
Digital Circuits: Part 1

M. B. Patil
mbpatil@ee.iitb.ac.in

www.ee.iitb.ac.in/~sequel

Department of Electrical Engineering
Indian Institute of Technology Bombay

M. B. Patil, IIT Bombay

Digital circuits

t t

analog signal

0

1
high

low

digital signal

* An analog signal x(t) is represented by a real number at a given time point.

* A digital signal is “binary” in nature, i.e., it takes on only two values: low (0) or high (1).

* Although we have shown 0 and 1 as constant levels, in reality, that is not required. Any value in the low
(high) band will be interpreted as 0 (1) by digital circuits.

* The definition of low and high bands depends on the technology used, e.g.,

TTL (Transistor-Transistor Logic)

CMOS (Complementary MOS)

ECL (Emitter-Coupled Logic)

M. B. Patil, IIT Bombay

Digital circuits

t t

analog signal

0

1
high

low

digital signal

* An analog signal x(t) is represented by a real number at a given time point.

* A digital signal is “binary” in nature, i.e., it takes on only two values: low (0) or high (1).

* Although we have shown 0 and 1 as constant levels, in reality, that is not required. Any value in the low
(high) band will be interpreted as 0 (1) by digital circuits.

* The definition of low and high bands depends on the technology used, e.g.,

TTL (Transistor-Transistor Logic)

CMOS (Complementary MOS)

ECL (Emitter-Coupled Logic)

M. B. Patil, IIT Bombay

Digital circuits

t t

analog signal

0

1
high

low

digital signal

* An analog signal x(t) is represented by a real number at a given time point.

* A digital signal is “binary” in nature, i.e., it takes on only two values: low (0) or high (1).

* Although we have shown 0 and 1 as constant levels, in reality, that is not required. Any value in the low
(high) band will be interpreted as 0 (1) by digital circuits.

* The definition of low and high bands depends on the technology used, e.g.,

TTL (Transistor-Transistor Logic)

CMOS (Complementary MOS)

ECL (Emitter-Coupled Logic)

M. B. Patil, IIT Bombay

Digital circuits

t t

analog signal

0

1
high

low

digital signal

* An analog signal x(t) is represented by a real number at a given time point.

* A digital signal is “binary” in nature, i.e., it takes on only two values: low (0) or high (1).

* Although we have shown 0 and 1 as constant levels, in reality, that is not required. Any value in the low
(high) band will be interpreted as 0 (1) by digital circuits.

* The definition of low and high bands depends on the technology used, e.g.,

TTL (Transistor-Transistor Logic)

CMOS (Complementary MOS)

ECL (Emitter-Coupled Logic)

M. B. Patil, IIT Bombay

Digital circuits

t t

analog signal

0

1
high

low

digital signal

* An analog signal x(t) is represented by a real number at a given time point.

* A digital signal is “binary” in nature, i.e., it takes on only two values: low (0) or high (1).

* Although we have shown 0 and 1 as constant levels, in reality, that is not required. Any value in the low
(high) band will be interpreted as 0 (1) by digital circuits.

* The definition of low and high bands depends on the technology used, e.g.,

TTL (Transistor-Transistor Logic)

CMOS (Complementary MOS)

ECL (Emitter-Coupled Logic)

M. B. Patil, IIT Bombay

A simple digital circuit

 0 1 2 3 4 5

 1

 2

 3

 4

 5

 0

RB

RC

Vo

VCC

Vi

V
o
(V
ol
ts
)

Vi (Volts)

5 V

* If Vi is low (“0”), Vo is high (“1”).
If Vi is high (“1”), Vo is low (“0”).

* The circuit is called an “inverter” because it inverts the logic level of the input. If the input is 0, it makes
the output 1, and vice versa.

* Digital circuits are made using a variety of devices. The simple BJT inverter is only an illustration.

* Most of the VLSI circuits today employ the MOS technology because of the high packing density, high
speed, and low power consumption it offers.

M. B. Patil, IIT Bombay

A simple digital circuit

 0 1 2 3 4 5

 1

 2

 3

 4

 5

 0

RB

RC

Vo

VCC

Vi

V
o
(V
ol
ts
)

Vi (Volts)

5 V

* If Vi is low (“0”), Vo is high (“1”).
If Vi is high (“1”), Vo is low (“0”).

* The circuit is called an “inverter” because it inverts the logic level of the input. If the input is 0, it makes
the output 1, and vice versa.

* Digital circuits are made using a variety of devices. The simple BJT inverter is only an illustration.

* Most of the VLSI circuits today employ the MOS technology because of the high packing density, high
speed, and low power consumption it offers.

M. B. Patil, IIT Bombay

A simple digital circuit

 0 1 2 3 4 5

 1

 2

 3

 4

 5

 0

RB

RC

Vo

VCC

Vi

V
o
(V
ol
ts
)

Vi (Volts)

5 V

* If Vi is low (“0”), Vo is high (“1”).
If Vi is high (“1”), Vo is low (“0”).

* The circuit is called an “inverter” because it inverts the logic level of the input. If the input is 0, it makes
the output 1, and vice versa.

* Digital circuits are made using a variety of devices. The simple BJT inverter is only an illustration.

* Most of the VLSI circuits today employ the MOS technology because of the high packing density, high
speed, and low power consumption it offers.

M. B. Patil, IIT Bombay

A simple digital circuit

 0 1 2 3 4 5

 1

 2

 3

 4

 5

 0

RB

RC

Vo

VCC

Vi

V
o
(V
ol
ts
)

Vi (Volts)

5 V

* If Vi is low (“0”), Vo is high (“1”).
If Vi is high (“1”), Vo is low (“0”).

* The circuit is called an “inverter” because it inverts the logic level of the input. If the input is 0, it makes
the output 1, and vice versa.

* Digital circuits are made using a variety of devices. The simple BJT inverter is only an illustration.

* Most of the VLSI circuits today employ the MOS technology because of the high packing density, high
speed, and low power consumption it offers.

M. B. Patil, IIT Bombay

A simple digital circuit

 0 1 2 3 4 5

 1

 2

 3

 4

 5

 0

RB

RC

Vo

VCC

Vi

V
o
(V
ol
ts
)

Vi (Volts)

5 V

* If Vi is low (“0”), Vo is high (“1”).
If Vi is high (“1”), Vo is low (“0”).

* The circuit is called an “inverter” because it inverts the logic level of the input. If the input is 0, it makes
the output 1, and vice versa.

* Digital circuits are made using a variety of devices. The simple BJT inverter is only an illustration.

* Most of the VLSI circuits today employ the MOS technology because of the high packing density, high
speed, and low power consumption it offers.

M. B. Patil, IIT Bombay

Digital circuits

t
original data

V1

t
corrupted data

V2

comparator

V3

V2

Vref

Vref

t

recovered data

V3

* A major advantage of digital systems is that, even if the original data gets distorted (e.g., in transmitting
through optical fibre or storing on a CD) due to noise, attenuation, etc., it can be retrieved easily.

* There are several other benefits of using digital representation:

- can use computers to process the data.
- can store in a variety of storage media.

- can program the functionality. For example, the behaviour of a digital filter can be changed simply

by changing its coefficients.

M. B. Patil, IIT Bombay

Digital circuits

t
original data

V1

t
corrupted data

V2

comparator

V3

V2

Vref

Vref

t

recovered data

V3

* A major advantage of digital systems is that, even if the original data gets distorted (e.g., in transmitting
through optical fibre or storing on a CD) due to noise, attenuation, etc., it can be retrieved easily.

* There are several other benefits of using digital representation:

- can use computers to process the data.
- can store in a variety of storage media.

- can program the functionality. For example, the behaviour of a digital filter can be changed simply

by changing its coefficients.

M. B. Patil, IIT Bombay

Digital circuits

t
original data

V1

t
corrupted data

V2

comparator

V3

V2

Vref

Vref

t

recovered data

V3

* A major advantage of digital systems is that, even if the original data gets distorted (e.g., in transmitting
through optical fibre or storing on a CD) due to noise, attenuation, etc., it can be retrieved easily.

* There are several other benefits of using digital representation:

- can use computers to process the data.
- can store in a variety of storage media.

- can program the functionality. For example, the behaviour of a digital filter can be changed simply

by changing its coefficients.

M. B. Patil, IIT Bombay

Digital circuits

t
original data

V1

t
corrupted data

V2

comparator

V3

V2

Vref

Vref

t

recovered data

V3

* A major advantage of digital systems is that, even if the original data gets distorted (e.g., in transmitting
through optical fibre or storing on a CD) due to noise, attenuation, etc., it can be retrieved easily.

* There are several other benefits of using digital representation:

- can use computers to process the data.
- can store in a variety of storage media.

- can program the functionality. For example, the behaviour of a digital filter can be changed simply

by changing its coefficients.

M. B. Patil, IIT Bombay

Digital circuits

t
original data

V1

t
corrupted data

V2

comparator

V3

V2

Vref

Vref

t

recovered data

V3

* A major advantage of digital systems is that, even if the original data gets distorted (e.g., in transmitting
through optical fibre or storing on a CD) due to noise, attenuation, etc., it can be retrieved easily.

* There are several other benefits of using digital representation:

- can use computers to process the data.
- can store in a variety of storage media.

- can program the functionality. For example, the behaviour of a digital filter can be changed simply

by changing its coefficients.

M. B. Patil, IIT Bombay

Digital circuits

t
original data

V1

t
corrupted data

V2

comparator

V3

V2

Vref

Vref

t

recovered data

V3

* A major advantage of digital systems is that, even if the original data gets distorted (e.g., in transmitting
through optical fibre or storing on a CD) due to noise, attenuation, etc., it can be retrieved easily.

* There are several other benefits of using digital representation:

- can use computers to process the data.
- can store in a variety of storage media.

- can program the functionality. For example, the behaviour of a digital filter can be changed simply

by changing its coefficients.

M. B. Patil, IIT Bombay

Digital circuits

t
original data

V1

t
corrupted data

V2

comparator

V3

V2

Vref

Vref

t

recovered data

V3

* A major advantage of digital systems is that, even if the original data gets distorted (e.g., in transmitting
through optical fibre or storing on a CD) due to noise, attenuation, etc., it can be retrieved easily.

* There are several other benefits of using digital representation:

- can use computers to process the data.

- can store in a variety of storage media.

- can program the functionality. For example, the behaviour of a digital filter can be changed simply

by changing its coefficients.

M. B. Patil, IIT Bombay

Digital circuits

t
original data

V1

t
corrupted data

V2

comparator

V3

V2

Vref

Vref

t

recovered data

V3

* A major advantage of digital systems is that, even if the original data gets distorted (e.g., in transmitting
through optical fibre or storing on a CD) due to noise, attenuation, etc., it can be retrieved easily.

* There are several other benefits of using digital representation:

- can use computers to process the data.
- can store in a variety of storage media.

- can program the functionality. For example, the behaviour of a digital filter can be changed simply

by changing its coefficients.

M. B. Patil, IIT Bombay

Digital circuits

t
original data

V1

t
corrupted data

V2

comparator

V3

V2

Vref

Vref

t

recovered data

V3

* A major advantage of digital systems is that, even if the original data gets distorted (e.g., in transmitting
through optical fibre or storing on a CD) due to noise, attenuation, etc., it can be retrieved easily.

* There are several other benefits of using digital representation:

- can use computers to process the data.
- can store in a variety of storage media.

- can program the functionality. For example, the behaviour of a digital filter can be changed simply

by changing its coefficients.

M. B. Patil, IIT Bombay

Logical operations

Gate

Truth table

Notation

Operation NOT AND OR

10

01

YA

Y = A

A Y

1

1

1 1 1

0 0 0

0

0 0

0

A B Y

= AB

Y = A · B

B

A
Y

1

1

1 1 1

0 0 0

0

0

A B Y

1

1

Y = A+ B

A

B
Y

M. B. Patil, IIT Bombay

Logical operations

Gate

Truth table

Notation

Operation NOT AND OR

10

01

YA

Y = A

A Y

1

1

1 1 1

0 0 0

0

0 0

0

A B Y

= AB

Y = A · B

B

A
Y

1

1

1 1 1

0 0 0

0

0

A B Y

1

1

Y = A+ B

A

B
Y

M. B. Patil, IIT Bombay

Logical operations

Gate

Truth table

Notation

Operation NOT AND OR

10

01

YA

Y = A

A Y

1

1

1 1 1

0 0 0

0

0 0

0

A B Y

= AB

Y = A · B

B

A
Y

1

1

1 1 1

0 0 0

0

0

A B Y

1

1

Y = A+ B

A

B
Y

M. B. Patil, IIT Bombay

Logical operations

Gate

Truth table

Notation

Operation NOT AND OR

10

01

YA

Y = A

A Y

1

1

1 1 1

0 0 0

0

0 0

0

A B Y

= AB

Y = A · B

B

A
Y

1

1

1 1 1

0 0 0

0

0

A B Y

1

1

Y = A+ B

A

B
Y

M. B. Patil, IIT Bombay

Logical operations

Gate

Truth table

Notation

Operation NORNAND XOR

1

1

1 1

0 0

0

0

A B Y

1

1

1

0

Y = A · B
= AB

Y
A

B

1

1

1 1

0 0

0

0 0

0

A B Y

1

0

Y = A+ B

B

A
Y

1

1

1 1

0 0 0

0

0

A B Y

1

1

0

Y = A⊕ B

= AB+ AB

A

B
Y

M. B. Patil, IIT Bombay

Logical operations

Gate

Truth table

Notation

Operation NORNAND XOR

1

1

1 1

0 0

0

0

A B Y

1

1

1

0

Y = A · B
= AB

Y
A

B

1

1

1 1

0 0

0

0 0

0

A B Y

1

0

Y = A+ B

B

A
Y

1

1

1 1

0 0 0

0

0

A B Y

1

1

0

Y = A⊕ B

= AB+ AB

A

B
Y

M. B. Patil, IIT Bombay

Logical operations

Gate

Truth table

Notation

Operation NORNAND XOR

1

1

1 1

0 0

0

0

A B Y

1

1

1

0

Y = A · B
= AB

Y
A

B

1

1

1 1

0 0

0

0 0

0

A B Y

1

0

Y = A+ B

B

A
Y

1

1

1 1

0 0 0

0

0

A B Y

1

1

0

Y = A⊕ B

= AB+ AB

A

B
Y

M. B. Patil, IIT Bombay

Logical operations

Gate

Truth table

Notation

Operation NORNAND XOR

1

1

1 1

0 0

0

0

A B Y

1

1

1

0

Y = A · B
= AB

Y
A

B

1

1

1 1

0 0

0

0 0

0

A B Y

1

0

Y = A+ B

B

A
Y

1

1

1 1

0 0 0

0

0

A B Y

1

1

0

Y = A⊕ B

= AB+ AB

A

B
Y

M. B. Patil, IIT Bombay

Logical operations

* The AND operation is commutative.

→ A · B = B · A.

* The AND operation is associative.

→ (A · B) · C = A · (B · C).

* The OR operation is commutative.

→ A + B = B + A.

* The OR operation is associative.

→ (A + B) + C = A + (B + C).

M. B. Patil, IIT Bombay

Logical operations

* The AND operation is commutative.

→ A · B = B · A.

* The AND operation is associative.

→ (A · B) · C = A · (B · C).

* The OR operation is commutative.

→ A + B = B + A.

* The OR operation is associative.

→ (A + B) + C = A + (B + C).

M. B. Patil, IIT Bombay

Logical operations

* The AND operation is commutative.

→ A · B = B · A.

* The AND operation is associative.

→ (A · B) · C = A · (B · C).

* The OR operation is commutative.

→ A + B = B + A.

* The OR operation is associative.

→ (A + B) + C = A + (B + C).

M. B. Patil, IIT Bombay

Logical operations

* The AND operation is commutative.

→ A · B = B · A.

* The AND operation is associative.

→ (A · B) · C = A · (B · C).

* The OR operation is commutative.

→ A + B = B + A.

* The OR operation is associative.

→ (A + B) + C = A + (B + C).

M. B. Patil, IIT Bombay

Boolean algebra (George Boole, 1815-1864)

* Theorem: A = A.

The theorem can be proved by constructing a truth table:

A A A

0 1 0

1 0 1

Therefore, for all possible values that A can take (i.e., 0 and 1), A is the same as A.

⇒ A = A.

* Similarly, the following theorems can be proved:

A + 0 = A A · 1 = A

A + 1 = 1 A · 0 = 0

A + A = A A · A = A

A + A = 1 A · A = 0

Note the duality: (+←→ ·) and (1←→ 0).

M. B. Patil, IIT Bombay

Boolean algebra (George Boole, 1815-1864)

* Theorem: A = A.

The theorem can be proved by constructing a truth table:

A A A

0 1 0

1 0 1

Therefore, for all possible values that A can take (i.e., 0 and 1), A is the same as A.

⇒ A = A.

* Similarly, the following theorems can be proved:

A + 0 = A A · 1 = A

A + 1 = 1 A · 0 = 0

A + A = A A · A = A

A + A = 1 A · A = 0

Note the duality: (+←→ ·) and (1←→ 0).

M. B. Patil, IIT Bombay

Boolean algebra (George Boole, 1815-1864)

* Theorem: A = A.

The theorem can be proved by constructing a truth table:

A A A

0 1 0

1 0 1

Therefore, for all possible values that A can take (i.e., 0 and 1), A is the same as A.

⇒ A = A.

* Similarly, the following theorems can be proved:

A + 0 = A A · 1 = A

A + 1 = 1 A · 0 = 0

A + A = A A · A = A

A + A = 1 A · A = 0

Note the duality: (+←→ ·) and (1←→ 0).

M. B. Patil, IIT Bombay

Boolean algebra (George Boole, 1815-1864)

* Theorem: A = A.

The theorem can be proved by constructing a truth table:

A A A

0 1 0

1 0 1

Therefore, for all possible values that A can take (i.e., 0 and 1), A is the same as A.

⇒ A = A.

* Similarly, the following theorems can be proved:

A + 0 = A A · 1 = A

A + 1 = 1 A · 0 = 0

A + A = A A · A = A

A + A = 1 A · A = 0

Note the duality: (+←→ ·) and (1←→ 0).

M. B. Patil, IIT Bombay

Boolean algebra (George Boole, 1815-1864)

* Theorem: A = A.

The theorem can be proved by constructing a truth table:

A A A

0 1 0

1 0 1

Therefore, for all possible values that A can take (i.e., 0 and 1), A is the same as A.

⇒ A = A.

* Similarly, the following theorems can be proved:

A + 0 = A A · 1 = A

A + 1 = 1 A · 0 = 0

A + A = A A · A = A

A + A = 1 A · A = 0

Note the duality: (+←→ ·) and (1←→ 0).

M. B. Patil, IIT Bombay

De Morgan’s theorems

A B A + B A + B A B A · B A · B A · B A + B

0 0

0 1 1 1 1 0 1 1

0 1

1 0 1 0 0 0 1 1

1 0

1 0 0 1 0 0 1 1

1 1

1 0 0 0 0 1 0 0

* Comparing the truth tables for A + B and AB, we conclude that A + B = AB.

* Similarly, A · B = A + B.

* Similar relations hold for more than two variables, e.g.,

A · B · C = A + B + C ,

A + B + C + D = A · B · C · D,

(A + B) · C = (A + B) + C = A · B + C .

M. B. Patil, IIT Bombay

De Morgan’s theorems

A B A + B A + B A B A · B A · B A · B A + B

0 0 0

1 1 1 1 0 1 1

0 1 1

0 1 0 0 0 1 1

1 0 1

0 0 1 0 0 1 1

1 1 1

0 0 0 0 1 0 0

* Comparing the truth tables for A + B and AB, we conclude that A + B = AB.

* Similarly, A · B = A + B.

* Similar relations hold for more than two variables, e.g.,

A · B · C = A + B + C ,

A + B + C + D = A · B · C · D,

(A + B) · C = (A + B) + C = A · B + C .

M. B. Patil, IIT Bombay

De Morgan’s theorems

A B A + B A + B A B A · B A · B A · B A + B

0 0 0 1

1 1 1 0 1 1

0 1 1 0

1 0 0 0 1 1

1 0 1 0

0 1 0 0 1 1

1 1 1 0

0 0 0 1 0 0

* Comparing the truth tables for A + B and AB, we conclude that A + B = AB.

* Similarly, A · B = A + B.

* Similar relations hold for more than two variables, e.g.,

A · B · C = A + B + C ,

A + B + C + D = A · B · C · D,

(A + B) · C = (A + B) + C = A · B + C .

M. B. Patil, IIT Bombay

De Morgan’s theorems

A B A + B A + B A B A · B A · B A · B A + B

0 0 0 1 1

1 1 0 1 1

0 1 1 0 1

0 0 0 1 1

1 0 1 0 0

1 0 0 1 1

1 1 1 0 0

0 0 1 0 0

* Comparing the truth tables for A + B and AB, we conclude that A + B = AB.

* Similarly, A · B = A + B.

* Similar relations hold for more than two variables, e.g.,

A · B · C = A + B + C ,

A + B + C + D = A · B · C · D,

(A + B) · C = (A + B) + C = A · B + C .

M. B. Patil, IIT Bombay

De Morgan’s theorems

A B A + B A + B A B A · B A · B A · B A + B

0 0 0 1 1 1

1 0 1 1

0 1 1 0 1 0

0 0 1 1

1 0 1 0 0 1

0 0 1 1

1 1 1 0 0 0

0 1 0 0

* Comparing the truth tables for A + B and AB, we conclude that A + B = AB.

* Similarly, A · B = A + B.

* Similar relations hold for more than two variables, e.g.,

A · B · C = A + B + C ,

A + B + C + D = A · B · C · D,

(A + B) · C = (A + B) + C = A · B + C .

M. B. Patil, IIT Bombay

De Morgan’s theorems

A B A + B A + B A B A · B A · B A · B A + B

0 0 0 1 1 1 1

0 1 1

0 1 1 0 1 0 0

0 1 1

1 0 1 0 0 1 0

0 1 1

1 1 1 0 0 0 0

1 0 0

* Comparing the truth tables for A + B and AB, we conclude that A + B = AB.

* Similarly, A · B = A + B.

* Similar relations hold for more than two variables, e.g.,

A · B · C = A + B + C ,

A + B + C + D = A · B · C · D,

(A + B) · C = (A + B) + C = A · B + C .

M. B. Patil, IIT Bombay

De Morgan’s theorems

A B A + B A + B A B A · B A · B A · B A + B

0 0 0 1 1 1 1 0

1 1

0 1 1 0 1 0 0 0

1 1

1 0 1 0 0 1 0 0

1 1

1 1 1 0 0 0 0 1

0 0

* Comparing the truth tables for A + B and AB, we conclude that A + B = AB.

* Similarly, A · B = A + B.

* Similar relations hold for more than two variables, e.g.,

A · B · C = A + B + C ,

A + B + C + D = A · B · C · D,

(A + B) · C = (A + B) + C = A · B + C .

M. B. Patil, IIT Bombay

De Morgan’s theorems

A B A + B A + B A B A · B A · B A · B A + B

0 0 0 1 1 1 1 0 1

1

0 1 1 0 1 0 0 0 1

1

1 0 1 0 0 1 0 0 1

1

1 1 1 0 0 0 0 1 0

0

* Comparing the truth tables for A + B and AB, we conclude that A + B = AB.

* Similarly, A · B = A + B.

* Similar relations hold for more than two variables, e.g.,

A · B · C = A + B + C ,

A + B + C + D = A · B · C · D,

(A + B) · C = (A + B) + C = A · B + C .

M. B. Patil, IIT Bombay

De Morgan’s theorems

A B A + B A + B A B A · B A · B A · B A + B

0 0 0 1 1 1 1 0 1 1

0 1 1 0 1 0 0 0 1 1

1 0 1 0 0 1 0 0 1 1

1 1 1 0 0 0 0 1 0 0

* Comparing the truth tables for A + B and AB, we conclude that A + B = AB.

* Similarly, A · B = A + B.

* Similar relations hold for more than two variables, e.g.,

A · B · C = A + B + C ,

A + B + C + D = A · B · C · D,

(A + B) · C = (A + B) + C = A · B + C .

M. B. Patil, IIT Bombay

De Morgan’s theorems

A B A + B A + B A B A · B A · B A · B A + B

0 0 0 1 1 1 1 0 1 1

0 1 1 0 1 0 0 0 1 1

1 0 1 0 0 1 0 0 1 1

1 1 1 0 0 0 0 1 0 0

* Comparing the truth tables for A + B and AB, we conclude that A + B = AB.

* Similarly, A · B = A + B.

* Similar relations hold for more than two variables, e.g.,

A · B · C = A + B + C ,

A + B + C + D = A · B · C · D,

(A + B) · C = (A + B) + C = A · B + C .

M. B. Patil, IIT Bombay

De Morgan’s theorems

A B A + B A + B A B A · B A · B A · B A + B

0 0 0 1 1 1 1 0 1 1

0 1 1 0 1 0 0 0 1 1

1 0 1 0 0 1 0 0 1 1

1 1 1 0 0 0 0 1 0 0

* Comparing the truth tables for A + B and AB, we conclude that A + B = AB.

* Similarly, A · B = A + B.

* Similar relations hold for more than two variables, e.g.,

A · B · C = A + B + C ,

A + B + C + D = A · B · C · D,

(A + B) · C = (A + B) + C = A · B + C .

M. B. Patil, IIT Bombay

De Morgan’s theorems

A B A + B A + B A B A · B A · B A · B A + B

0 0 0 1 1 1 1 0 1 1

0 1 1 0 1 0 0 0 1 1

1 0 1 0 0 1 0 0 1 1

1 1 1 0 0 0 0 1 0 0

* Comparing the truth tables for A + B and AB, we conclude that A + B = AB.

* Similarly, A · B = A + B.

* Similar relations hold for more than two variables, e.g.,

A · B · C = A + B + C ,

A + B + C + D = A · B · C · D,

(A + B) · C = (A + B) + C = A · B + C .

M. B. Patil, IIT Bombay

De Morgan’s theorems

A B A + B A + B A B A · B A · B A · B A + B

0 0 0 1 1 1 1 0 1 1

0 1 1 0 1 0 0 0 1 1

1 0 1 0 0 1 0 0 1 1

1 1 1 0 0 0 0 1 0 0

* Comparing the truth tables for A + B and AB, we conclude that A + B = AB.

* Similarly, A · B = A + B.

* Similar relations hold for more than two variables, e.g.,

A · B · C = A + B + C ,

A + B + C + D = A · B · C · D,

(A + B) · C = (A + B) + C = A · B + C .

M. B. Patil, IIT Bombay

De Morgan’s theorems

A B A + B A + B A B A · B A · B A · B A + B

0 0 0 1 1 1 1 0 1 1

0 1 1 0 1 0 0 0 1 1

1 0 1 0 0 1 0 0 1 1

1 1 1 0 0 0 0 1 0 0

* Comparing the truth tables for A + B and AB, we conclude that A + B = AB.

* Similarly, A · B = A + B.

* Similar relations hold for more than two variables, e.g.,

A · B · C = A + B + C ,

A + B + C + D = A · B · C · D,

(A + B) · C = (A + B) + C = A · B + C .

M. B. Patil, IIT Bombay

De Morgan’s theorems

A B A + B A + B A B A · B A · B A · B A + B

0 0 0 1 1 1 1 0 1 1

0 1 1 0 1 0 0 0 1 1

1 0 1 0 0 1 0 0 1 1

1 1 1 0 0 0 0 1 0 0

* Comparing the truth tables for A + B and AB, we conclude that A + B = AB.

* Similarly, A · B = A + B.

* Similar relations hold for more than two variables, e.g.,

A · B · C = A + B + C ,

A + B + C + D = A · B · C · D,

(A + B) · C = (A + B) + C = A · B + C .

M. B. Patil, IIT Bombay

Distributive laws

1. A · (B + C) = AB + AC .

A B C B + C A · (B + C) AB AC AB + AC

0 0 0

0 0 0 0 0

0 0 1

1 0 0 0 0

0 1 0

1 0 0 0 0

0 1 1

1 0 0 0 0

1 0 0

0 0 0 0 0

1 0 1

1 1 0 1 1

1 1 0

1 1 1 0 1

1 1 1

1 1 1 1 1

M. B. Patil, IIT Bombay

Distributive laws

1. A · (B + C) = AB + AC .

A B C B + C A · (B + C) AB AC AB + AC

0 0 0

0 0 0 0 0

0 0 1

1 0 0 0 0

0 1 0

1 0 0 0 0

0 1 1

1 0 0 0 0

1 0 0

0 0 0 0 0

1 0 1

1 1 0 1 1

1 1 0

1 1 1 0 1

1 1 1

1 1 1 1 1

M. B. Patil, IIT Bombay

Distributive laws

1. A · (B + C) = AB + AC .

A B C B + C A · (B + C) AB AC AB + AC

0 0 0 0

0 0 0 0

0 0 1 1

0 0 0 0

0 1 0 1

0 0 0 0

0 1 1 1

0 0 0 0

1 0 0 0

0 0 0 0

1 0 1 1

1 0 1 1

1 1 0 1

1 1 0 1

1 1 1 1

1 1 1 1

M. B. Patil, IIT Bombay

Distributive laws

1. A · (B + C) = AB + AC .

A B C B + C A · (B + C) AB AC AB + AC

0 0 0 0 0

0 0 0

0 0 1 1 0

0 0 0

0 1 0 1 0

0 0 0

0 1 1 1 0

0 0 0

1 0 0 0 0

0 0 0

1 0 1 1 1

0 1 1

1 1 0 1 1

1 0 1

1 1 1 1 1

1 1 1

M. B. Patil, IIT Bombay

Distributive laws

1. A · (B + C) = AB + AC .

A B C B + C A · (B + C) AB AC AB + AC

0 0 0 0 0 0

0 0

0 0 1 1 0 0

0 0

0 1 0 1 0 0

0 0

0 1 1 1 0 0

0 0

1 0 0 0 0 0

0 0

1 0 1 1 1 0

1 1

1 1 0 1 1 1

0 1

1 1 1 1 1 1

1 1

M. B. Patil, IIT Bombay

Distributive laws

1. A · (B + C) = AB + AC .

A B C B + C A · (B + C) AB AC AB + AC

0 0 0 0 0 0 0

0

0 0 1 1 0 0 0

0

0 1 0 1 0 0 0

0

0 1 1 1 0 0 0

0

1 0 0 0 0 0 0

0

1 0 1 1 1 0 1

1

1 1 0 1 1 1 0

1

1 1 1 1 1 1 1

1

M. B. Patil, IIT Bombay

Distributive laws

1. A · (B + C) = AB + AC .

A B C B + C A · (B + C) AB AC AB + AC

0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 1 0 1 0 0 0 0

0 1 1 1 0 0 0 0

1 0 0 0 0 0 0 0

1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1

1 1 1 1 1 1 1 1

M. B. Patil, IIT Bombay

Distributive laws

1. A · (B + C) = AB + AC .

A B C B + C A · (B + C) AB AC AB + AC

0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 1 0 1 0 0 0 0

0 1 1 1 0 0 0 0

1 0 0 0 0 0 0 0

1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1

1 1 1 1 1 1 1 1

M. B. Patil, IIT Bombay

Distributive laws

2. A + B · C = (A + B) · (A + C).

A B C B C A + B C A + B A + C (A + B) (A + C)

0 0 0

0 0 0 0 0

0 0 1

0 0 0 1 0

0 1 0

0 0 1 0 0

0 1 1

1 1 1 1 1

1 0 0

0 1 1 1 1

1 0 1

0 1 1 1 1

1 1 0

0 1 1 1 1

1 1 1

1 1 1 1 1

M. B. Patil, IIT Bombay

Distributive laws

2. A + B · C = (A + B) · (A + C).

A B C B C A + B C A + B A + C (A + B) (A + C)

0 0 0

0 0 0 0 0

0 0 1

0 0 0 1 0

0 1 0

0 0 1 0 0

0 1 1

1 1 1 1 1

1 0 0

0 1 1 1 1

1 0 1

0 1 1 1 1

1 1 0

0 1 1 1 1

1 1 1

1 1 1 1 1

M. B. Patil, IIT Bombay

Distributive laws

2. A + B · C = (A + B) · (A + C).

A B C B C A + B C A + B A + C (A + B) (A + C)

0 0 0 0

0 0 0 0

0 0 1 0

0 0 1 0

0 1 0 0

0 1 0 0

0 1 1 1

1 1 1 1

1 0 0 0

1 1 1 1

1 0 1 0

1 1 1 1

1 1 0 0

1 1 1 1

1 1 1 1

1 1 1 1

M. B. Patil, IIT Bombay

Distributive laws

2. A + B · C = (A + B) · (A + C).

A B C B C A + B C A + B A + C (A + B) (A + C)

0 0 0 0 0

0 0 0

0 0 1 0 0

0 1 0

0 1 0 0 0

1 0 0

0 1 1 1 1

1 1 1

1 0 0 0 1

1 1 1

1 0 1 0 1

1 1 1

1 1 0 0 1

1 1 1

1 1 1 1 1

1 1 1

M. B. Patil, IIT Bombay

Distributive laws

2. A + B · C = (A + B) · (A + C).

A B C B C A + B C A + B A + C (A + B) (A + C)

0 0 0 0 0 0

0 0

0 0 1 0 0 0

1 0

0 1 0 0 0 1

0 0

0 1 1 1 1 1

1 1

1 0 0 0 1 1

1 1

1 0 1 0 1 1

1 1

1 1 0 0 1 1

1 1

1 1 1 1 1 1

1 1

M. B. Patil, IIT Bombay

Distributive laws

2. A + B · C = (A + B) · (A + C).

A B C B C A + B C A + B A + C (A + B) (A + C)

0 0 0 0 0 0 0

0

0 0 1 0 0 0 1

0

0 1 0 0 0 1 0

0

0 1 1 1 1 1 1

1

1 0 0 0 1 1 1

1

1 0 1 0 1 1 1

1

1 1 0 0 1 1 1

1

1 1 1 1 1 1 1

1

M. B. Patil, IIT Bombay

Distributive laws

2. A + B · C = (A + B) · (A + C).

A B C B C A + B C A + B A + C (A + B) (A + C)

0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0

0 1 0 0 0 1 0 0

0 1 1 1 1 1 1 1

1 0 0 0 1 1 1 1

1 0 1 0 1 1 1 1

1 1 0 0 1 1 1 1

1 1 1 1 1 1 1 1

M. B. Patil, IIT Bombay

Distributive laws

2. A + B · C = (A + B) · (A + C).

A B C B C A + B C A + B A + C (A + B) (A + C)

0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0

0 1 0 0 0 1 0 0

0 1 1 1 1 1 1 1

1 0 0 0 1 1 1 1

1 0 1 0 1 1 1 1

1 1 0 0 1 1 1 1

1 1 1 1 1 1 1 1

M. B. Patil, IIT Bombay

Useful theorems

* A + AB = A.

To prove this theorem, we can follow two approaches:

(a) Construct truth tables for LHS and RHS for all possible input combinations, and show that they are
the same.

(b) Use identities and theorems stated earlier to show that LHS=RHS.

A + AB = A · 1 + A · B
= A · (1 + B)
= A · (1)
= A

* A · (A + B) = A.

Proof: A · (A + B) = A · A + A · B
= A + AB
= A

M. B. Patil, IIT Bombay

Useful theorems

* A + AB = A.

To prove this theorem, we can follow two approaches:

(a) Construct truth tables for LHS and RHS for all possible input combinations, and show that they are
the same.

(b) Use identities and theorems stated earlier to show that LHS=RHS.

A + AB = A · 1 + A · B
= A · (1 + B)
= A · (1)
= A

* A · (A + B) = A.

Proof: A · (A + B) = A · A + A · B
= A + AB
= A

M. B. Patil, IIT Bombay

Useful theorems

* A + AB = A.

To prove this theorem, we can follow two approaches:

(a) Construct truth tables for LHS and RHS for all possible input combinations, and show that they are
the same.

(b) Use identities and theorems stated earlier to show that LHS=RHS.

A + AB = A · 1 + A · B
= A · (1 + B)
= A · (1)
= A

* A · (A + B) = A.

Proof: A · (A + B) = A · A + A · B
= A + AB
= A

M. B. Patil, IIT Bombay

Useful theorems

* A + AB = A.

To prove this theorem, we can follow two approaches:

(a) Construct truth tables for LHS and RHS for all possible input combinations, and show that they are
the same.

(b) Use identities and theorems stated earlier to show that LHS=RHS.

A + AB = A · 1 + A · B
= A · (1 + B)
= A · (1)
= A

* A · (A + B) = A.

Proof: A · (A + B) = A · A + A · B
= A + AB
= A

M. B. Patil, IIT Bombay

Useful theorems

* A + AB = A.

To prove this theorem, we can follow two approaches:

(a) Construct truth tables for LHS and RHS for all possible input combinations, and show that they are
the same.

(b) Use identities and theorems stated earlier to show that LHS=RHS.

A + AB = A · 1 + A · B
= A · (1 + B)
= A · (1)
= A

* A · (A + B) = A.

Proof: A · (A + B) = A · A + A · B
= A + AB
= A

M. B. Patil, IIT Bombay

Useful theorems

* A + AB = A.

To prove this theorem, we can follow two approaches:

(a) Construct truth tables for LHS and RHS for all possible input combinations, and show that they are
the same.

(b) Use identities and theorems stated earlier to show that LHS=RHS.

A + AB = A · 1 + A · B
= A · (1 + B)
= A · (1)
= A

* A · (A + B) = A.

Proof: A · (A + B) = A · A + A · B
= A + AB
= A

M. B. Patil, IIT Bombay

Duality

A + AB = A ←→ A · (A + B) = A.

Note the duality between OR and AND.

Dual of A + (AB) (LHS): AB → A + B
A + AB → A · (A + B).

Dual of A (RHS) = A (since there are no operations involved).

⇒ A · (A + B) = A.

Similarly, consider A + A = 1, with (+←→ .) and (1←→ 0).

Dual of LHS = A · A.

Dual of RHS = 0.

⇒ A · A = 0.

M. B. Patil, IIT Bombay

Duality

A + AB = A ←→ A · (A + B) = A.

Note the duality between OR and AND.

Dual of A + (AB) (LHS): AB → A + B
A + AB → A · (A + B).

Dual of A (RHS) = A (since there are no operations involved).

⇒ A · (A + B) = A.

Similarly, consider A + A = 1, with (+←→ .) and (1←→ 0).

Dual of LHS = A · A.

Dual of RHS = 0.

⇒ A · A = 0.

M. B. Patil, IIT Bombay

Duality

A + AB = A ←→ A · (A + B) = A.

Note the duality between OR and AND.

Dual of A + (AB) (LHS): AB → A + B
A + AB → A · (A + B).

Dual of A (RHS) = A (since there are no operations involved).

⇒ A · (A + B) = A.

Similarly, consider A + A = 1, with (+←→ .) and (1←→ 0).

Dual of LHS = A · A.

Dual of RHS = 0.

⇒ A · A = 0.

M. B. Patil, IIT Bombay

Duality

A + AB = A ←→ A · (A + B) = A.

Note the duality between OR and AND.

Dual of A + (AB) (LHS): AB → A + B
A + AB → A · (A + B).

Dual of A (RHS) = A (since there are no operations involved).

⇒ A · (A + B) = A.

Similarly, consider A + A = 1, with (+←→ .) and (1←→ 0).

Dual of LHS = A · A.

Dual of RHS = 0.

⇒ A · A = 0.

M. B. Patil, IIT Bombay

Duality

A + AB = A ←→ A · (A + B) = A.

Note the duality between OR and AND.

Dual of A + (AB) (LHS): AB → A + B
A + AB → A · (A + B).

Dual of A (RHS) = A (since there are no operations involved).

⇒ A · (A + B) = A.

Similarly, consider A + A = 1, with (+←→ .) and (1←→ 0).

Dual of LHS = A · A.

Dual of RHS = 0.

⇒ A · A = 0.

M. B. Patil, IIT Bombay

Duality

A + AB = A ←→ A · (A + B) = A.

Note the duality between OR and AND.

Dual of A + (AB) (LHS): AB → A + B
A + AB → A · (A + B).

Dual of A (RHS) = A (since there are no operations involved).

⇒ A · (A + B) = A.

Similarly, consider A + A = 1, with (+←→ .) and (1←→ 0).

Dual of LHS = A · A.

Dual of RHS = 0.

⇒ A · A = 0.

M. B. Patil, IIT Bombay

Duality

A + AB = A ←→ A · (A + B) = A.

Note the duality between OR and AND.

Dual of A + (AB) (LHS): AB → A + B
A + AB → A · (A + B).

Dual of A (RHS) = A (since there are no operations involved).

⇒ A · (A + B) = A.

Similarly, consider A + A = 1, with (+←→ .) and (1←→ 0).

Dual of LHS = A · A.

Dual of RHS = 0.

⇒ A · A = 0.

M. B. Patil, IIT Bombay

Duality

A + AB = A ←→ A · (A + B) = A.

Note the duality between OR and AND.

Dual of A + (AB) (LHS): AB → A + B
A + AB → A · (A + B).

Dual of A (RHS) = A (since there are no operations involved).

⇒ A · (A + B) = A.

Similarly, consider A + A = 1, with (+←→ .) and (1←→ 0).

Dual of LHS = A · A.

Dual of RHS = 0.

⇒ A · A = 0.

M. B. Patil, IIT Bombay

Useful theorems

* A + AB = A + B.

Proof: A + AB = (A + A) · (A + B) (by distributive law)

= 1 · (A + B)

= A + B

Dual theorem: A · (A + B) = AB.

* AB + AB = A.

Proof: AB + AB = A · (B + B) (by distributive law)

= A · 1
= A

Dual theorem: (A + B) · (A + B) = A.

M. B. Patil, IIT Bombay

Useful theorems

* A + AB = A + B.

Proof: A + AB = (A + A) · (A + B) (by distributive law)

= 1 · (A + B)

= A + B

Dual theorem: A · (A + B) = AB.

* AB + AB = A.

Proof: AB + AB = A · (B + B) (by distributive law)

= A · 1
= A

Dual theorem: (A + B) · (A + B) = A.

M. B. Patil, IIT Bombay

Useful theorems

* A + AB = A + B.

Proof: A + AB = (A + A) · (A + B) (by distributive law)

= 1 · (A + B)

= A + B

Dual theorem: A · (A + B) = AB.

* AB + AB = A.

Proof: AB + AB = A · (B + B) (by distributive law)

= A · 1
= A

Dual theorem: (A + B) · (A + B) = A.

M. B. Patil, IIT Bombay

Useful theorems

* A + AB = A + B.

Proof: A + AB = (A + A) · (A + B) (by distributive law)

= 1 · (A + B)

= A + B

Dual theorem: A · (A + B) = AB.

* AB + AB = A.

Proof: AB + AB = A · (B + B) (by distributive law)

= A · 1
= A

Dual theorem: (A + B) · (A + B) = A.

M. B. Patil, IIT Bombay

A game of words

In an India-Australia match, India will win if one or more of the following conditions are met:

(a) Tendulkar scores a century.

(b) Tendulkar does not score a century AND Warne fails (to get wickets).

(c) Tendulkar does not score a century AND Sehwag scores a century.

Let T ≡ Tendulkar scores a century.

S ≡ Sehwag scores a century.

W ≡ Warne fails.

I ≡ India wins.

I = T + T W + T S

= T + T + T W + T S

= (T + T W) + (T + T S)

= (T + T) · (T + W) + (T + T) · (T + S)

= T + W + T + S

= T + W + S

i.e., India will win if one or more of the following hold:

(a) Tendulkar strikes, (b) Warne fails, (c) Sehwag strikes.

M. B. Patil, IIT Bombay

A game of words

In an India-Australia match, India will win if one or more of the following conditions are met:

(a) Tendulkar scores a century.

(b) Tendulkar does not score a century AND Warne fails (to get wickets).

(c) Tendulkar does not score a century AND Sehwag scores a century.

Let T ≡ Tendulkar scores a century.

S ≡ Sehwag scores a century.

W ≡ Warne fails.

I ≡ India wins.

I = T + T W + T S

= T + T + T W + T S

= (T + T W) + (T + T S)

= (T + T) · (T + W) + (T + T) · (T + S)

= T + W + T + S

= T + W + S

i.e., India will win if one or more of the following hold:

(a) Tendulkar strikes, (b) Warne fails, (c) Sehwag strikes.

M. B. Patil, IIT Bombay

A game of words

In an India-Australia match, India will win if one or more of the following conditions are met:

(a) Tendulkar scores a century.

(b) Tendulkar does not score a century AND Warne fails (to get wickets).

(c) Tendulkar does not score a century AND Sehwag scores a century.

Let T ≡ Tendulkar scores a century.

S ≡ Sehwag scores a century.

W ≡ Warne fails.

I ≡ India wins.

I = T + T W + T S

= T + T + T W + T S

= (T + T W) + (T + T S)

= (T + T) · (T + W) + (T + T) · (T + S)

= T + W + T + S

= T + W + S

i.e., India will win if one or more of the following hold:

(a) Tendulkar strikes, (b) Warne fails, (c) Sehwag strikes.

M. B. Patil, IIT Bombay

A game of words

In an India-Australia match, India will win if one or more of the following conditions are met:

(a) Tendulkar scores a century.

(b) Tendulkar does not score a century AND Warne fails (to get wickets).

(c) Tendulkar does not score a century AND Sehwag scores a century.

Let T ≡ Tendulkar scores a century.

S ≡ Sehwag scores a century.

W ≡ Warne fails.

I ≡ India wins.

I = T + T W + T S

= T + T + T W + T S

= (T + T W) + (T + T S)

= (T + T) · (T + W) + (T + T) · (T + S)

= T + W + T + S

= T + W + S

i.e., India will win if one or more of the following hold:

(a) Tendulkar strikes, (b) Warne fails, (c) Sehwag strikes.

M. B. Patil, IIT Bombay

A game of words

In an India-Australia match, India will win if one or more of the following conditions are met:

(a) Tendulkar scores a century.

(b) Tendulkar does not score a century AND Warne fails (to get wickets).

(c) Tendulkar does not score a century AND Sehwag scores a century.

Let T ≡ Tendulkar scores a century.

S ≡ Sehwag scores a century.

W ≡ Warne fails.

I ≡ India wins.

I = T + T W + T S

= T + T + T W + T S

= (T + T W) + (T + T S)

= (T + T) · (T + W) + (T + T) · (T + S)

= T + W + T + S

= T + W + S

i.e., India will win if one or more of the following hold:

(a) Tendulkar strikes, (b) Warne fails, (c) Sehwag strikes.

M. B. Patil, IIT Bombay

A game of words

In an India-Australia match, India will win if one or more of the following conditions are met:

(a) Tendulkar scores a century.

(b) Tendulkar does not score a century AND Warne fails (to get wickets).

(c) Tendulkar does not score a century AND Sehwag scores a century.

Let T ≡ Tendulkar scores a century.

S ≡ Sehwag scores a century.

W ≡ Warne fails.

I ≡ India wins.

I = T + T W + T S

= T + T + T W + T S

= (T + T W) + (T + T S)

= (T + T) · (T + W) + (T + T) · (T + S)

= T + W + T + S

= T + W + S

i.e., India will win if one or more of the following hold:

(a) Tendulkar strikes, (b) Warne fails, (c) Sehwag strikes.

M. B. Patil, IIT Bombay

A game of words

In an India-Australia match, India will win if one or more of the following conditions are met:

(a) Tendulkar scores a century.

(b) Tendulkar does not score a century AND Warne fails (to get wickets).

(c) Tendulkar does not score a century AND Sehwag scores a century.

Let T ≡ Tendulkar scores a century.

S ≡ Sehwag scores a century.

W ≡ Warne fails.

I ≡ India wins.

I = T + T W + T S

= T + T + T W + T S

= (T + T W) + (T + T S)

= (T + T) · (T + W) + (T + T) · (T + S)

= T + W + T + S

= T + W + S

i.e., India will win if one or more of the following hold:

(a) Tendulkar strikes, (b) Warne fails, (c) Sehwag strikes.

M. B. Patil, IIT Bombay

A game of words

In an India-Australia match, India will win if one or more of the following conditions are met:

(a) Tendulkar scores a century.

(b) Tendulkar does not score a century AND Warne fails (to get wickets).

(c) Tendulkar does not score a century AND Sehwag scores a century.

Let T ≡ Tendulkar scores a century.

S ≡ Sehwag scores a century.

W ≡ Warne fails.

I ≡ India wins.

I = T + T W + T S

= T + T + T W + T S

= (T + T W) + (T + T S)

= (T + T) · (T + W) + (T + T) · (T + S)

= T + W + T + S

= T + W + S

i.e., India will win if one or more of the following hold:

(a) Tendulkar strikes, (b) Warne fails, (c) Sehwag strikes.

M. B. Patil, IIT Bombay

A game of words

In an India-Australia match, India will win if one or more of the following conditions are met:

(a) Tendulkar scores a century.

(b) Tendulkar does not score a century AND Warne fails (to get wickets).

(c) Tendulkar does not score a century AND Sehwag scores a century.

Let T ≡ Tendulkar scores a century.

S ≡ Sehwag scores a century.

W ≡ Warne fails.

I ≡ India wins.

I = T + T W + T S

= T + T + T W + T S

= (T + T W) + (T + T S)

= (T + T) · (T + W) + (T + T) · (T + S)

= T + W + T + S

= T + W + S

i.e., India will win if one or more of the following hold:

(a) Tendulkar strikes, (b) Warne fails, (c) Sehwag strikes.

M. B. Patil, IIT Bombay

A game of words

In an India-Australia match, India will win if one or more of the following conditions are met:

(a) Tendulkar scores a century.

(b) Tendulkar does not score a century AND Warne fails (to get wickets).

(c) Tendulkar does not score a century AND Sehwag scores a century.

Let T ≡ Tendulkar scores a century.

S ≡ Sehwag scores a century.

W ≡ Warne fails.

I ≡ India wins.

I = T + T W + T S

= T + T + T W + T S

= (T + T W) + (T + T S)

= (T + T) · (T + W) + (T + T) · (T + S)

= T + W + T + S

= T + W + S

i.e., India will win if one or more of the following hold:

(a) Tendulkar strikes, (b) Warne fails, (c) Sehwag strikes.

M. B. Patil, IIT Bombay

A game of words

In an India-Australia match, India will win if one or more of the following conditions are met:

(a) Tendulkar scores a century.

(b) Tendulkar does not score a century AND Warne fails (to get wickets).

(c) Tendulkar does not score a century AND Sehwag scores a century.

Let T ≡ Tendulkar scores a century.

S ≡ Sehwag scores a century.

W ≡ Warne fails.

I ≡ India wins.

I = T + T W + T S

= T + T + T W + T S

= (T + T W) + (T + T S)

= (T + T) · (T + W) + (T + T) · (T + S)

= T + W + T + S

= T + W + S

i.e., India will win if one or more of the following hold:

(a) Tendulkar strikes, (b) Warne fails, (c) Sehwag strikes.

M. B. Patil, IIT Bombay

Logical functions in standard forms

Consider a function X of three variables A, B, C :

X = AB C + AB C + AB C + AB C

≡ X1 + X2 + X3 + X4

This form is called the “sum of products” form (“sum” corresponding to OR
and “product” corresponding to AND).

We can construct the truth table for X in a systematic manner:

(1) Enumerate all possible combinations of A, B, C .
Since each of A, B, C can take two values (0 or 1), we have 23 possibilities.

(2) Tabulate X1 = AB C , etc. Note that X1 is 1 only if A=B =C = 1 (i.e., A= 0, B = 1, C = 0),
and 0 otherwise.

(3) Since X = X1 + X2 + X3 + X4,
X is 1 if any of X1, X2, X3, X4 is 1; else X is 0.
→ tabulate X .

M. B. Patil, IIT Bombay

Logical functions in standard forms

Consider a function X of three variables A, B, C :

X = AB C + AB C + AB C + AB C

≡ X1 + X2 + X3 + X4

This form is called the “sum of products” form (“sum” corresponding to OR
and “product” corresponding to AND).

We can construct the truth table for X in a systematic manner:

(1) Enumerate all possible combinations of A, B, C .
Since each of A, B, C can take two values (0 or 1), we have 23 possibilities.

(2) Tabulate X1 = AB C , etc. Note that X1 is 1 only if A=B =C = 1 (i.e., A= 0, B = 1, C = 0),
and 0 otherwise.

(3) Since X = X1 + X2 + X3 + X4,
X is 1 if any of X1, X2, X3, X4 is 1; else X is 0.
→ tabulate X .

M. B. Patil, IIT Bombay

Logical functions in standard forms

Consider a function X of three variables A, B, C :

X = AB C + AB C + AB C + AB C

≡ X1 + X2 + X3 + X4

This form is called the “sum of products” form (“sum” corresponding to OR
and “product” corresponding to AND).

We can construct the truth table for X in a systematic manner:

(1) Enumerate all possible combinations of A, B, C .
Since each of A, B, C can take two values (0 or 1), we have 23 possibilities.

(2) Tabulate X1 = AB C , etc. Note that X1 is 1 only if A=B =C = 1 (i.e., A= 0, B = 1, C = 0),
and 0 otherwise.

(3) Since X = X1 + X2 + X3 + X4,
X is 1 if any of X1, X2, X3, X4 is 1; else X is 0.
→ tabulate X .

M. B. Patil, IIT Bombay

Logical functions in standard forms

Consider a function X of three variables A, B, C :

X = AB C + AB C + AB C + AB C

≡ X1 + X2 + X3 + X4

This form is called the “sum of products” form (“sum” corresponding to OR
and “product” corresponding to AND).

We can construct the truth table for X in a systematic manner:

(1) Enumerate all possible combinations of A, B, C .
Since each of A, B, C can take two values (0 or 1), we have 23 possibilities.

(2) Tabulate X1 = AB C , etc. Note that X1 is 1 only if A=B =C = 1 (i.e., A= 0, B = 1, C = 0),
and 0 otherwise.

(3) Since X = X1 + X2 + X3 + X4,
X is 1 if any of X1, X2, X3, X4 is 1; else X is 0.
→ tabulate X .

M. B. Patil, IIT Bombay

Logical functions in standard forms

Consider a function X of three variables A, B, C :

X = AB C + AB C + AB C + AB C

≡ X1 + X2 + X3 + X4

This form is called the “sum of products” form (“sum” corresponding to OR
and “product” corresponding to AND).

We can construct the truth table for X in a systematic manner:

(1) Enumerate all possible combinations of A, B, C .
Since each of A, B, C can take two values (0 or 1), we have 23 possibilities.

(2) Tabulate X1 = AB C , etc. Note that X1 is 1 only if A=B =C = 1 (i.e., A= 0, B = 1, C = 0),
and 0 otherwise.

(3) Since X = X1 + X2 + X3 + X4,
X is 1 if any of X1, X2, X3, X4 is 1; else X is 0.
→ tabulate X .

M. B. Patil, IIT Bombay

Logical functions in standard forms

Consider a function X of three variables A, B, C :

X = AB C + AB C + AB C + AB C

≡ X1 + X2 + X3 + X4

This form is called the “sum of products” form (“sum” corresponding to OR
and “product” corresponding to AND).

We can construct the truth table for X in a systematic manner:

(1) Enumerate all possible combinations of A, B, C .
Since each of A, B, C can take two values (0 or 1), we have 23 possibilities.

(2) Tabulate X1 = AB C , etc. Note that X1 is 1 only if A=B =C = 1 (i.e., A= 0, B = 1, C = 0),
and 0 otherwise.

(3) Since X = X1 + X2 + X3 + X4,
X is 1 if any of X1, X2, X3, X4 is 1; else X is 0.
→ tabulate X .

M. B. Patil, IIT Bombay

“Sum of products” form

XCBA X4X3X2X1

X = X1 + X2 + X3 + X4 = ABC+ ABC+ ABC+ ABC

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

M. B. Patil, IIT Bombay

“Sum of products” form

XCBA X4X3X2X1

X = X1 + X2 + X3 + X4 = ABC+ ABC+ ABC+ ABC

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

M. B. Patil, IIT Bombay

“Sum of products” form

XCBA X4X3X2X1

X = X1 + X2 + X3 + X4 = ABC+ ABC+ ABC+ ABC

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

M. B. Patil, IIT Bombay

“Sum of products” form

XCBA X4X3X2X1

X = X1 + X2 + X3 + X4 = ABC+ ABC+ ABC+ ABC

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

M. B. Patil, IIT Bombay

“Sum of products” form

XCBA X4X3X2X1

X = X1 + X2 + X3 + X4 = ABC+ ABC+ ABC+ ABC

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

M. B. Patil, IIT Bombay

“Sum of products” form

XCBA X4X3X2X1

X = X1 + X2 + X3 + X4 = ABC+ ABC+ ABC+ ABC

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

M. B. Patil, IIT Bombay

“Sum of products” form

XCBA X4X3X2X1

X = X1 + X2 + X3 + X4 = ABC+ ABC+ ABC+ ABC

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

M. B. Patil, IIT Bombay

“Sum of products” form

XCBA X4X3X2X1

X = X1 + X2 + X3 + X4 = ABC+ ABC+ ABC+ ABC

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

M. B. Patil, IIT Bombay

“Sum of products” form

XCBA X4X3X2X1

X = X1 + X2 + X3 + X4 = ABC+ ABC+ ABC+ ABC

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

M. B. Patil, IIT Bombay

“Sum of products” form

XCBA X4X3X2X1

X = X1 + X2 + X3 + X4 = ABC+ ABC+ ABC+ ABC

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

M. B. Patil, IIT Bombay

“Sum of products” form

XCBA X4X3X2X1

X = X1 + X2 + X3 + X4 = ABC+ ABC+ ABC+ ABC

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

M. B. Patil, IIT Bombay

Logical functions in standard forms

Consider a function Y of three variables A, B, C :

Y = (A + B + C) · (A + B + C) · (A + B + C) · (A + B + C)

≡ Y1 · Y2 · Y3 · Y4

This form is called the “product of sums” form (“sum” corresponding to OR,
and “product” corresponding to AND).

We can construct the truth table for Y in a systematic manner:

(1) Enumerate all possible combinations of A, B, C .
Since each of A, B, C can take two values (0 or 1), we have 23 possibilities.

(2) Tabulate Y1 = A + B + C , etc. Note that Y1 is 0 only if A=B =C = 0;
Y1 is 1 otherwise.

(3) Since Y = Y1 Y2 Y3 Y4,
Y is 0 if any of Y1, Y2, Y3, Y4 is 0; else Y is 1.
→ tabulate Y .

M. B. Patil, IIT Bombay

Logical functions in standard forms

Consider a function Y of three variables A, B, C :

Y = (A + B + C) · (A + B + C) · (A + B + C) · (A + B + C)

≡ Y1 · Y2 · Y3 · Y4

This form is called the “product of sums” form (“sum” corresponding to OR,
and “product” corresponding to AND).

We can construct the truth table for Y in a systematic manner:

(1) Enumerate all possible combinations of A, B, C .
Since each of A, B, C can take two values (0 or 1), we have 23 possibilities.

(2) Tabulate Y1 = A + B + C , etc. Note that Y1 is 0 only if A=B =C = 0;
Y1 is 1 otherwise.

(3) Since Y = Y1 Y2 Y3 Y4,
Y is 0 if any of Y1, Y2, Y3, Y4 is 0; else Y is 1.
→ tabulate Y .

M. B. Patil, IIT Bombay

Logical functions in standard forms

Consider a function Y of three variables A, B, C :

Y = (A + B + C) · (A + B + C) · (A + B + C) · (A + B + C)

≡ Y1 · Y2 · Y3 · Y4

This form is called the “product of sums” form (“sum” corresponding to OR,
and “product” corresponding to AND).

We can construct the truth table for Y in a systematic manner:

(1) Enumerate all possible combinations of A, B, C .
Since each of A, B, C can take two values (0 or 1), we have 23 possibilities.

(2) Tabulate Y1 = A + B + C , etc. Note that Y1 is 0 only if A=B =C = 0;
Y1 is 1 otherwise.

(3) Since Y = Y1 Y2 Y3 Y4,
Y is 0 if any of Y1, Y2, Y3, Y4 is 0; else Y is 1.
→ tabulate Y .

M. B. Patil, IIT Bombay

Logical functions in standard forms

Consider a function Y of three variables A, B, C :

Y = (A + B + C) · (A + B + C) · (A + B + C) · (A + B + C)

≡ Y1 · Y2 · Y3 · Y4

This form is called the “product of sums” form (“sum” corresponding to OR,
and “product” corresponding to AND).

We can construct the truth table for Y in a systematic manner:

(1) Enumerate all possible combinations of A, B, C .
Since each of A, B, C can take two values (0 or 1), we have 23 possibilities.

(2) Tabulate Y1 = A + B + C , etc. Note that Y1 is 0 only if A=B =C = 0;
Y1 is 1 otherwise.

(3) Since Y = Y1 Y2 Y3 Y4,
Y is 0 if any of Y1, Y2, Y3, Y4 is 0; else Y is 1.
→ tabulate Y .

M. B. Patil, IIT Bombay

Logical functions in standard forms

Consider a function Y of three variables A, B, C :

Y = (A + B + C) · (A + B + C) · (A + B + C) · (A + B + C)

≡ Y1 · Y2 · Y3 · Y4

This form is called the “product of sums” form (“sum” corresponding to OR,
and “product” corresponding to AND).

We can construct the truth table for Y in a systematic manner:

(1) Enumerate all possible combinations of A, B, C .
Since each of A, B, C can take two values (0 or 1), we have 23 possibilities.

(2) Tabulate Y1 = A + B + C , etc. Note that Y1 is 0 only if A=B =C = 0;
Y1 is 1 otherwise.

(3) Since Y = Y1 Y2 Y3 Y4,
Y is 0 if any of Y1, Y2, Y3, Y4 is 0; else Y is 1.
→ tabulate Y .

M. B. Patil, IIT Bombay

Logical functions in standard forms

Consider a function Y of three variables A, B, C :

Y = (A + B + C) · (A + B + C) · (A + B + C) · (A + B + C)

≡ Y1 · Y2 · Y3 · Y4

This form is called the “product of sums” form (“sum” corresponding to OR,
and “product” corresponding to AND).

We can construct the truth table for Y in a systematic manner:

(1) Enumerate all possible combinations of A, B, C .
Since each of A, B, C can take two values (0 or 1), we have 23 possibilities.

(2) Tabulate Y1 = A + B + C , etc. Note that Y1 is 0 only if A=B =C = 0;
Y1 is 1 otherwise.

(3) Since Y = Y1 Y2 Y3 Y4,
Y is 0 if any of Y1, Y2, Y3, Y4 is 0; else Y is 1.
→ tabulate Y .

M. B. Patil, IIT Bombay

“Product of sums” form

YCBA Y4Y3Y2Y1

Y = Y1 Y2 Y3 Y4 = (A+ B+ C) (A+ B+ C) (A+ B+ C) (A+ B+ C)

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1 0

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

Note that Y is identical to X (seen two slides back). This is an example of how the same function can be written in two

seemingly different forms (in this case, the sum-of-products form and the product-of-sums form).

M. B. Patil, IIT Bombay

“Product of sums” form

YCBA Y4Y3Y2Y1

Y = Y1 Y2 Y3 Y4 = (A+ B+ C) (A+ B+ C) (A+ B+ C) (A+ B+ C)

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1 0

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

Note that Y is identical to X (seen two slides back). This is an example of how the same function can be written in two

seemingly different forms (in this case, the sum-of-products form and the product-of-sums form).

M. B. Patil, IIT Bombay

“Product of sums” form

YCBA Y4Y3Y2Y1

Y = Y1 Y2 Y3 Y4 = (A+ B+ C) (A+ B+ C) (A+ B+ C) (A+ B+ C)

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1 0

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

Note that Y is identical to X (seen two slides back). This is an example of how the same function can be written in two

seemingly different forms (in this case, the sum-of-products form and the product-of-sums form).

M. B. Patil, IIT Bombay

“Product of sums” form

YCBA Y4Y3Y2Y1

Y = Y1 Y2 Y3 Y4 = (A+ B+ C) (A+ B+ C) (A+ B+ C) (A+ B+ C)

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1 0

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

Note that Y is identical to X (seen two slides back). This is an example of how the same function can be written in two

seemingly different forms (in this case, the sum-of-products form and the product-of-sums form).

M. B. Patil, IIT Bombay

“Product of sums” form

YCBA Y4Y3Y2Y1

Y = Y1 Y2 Y3 Y4 = (A+ B+ C) (A+ B+ C) (A+ B+ C) (A+ B+ C)

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1 0

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

Note that Y is identical to X (seen two slides back). This is an example of how the same function can be written in two

seemingly different forms (in this case, the sum-of-products form and the product-of-sums form).

M. B. Patil, IIT Bombay

“Product of sums” form

YCBA Y4Y3Y2Y1

Y = Y1 Y2 Y3 Y4 = (A+ B+ C) (A+ B+ C) (A+ B+ C) (A+ B+ C)

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1 0

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

Note that Y is identical to X (seen two slides back). This is an example of how the same function can be written in two

seemingly different forms (in this case, the sum-of-products form and the product-of-sums form).

M. B. Patil, IIT Bombay

“Product of sums” form

YCBA Y4Y3Y2Y1

Y = Y1 Y2 Y3 Y4 = (A+ B+ C) (A+ B+ C) (A+ B+ C) (A+ B+ C)

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

Note that Y is identical to X (seen two slides back). This is an example of how the same function can be written in two

seemingly different forms (in this case, the sum-of-products form and the product-of-sums form).

M. B. Patil, IIT Bombay

“Product of sums” form

YCBA Y4Y3Y2Y1

Y = Y1 Y2 Y3 Y4 = (A+ B+ C) (A+ B+ C) (A+ B+ C) (A+ B+ C)

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1 0

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

Note that Y is identical to X (seen two slides back). This is an example of how the same function can be written in two

seemingly different forms (in this case, the sum-of-products form and the product-of-sums form).

M. B. Patil, IIT Bombay

“Product of sums” form

YCBA Y4Y3Y2Y1

Y = Y1 Y2 Y3 Y4 = (A+ B+ C) (A+ B+ C) (A+ B+ C) (A+ B+ C)

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1 0

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

Note that Y is identical to X (seen two slides back). This is an example of how the same function can be written in two

seemingly different forms (in this case, the sum-of-products form and the product-of-sums form).

M. B. Patil, IIT Bombay

“Product of sums” form

YCBA Y4Y3Y2Y1

Y = Y1 Y2 Y3 Y4 = (A+ B+ C) (A+ B+ C) (A+ B+ C) (A+ B+ C)

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1 0

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

Note that Y is identical to X (seen two slides back). This is an example of how the same function can be written in two

seemingly different forms (in this case, the sum-of-products form and the product-of-sums form).

M. B. Patil, IIT Bombay

“Product of sums” form

YCBA Y4Y3Y2Y1

Y = Y1 Y2 Y3 Y4 = (A+ B+ C) (A+ B+ C) (A+ B+ C) (A+ B+ C)

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1 0

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

Note that Y is identical to X (seen two slides back). This is an example of how the same function can be written in two

seemingly different forms (in this case, the sum-of-products form and the product-of-sums form).

M. B. Patil, IIT Bombay

“Product of sums” form

YCBA Y4Y3Y2Y1

Y = Y1 Y2 Y3 Y4 = (A+ B+ C) (A+ B+ C) (A+ B+ C) (A+ B+ C)

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1 0

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

Note that Y is identical to X (seen two slides back). This is an example of how the same function can be written in two

seemingly different forms (in this case, the sum-of-products form and the product-of-sums form).

M. B. Patil, IIT Bombay

Standard sum-of-products form

Consider a function X of three variables A, B, C :

X = AB C + AB C + AB C

This form is called the standard sum-of-products form, and each individual term (consisting of all three
variables) is called a “minterm.”

In the truth table for X , the numbers of 1s is the same as the number of minterms, as we have seen in an
example.

X can be rewritten as,

X = AB C + AB (C + C)

= AB C + AB.

This is also a sum-of-products form, but not the standard one.

M. B. Patil, IIT Bombay

Standard sum-of-products form

Consider a function X of three variables A, B, C :

X = AB C + AB C + AB C

This form is called the standard sum-of-products form, and each individual term (consisting of all three
variables) is called a “minterm.”

In the truth table for X , the numbers of 1s is the same as the number of minterms, as we have seen in an
example.

X can be rewritten as,

X = AB C + AB (C + C)

= AB C + AB.

This is also a sum-of-products form, but not the standard one.

M. B. Patil, IIT Bombay

Standard sum-of-products form

Consider a function X of three variables A, B, C :

X = AB C + AB C + AB C

This form is called the standard sum-of-products form, and each individual term (consisting of all three
variables) is called a “minterm.”

In the truth table for X , the numbers of 1s is the same as the number of minterms, as we have seen in an
example.

X can be rewritten as,

X = AB C + AB (C + C)

= AB C + AB.

This is also a sum-of-products form, but not the standard one.

M. B. Patil, IIT Bombay

Standard sum-of-products form

Consider a function X of three variables A, B, C :

X = AB C + AB C + AB C

This form is called the standard sum-of-products form, and each individual term (consisting of all three
variables) is called a “minterm.”

In the truth table for X , the numbers of 1s is the same as the number of minterms, as we have seen in an
example.

X can be rewritten as,

X = AB C + AB (C + C)

= AB C + AB.

This is also a sum-of-products form, but not the standard one.

M. B. Patil, IIT Bombay

Standard sum-of-products form

Consider a function X of three variables A, B, C :

X = AB C + AB C + AB C

This form is called the standard sum-of-products form, and each individual term (consisting of all three
variables) is called a “minterm.”

In the truth table for X , the numbers of 1s is the same as the number of minterms, as we have seen in an
example.

X can be rewritten as,

X = AB C + AB (C + C)

= AB C + AB.

This is also a sum-of-products form, but not the standard one.

M. B. Patil, IIT Bombay

Standard product-of-sums form

Consider a function X of three variables A, B, C :

X = (A + B + C) (A + B + C) (A + B + C)

This form is called the standard product-of-sums form, and each individual term (consisting of all three
variables) is called a “maxterm.”

In the truth table for X , the numbers of 0s is the same as the number of maxterms, as we have seen in an
example.

X can be rewritten as,

X = (A + B + C) (A + B + C) (A + B + C)

= (A + B + C) (A + C + B) (A + C + B)

= (A + B + C) (A + C + B B)

= (A + B + C) (A + C).

This is also a product-of-sums form, but not the standard one.

M. B. Patil, IIT Bombay

Standard product-of-sums form

Consider a function X of three variables A, B, C :

X = (A + B + C) (A + B + C) (A + B + C)

This form is called the standard product-of-sums form, and each individual term (consisting of all three
variables) is called a “maxterm.”

In the truth table for X , the numbers of 0s is the same as the number of maxterms, as we have seen in an
example.

X can be rewritten as,

X = (A + B + C) (A + B + C) (A + B + C)

= (A + B + C) (A + C + B) (A + C + B)

= (A + B + C) (A + C + B B)

= (A + B + C) (A + C).

This is also a product-of-sums form, but not the standard one.

M. B. Patil, IIT Bombay

Standard product-of-sums form

Consider a function X of three variables A, B, C :

X = (A + B + C) (A + B + C) (A + B + C)

This form is called the standard product-of-sums form, and each individual term (consisting of all three
variables) is called a “maxterm.”

In the truth table for X , the numbers of 0s is the same as the number of maxterms, as we have seen in an
example.

X can be rewritten as,

X = (A + B + C) (A + B + C) (A + B + C)

= (A + B + C) (A + C + B) (A + C + B)

= (A + B + C) (A + C + B B)

= (A + B + C) (A + C).

This is also a product-of-sums form, but not the standard one.

M. B. Patil, IIT Bombay

Standard product-of-sums form

Consider a function X of three variables A, B, C :

X = (A + B + C) (A + B + C) (A + B + C)

This form is called the standard product-of-sums form, and each individual term (consisting of all three
variables) is called a “maxterm.”

In the truth table for X , the numbers of 0s is the same as the number of maxterms, as we have seen in an
example.

X can be rewritten as,

X = (A + B + C) (A + B + C) (A + B + C)

= (A + B + C) (A + C + B) (A + C + B)

= (A + B + C) (A + C + B B)

= (A + B + C) (A + C).

This is also a product-of-sums form, but not the standard one.

M. B. Patil, IIT Bombay

Standard product-of-sums form

Consider a function X of three variables A, B, C :

X = (A + B + C) (A + B + C) (A + B + C)

This form is called the standard product-of-sums form, and each individual term (consisting of all three
variables) is called a “maxterm.”

In the truth table for X , the numbers of 0s is the same as the number of maxterms, as we have seen in an
example.

X can be rewritten as,

X = (A + B + C) (A + B + C) (A + B + C)

= (A + B + C) (A + C + B) (A + C + B)

= (A + B + C) (A + C + B B)

= (A + B + C) (A + C).

This is also a product-of-sums form, but not the standard one.

M. B. Patil, IIT Bombay

The “don’t care” condition

I want to design a box (with inputs A, B, C , and output S) which will help in scheduling my appointments.

A ≡ I am in town, and the time slot being suggested for the appointment is free.

B ≡ My favourite player is scheduled to play a match (which I can watch on TV).

C ≡ The appointment is crucial for my business.

S ≡ Schedule the appointment.

The following truth table summarizes the expected functioning of the box.

A B C S

0 X X 0

1 0 X 1

1 1 0 0

1 1 1 1

Note that we have a new entity called X in the truth table.

X can be 0 or 1 (it does not matter) and is therefore called the “don’t care” condition.

Don’t care conditions can often be used to get a more efficient implementation of a logical function.

M. B. Patil, IIT Bombay

The “don’t care” condition

I want to design a box (with inputs A, B, C , and output S) which will help in scheduling my appointments.

A ≡ I am in town, and the time slot being suggested for the appointment is free.

B ≡ My favourite player is scheduled to play a match (which I can watch on TV).

C ≡ The appointment is crucial for my business.

S ≡ Schedule the appointment.

The following truth table summarizes the expected functioning of the box.

A B C S

0 X X 0

1 0 X 1

1 1 0 0

1 1 1 1

Note that we have a new entity called X in the truth table.

X can be 0 or 1 (it does not matter) and is therefore called the “don’t care” condition.

Don’t care conditions can often be used to get a more efficient implementation of a logical function.

M. B. Patil, IIT Bombay

The “don’t care” condition

I want to design a box (with inputs A, B, C , and output S) which will help in scheduling my appointments.

A ≡ I am in town, and the time slot being suggested for the appointment is free.

B ≡ My favourite player is scheduled to play a match (which I can watch on TV).

C ≡ The appointment is crucial for my business.

S ≡ Schedule the appointment.

The following truth table summarizes the expected functioning of the box.

A B C S

0 X X 0

1 0 X 1

1 1 0 0

1 1 1 1

Note that we have a new entity called X in the truth table.

X can be 0 or 1 (it does not matter) and is therefore called the “don’t care” condition.

Don’t care conditions can often be used to get a more efficient implementation of a logical function.

M. B. Patil, IIT Bombay

The “don’t care” condition

I want to design a box (with inputs A, B, C , and output S) which will help in scheduling my appointments.

A ≡ I am in town, and the time slot being suggested for the appointment is free.

B ≡ My favourite player is scheduled to play a match (which I can watch on TV).

C ≡ The appointment is crucial for my business.

S ≡ Schedule the appointment.

The following truth table summarizes the expected functioning of the box.

A B C S

0 X X 0

1 0 X 1

1 1 0 0

1 1 1 1

Note that we have a new entity called X in the truth table.

X can be 0 or 1 (it does not matter) and is therefore called the “don’t care” condition.

Don’t care conditions can often be used to get a more efficient implementation of a logical function.

M. B. Patil, IIT Bombay

The “don’t care” condition

I want to design a box (with inputs A, B, C , and output S) which will help in scheduling my appointments.

A ≡ I am in town, and the time slot being suggested for the appointment is free.

B ≡ My favourite player is scheduled to play a match (which I can watch on TV).

C ≡ The appointment is crucial for my business.

S ≡ Schedule the appointment.

The following truth table summarizes the expected functioning of the box.

A B C S

0 X X 0

1 0 X 1

1 1 0 0

1 1 1 1

Note that we have a new entity called X in the truth table.

X can be 0 or 1 (it does not matter) and is therefore called the “don’t care” condition.

Don’t care conditions can often be used to get a more efficient implementation of a logical function.

M. B. Patil, IIT Bombay

