: example

i

v

t

10 V

t1t0

R2

R1

Vs

Vs
R1 = 10 Ω

R2 = 40 Ω

L = 0.8 H

t0 = 0

t1 = 0.1 s

i(0) = 0 A, Find i(t).

(1) t < t0

(2) t0 < t < t1

(3) t > t1

There are three intervals of constant Vs:

R2

R1

Vs

RTh seen by L is the same in all intervals:

τ = L/RTh

= 0.1 s

= 0.8 H/8Ω

RTh = R1 ‖ R2 = 8 Ω

⇒ i(t−0 ) = 0 A⇒ i(t+0 ) = 0 A .

At t = t−0 , v = 0 V, Vs = 0 V .

10 V

t

v(∞) = 0 V, i(∞) = 10 V/10 Ω = 1 A .

If Vs did not change at t = t1,

we would have

t1t0

Vs

i(t), t > 0 (See next slide).

Using i(t+0 ) and i(∞), we can obtain
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RL circuit: example

i
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t
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i (
A

m
p)
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 0

 0
time (sec)

 0.2  0.4  0.6  0.8

t1t0

R2

R1

Vs

Vs
R1 = 10 Ω

R2 = 40 Ω

L = 0.8 H

t0 = 0

t1 = 0.1 s

and we need to work out the

solution for t > t1 separately.

In reality, Vs changes at t = t1,

Consider t > t1.

For t0 < t < t1, i(t) = 1− exp(−t/τ) Amp.

i(t+1 ) = i(t−1 ) = 1− e−1 = 0.632 A (Note: t1/τ = 1).

i(∞) = 0 A.

Let i(t) = A exp(−t/τ) + B.

It is convenient to rewrite i(t) as

i(t) = A′ exp[−(t− t1)/τ ] + B.

Using i(t+1 ) and i(∞), we get

i(t) = 0.693 exp[−(t− t1)/τ ] A.
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RC circuits: home work

i1i2

vc
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10 Ω

10 Ω

200 µF
10V

* Given vc (0) = 0 V , find vc (t) for t > 0. Using this vc (t), find i1, i2, ic for t > 0.
Plot vc , i1, i2, ic versus t.

* Find i1, i2, ic directly (i.e., without getting vc ) by finding the initial and final
conditions for each of them (i1(0+) and i1(∞), etc.) and then using them to
compute the coefficients in the general expression,
x(t) = A exp(−t/τ) + B.

* Verify your results with SEQUEL (file: ee101 rc3.sqproj).
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RC circuits: home work
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* Find vc (0−), vc (∞).

* Find RTh as seen by the capacitor for t > 0.

* Solve for vc (t) and i1(t), t > 0.

* Verify your results with SEQUEL (file: ee101 rc4.sqproj).
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RL circuits: home work
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* Find RTh as seen by the inductor for t > 0.
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