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Sinusoidal steady state

t=0

Vc

R

Vm cosωt C

R (C V ′c ) + Vc = Vm cos ωt , t > 0 . (1)

The solution Vc (t) is made up of two components, Vc (t) = V
(h)
c (t) + V

(p)
c (t) .

V
(h)
c (t) satisfies the homogeneous differential equation,

R C V ′c + Vc = 0 , (2)

from which, V
(h)
c (t) = A exp(−t/τ) , with τ = RC .

V
(p)
c (t) is a particular solution of (1). Since the forcing function is Vm cos ωt, we try

V
(p)
c (t) = C1 cos ωt + C2 sin ωt .

Substituting in (1), we get,

ωR C (−C1 sin ωt + C2 cos ωt) + C1 cos ωt + C2 sin ωt = Vm cos ωt .

C1 and C2 can be found by equating the coefficients of sin ωt and cos ωt on the left and right sides.
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Sinusoidal steady state
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* The complete solution is Vc (t) = A exp(−t/τ) + C1 cos ωt + C2 sin ωt .

* As t →∞, the exponential term becomes zero, and we are left with Vc (t) = C1 cos ωt + C2 sin ωt .

* This is known as the “sinusoidal steady state” response since all quantities (currents and voltages) in the
circuit are sinusoidal in nature.

* Any circuit containing resistors, capacitors, inductors, sinusoidal voltage and current sources (of the same
frequency), dependent (linear) sources behaves in a similar manner, viz., each current and voltage in the
circuit becomes purely sinusoidal as t →∞.
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Sinusoidal steady state: phasors

* In the sinusoidal steady state, “phasors” can be used to represent currents and voltages.

* A phasor is a complex number,

X = Xm 6 θ = Xm exp(jθ) ,

with the following interpretation in the time domain.

x(t) = Re
[
X e jωt

]
= Re

[
Xm e jθ e jωt

]
= Re

[
Xm e j(ωt+θ)

]
= Xm cos (ωt + θ)

* Use of phasors substantially simplifies analysis of circuits in the sinusoidal steady state.

* Note that a phasor can be written in the polar form or rectangular form,
X = Xm 6 θ = Xm exp(jθ) = Xm cos θ + j Xm sin θ .

The term ωt is always implicit.

θ

Xm

Re (X)

Im (X)

X
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Phasors: examples

Frequency domainTime domain

v1(t)=3.2 cos (ωt+30◦)V

V1 = 3.2 6 30◦ = 3.2 exp (jπ/6)V

i(t) = −1.5 cos (ωt+ 60◦)A

= 1.5 cos (ωt− 2π/3)A

= 1.5 cos (ωt+ π/3− π)A

I = 1.5 6 (−2π/3)A

v2(t) = −0.1 cos (ωt) V

= 0.1 cos (ωt+ π) V

V2 = 0.1 6 π V

i2(t) = 0.18 sin (ωt) A

= 0.18 cos (ωt− π/2) A

I2 = 0.18 6 (−π/2) A

I3 = 1+ j 1 A

=
√
2 6 45◦ A

i3(t) =
√
2 cos (ωt+ 45◦) A
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Addition of phasors

Consider addition of two sinusoidal quantities:

v(t) = v1(t) + v2(t)

= Vm1 cos (ωt + θ1) + Vm2 cos (ωt + θ2)

Now consider addition of the phasors corresponding to v1(t) and v2(t).

V = V1 + V2

= Vm1e jθ1 + Vm2e jθ2

In the time domain, V corresponds to ṽ(t), with

ṽ(t) = Re
[
Ve jωt

]
= Re

[(
Vm1e jθ1 + Vm2e jθ2

)
e jωt

]
= Re

[
Vm1e j(ωt+θ1) + Vm2e j(ωt+θ2)

]
= Vm1 cos (ωt + θ1) + Vm2 cos (ωt + θ2)

which is the same as v(t).
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Addition of phasors

* Addition of sinusoidal quantities in the time domain can be replaced by addition
of the corresponding phasors in the sinusoidal steady state.

* The KCL and KVL equations,∑
ik (t) = 0 at a node, and∑
vk (t) = 0 in a loop,

amount to addition of sinusoidal quantities and can therefore be replaced by the
corresponding phasor equations,∑

Ik = 0 at a node, and∑
Vk = 0 in a loop.
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Impedance of a resistor

i(t)

Vv(t)

R ZI

Let i(t) = Im cos (ωt + θ).

v(t) = R i(t)

= R Im cos (ωt + θ)

≡ Vm cos (ωt + θ).

The phasors corresponding to i(t) and v(t) are, respectively,

I = Im 6 θ, V = R × Im 6 θ.

We have therefore the following relationship between V and I: V = R × I.

Thus, the impedance of a resistor, defined as, Z = V/I, is

Z = R + j 0
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Impedance of a capacitor

C

v(t)

Ii(t)

V

Z

Let v(t) = Vm cos (ωt + θ).

i(t) = C
dv

dt
= −C ω Vm sin (ωt + θ).

Using the identity, cos (φ+ π/2) = − sin φ, we get

i(t) = C ω Vm cos (ωt + θ + π/2).

In terms of phasors, V = Vm 6 θ, I = ωCVm 6 (θ+π/2).

I can be rewritten as,

I = ωCVm e j(θ+π/2) = ωCVm e jθ e jπ/2 = jωC
(
Vm e jθ

)
= jωC V

Thus, the impedance of a capacitor, Z = V/I, is Z = 1/(jωC) ,

and the admittance of a capacitor, Y = I/V, is Y = jωC .
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Impedance of an inductor

v(t)

Li(t) I

V

Z

Let i(t) = Im cos (ωt + θ).

v(t) = L
di

dt
= −Lω Im sin (ωt + θ).

Using the identity, cos (φ+ π/2) = − sin φ, we get

v(t) = Lω Im cos (ωt + θ + π/2).

In terms of phasors, I = Im 6 θ, V = ωLIm 6 (θ+π/2).

V can be rewritten as,

V = ωLIm e j(θ+π/2) = ωLIm e jθ e jπ/2 = jωL
(
Im e jθ

)
= jωL I

Thus, the impedance of an indcutor, Z = V/I, is Z = jωL ,

and the admittance of an inductor, Y = I/V, is Y = 1/(jωL) .
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Sources

Vsvs(t)Isis(t)

* An independent sinusoidal current source, is(t) = Im cos (ωt + θ), can be represented by the phasor Im 6 θ

(i.e., a constant complex number).

* An independent sinusoidal voltage source, vs(t) = Vm cos (ωt + θ), can be represented by the phasor
Vm 6 θ (i.e., a constant complex number).

* Dependent (linear) sources can be treated in the sinusoidal steady state in the same manner as a resistor,
i.e., by the corresponding phasor relationship.
For example, for a CCVS, we have,
v(t) = r ic (t) in the time domain.
V = r Ic in the frequency domain.
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Use of phasors in circuit analysis

* The time-domain KCL and KVL equations
∑

ik (t) = 0 and
∑

vk (t) = 0 can be written as
∑

Ik = 0 and∑
Vk = 0 in the frequency domain.

* Resistors, capacitors, and inductors can be described by V = Z I in the frequency domain, which is similar
to V = R I in DC conditions (except that we are dealing with complex numbers in the frequency domain).

* An independent sinusoidal source in the frequency domain behaves like a DC source, e.g., Vs = constant
(a complex number).

* For dependent sources, a time-domain relationship such as i(t) = β ic (t) translates to I = β Ic in the
frequency domain.

* Circuit analysis in the sinusoidal steady state using phasors is therefore very similar to DC circuits with
independent and dependent sources, and resistors.

* Series/parallel formulas for resistors, nodal analysis, mesh analysis, Thevenin’s and Norton’s theorems can
be directly applied to circuits in the sinusoidal steady state.
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RL circuit

I

Vm 6 0◦ jωL

R

0

1

−1
 
 
 
 
 
 
 
 
 
 
 

time (ms)

 0  10  20  30

R = 1Ω

L = 1.6mH

vs(t) (V)

i(t) (A)

I =
Vm∠0

R + jωL
≡ Im∠(−θ),

where Im =
Vm√

R2 + ω2L2
, and θ = tan−1(ωL/R).

In the time domain, i(t) = Im cos (ωt − θ), which lags the source voltage since the peak (or zero) of i(t) occurs
t = θ/ω seconds after that of the source voltage.

For R = 1 Ω, L = 1.6 mH, f = 50 Hz, θ = 26.6◦, tlag = 1.48 ms.

(SEQUEL file: ee101 rl ac 1.sqproj)
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RL circuit

I

VR

VLVs

R

jωLVm 6 0◦

Re (V)

Im (V)

θ

VR

VL

Vs

I =
Vm∠0

R + jωL
≡ Im∠(−θ),

where Im =
Vm√

R2 + ω2L2
, and θ = tan−1(ωL/R).

VR = I× R = R Im ∠(−θ) ,

VL = I× jωL = ωImL∠(−θ + π/2) ,

The KVL equation, Vs = VR + VL, can be represented in the complex plane by a “phasor diagram.”

If R � |jωL|, θ → 0, |VR| ' |Vs| = Vm.

If R � |jωL|, θ → π/2, |VL| ' |Vs| = Vm.
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RC circuit

I

1/jωCVm 6 0◦

R

0

−1

1

 
 
 
 
 
 
 
 
 
 
 

time (ms)

 0  10  20  30

R = 1Ω
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I =
Vm∠0

R + 1/jωC
≡ Im∠θ,

where Im =
ωCVm√

1 + (ωRC)2
, and θ = π/2− tan−1(ωRC).

In the time domain, i(t) = Im cos (ωt + θ), which leads the source voltage since the peak (or zero) of i(t)
occurs t = θ/ω seconds before that of the source voltage.

For R = 1 Ω, C = 5.3 mF, f = 50 Hz, θ = 31◦, tlead = 1.72 ms.
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If R � |1/jωC |, θ → 0, |VR| ' |Vs| = Vm.

If R � |1/jωC |, θ → π/2, |VC| ' |Vs| = Vm.
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Series/parallel connections

B

A

B

A

(ω=100 rad/s)

Z
0.25 H

100 µF

Z1

Z2

Z1 = j× 100× 0.25 = j 25Ω

Z2 = −j/(100× 100× 10−6) = −j 100Ω

Z = Z1 + Z2 = −j 75Ω

B

A

B

A

(ω=100 rad/s)

Z
100 µF

0.25 H
Z2Z1

Z =
Z1Z2

Z1 + Z2

=
25× 100

−j 75

=
(j 25)× (−j 100)

j 25− j 100

= j 33.3Ω
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Impedance example

B

A

B

A

Obtain Z in polar form.

(ω=100 rad/s)

j 10 Ω Z10 Ω
Z1 Z2

Z =
10× j10

10+ j10
=

j10

1+ j

=
j10

1+ j
× 1− j

1− j

Convert to polar form → Z = 7.07 6 45◦Ω

=
10+ j10

2
= 5+ j5Ω

Method 1:

Method 2:

= 5
√
2 6 (π/2− π/4) = 7.07 6 45◦Ω

Z =
10× j10

10+ j10
=

100 6 π/2

10
√
2 6 π/4
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Circuit example

iL

is

15 mH

iC

2mF

10Ω2Ω

f = 50 Hz
10 6 0◦ V

Z3 Z4

Z1

IC

Vs

Z2Is

IL

ZEQVs

Is

Z3 =
1

j × 2π × 50× 2× 10−3
= −j 1.6 Ω

Z4 = j 2π × 50× 15× 10−3 = j 4.7 Ω

ZEQ = Z1 + Z3 ‖ (Z2 + Z4)

= 2 + (−j 1.6) ‖ (10 + j 4.7) = 2 +
(−j 1.6)× (10 + j 4.7)

−j 1.6 + 10 + j 4.7

= 2 +
1.6∠ (−90◦)× 11.05∠ (25.2◦)

10.47∠ (17.2◦)
= 2 +

17.7∠ (−64.8◦)

10.47∠ (17.2◦)

= 2 + 1.69∠ (−82◦) = 2 + (0.235− j 1.67)

= 2.235− j 1.67 = 2.79∠ (−36.8◦) Ω
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Circuit example (continued)
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Is =
Vs

ZEQ
=

10∠ (0◦)

2.79∠ (−36.8◦)
= 3.58∠ (36.8◦) A

IC =
(Z2 + Z4)

Z3 + (Z2 + Z4)
× Is = 3.79∠ (44.6◦) A

IL =
Z3

Z3 + (Z2 + Z4)
× Is = 0.546∠ (−70.6◦) A

1
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0

2

3
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Circuit example (continued)
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Circuit example (continued)
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Circuit example (continued)
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Circuit example (continued)
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