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Sinusoidal oscillators
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Consider an amplifier with feedback.

Xo = AX ′
i = A (Xi + Xf ) = A (Xi + βXo) = AXi + Aβ Xo

→ Af ≡
Xo

Xi
=

A

1− Aβ
.

Since A and β will generally vary with ω, we re-write Af as

Af (jω) =
A (jω)

1− A (jω)β (jω)
.

As A (jω)β (jω)→ 1, Af (jω)→∞, and we get a finite Xo ( = Af Xi ) even if Xi = 0.

In other words, we can remove Xi and still get a non-zero Xo . This is the basic principle behind sinusoidal

oscillators.

M. B. Patil, IIT Bombay



Sinusoidal oscillators

Amplifier

network

Frequency−sensitive

XoAX′
i

β Xo

Xf

X′
iXi

Consider an amplifier with feedback.

Xo = AX ′
i = A (Xi + Xf ) = A (Xi + βXo) = AXi + Aβ Xo

→ Af ≡
Xo

Xi
=

A

1− Aβ
.

Since A and β will generally vary with ω, we re-write Af as

Af (jω) =
A (jω)

1− A (jω)β (jω)
.

As A (jω)β (jω)→ 1, Af (jω)→∞, and we get a finite Xo ( = Af Xi ) even if Xi = 0.

In other words, we can remove Xi and still get a non-zero Xo . This is the basic principle behind sinusoidal

oscillators.

M. B. Patil, IIT Bombay



Sinusoidal oscillators

Amplifier

network

Frequency−sensitive

XoAX′
i

β Xo

Xf

X′
iXi

Consider an amplifier with feedback.

Xo = AX ′
i = A (Xi + Xf ) = A (Xi + βXo) = AXi + Aβ Xo

→ Af ≡
Xo

Xi
=

A

1− Aβ
.

Since A and β will generally vary with ω, we re-write Af as

Af (jω) =
A (jω)

1− A (jω)β (jω)
.

As A (jω)β (jω)→ 1, Af (jω)→∞, and we get a finite Xo ( = Af Xi ) even if Xi = 0.

In other words, we can remove Xi and still get a non-zero Xo . This is the basic principle behind sinusoidal

oscillators.

M. B. Patil, IIT Bombay



Sinusoidal oscillators

Amplifier

network

Frequency−sensitive

XoAX′
i

β Xo

Xf

X′
iXi

Consider an amplifier with feedback.

Xo = AX ′
i = A (Xi + Xf ) = A (Xi + βXo) = AXi + Aβ Xo

→ Af ≡
Xo

Xi
=

A

1− Aβ
.

Since A and β will generally vary with ω, we re-write Af as

Af (jω) =
A (jω)

1− A (jω)β (jω)
.

As A (jω)β (jω)→ 1, Af (jω)→∞, and we get a finite Xo ( = Af Xi ) even if Xi = 0.

In other words, we can remove Xi and still get a non-zero Xo . This is the basic principle behind sinusoidal

oscillators.

M. B. Patil, IIT Bombay



Sinusoidal oscillators

Amplifier

network

Frequency−sensitive

XoAX′
i

β Xo

Xf

X′
iXi

Consider an amplifier with feedback.

Xo = AX ′
i = A (Xi + Xf ) = A (Xi + βXo) = AXi + Aβ Xo

→ Af ≡
Xo

Xi
=

A

1− Aβ
.

Since A and β will generally vary with ω, we re-write Af as

Af (jω) =
A (jω)

1− A (jω)β (jω)
.

As A (jω)β (jω)→ 1, Af (jω)→∞, and we get a finite Xo ( = Af Xi ) even if Xi = 0.

In other words, we can remove Xi and still get a non-zero Xo . This is the basic principle behind sinusoidal

oscillators.

M. B. Patil, IIT Bombay



Sinusoidal oscillators

Amplifier

network

Frequency−sensitive

XoAX′
i

β Xo

Xf

X′
iXi

Consider an amplifier with feedback.

Xo = AX ′
i = A (Xi + Xf ) = A (Xi + βXo) = AXi + Aβ Xo

→ Af ≡
Xo

Xi
=

A

1− Aβ
.

Since A and β will generally vary with ω, we re-write Af as

Af (jω) =
A (jω)

1− A (jω)β (jω)
.

As A (jω)β (jω)→ 1, Af (jω)→∞, and we get a finite Xo ( = Af Xi ) even if Xi = 0.

In other words, we can remove Xi and still get a non-zero Xo . This is the basic principle behind sinusoidal

oscillators.

M. B. Patil, IIT Bombay



Sinusoidal oscillators

Amplifier

network

Frequency−sensitive

XoAX′
i

β Xo

Xf

X′
iXi

* The condition, A (jω)β (jω) = 1, for a circuit to oscillate spontaneously (i.e., without any input), is known
as the Barkhausen criterion.

* For the circuit to oscillate at ω = ω0, the β network is designed such that the Barkhausen criterion is
satisfied only for ω0, i.e., all components except ω0 get attenuated to zero.

* The output Xo will therefore have a frequency ω0 (ω0/2π in Hz), but what about the amplitude?
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* A gain limiting mechanism is required to limit the amplitude of the oscillations.

* Amplifier clipping can provide a gain limiter mechanism. For example, in an op-amp, the output voltage is
limited to ±Vsat, and this serves to limit the gain as the magnitude of the output voltage increases.

* For a more controlled output with low distortion, diode-resistor networks are used for gain limiting.
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Gain limiting network: example
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Gain limiting network: example
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* Up to about 100 kHz, an op-amp based amplifier and a β network of resistors and capacitors can be used.

* At higher frequencies, an op-amp based amplifier is not suitable because of frequency response and slew
rate limitations of op-amps.

* For high frequencies, transistor amplifiers are used, and LC tuned circuits or piezoelectric crystals are used
in the β network.
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Wien bridge oscillator

Amplifier

network
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Assuming Rin →∞ for the amplifier, we get

A(s) β(s) = A
Z2

Z1 + Z2
= A

R ‖ (1/sC)

R + (1/sC) + R ‖ (1/sC)
= A

sRC

(sRC)2 + 3sRC + 1
.

For A β = 1 (and with A equal to a real positive number),

jωRC

−ω2(RC)2 + 3jωRC + 1
must be real and equal to 1/A.

→ ω =
1

RC
, A = 3
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|

R=158 kΩ

C=1nF

H(jω) =
V2(jω)

V1(jω)
=

jωRC

−ω2(RC)2 + 3jωRC + 1
.

Note that the condition ∠H = 0 is satisfied only at one frequency, ω0 = 1/RC , i.e., f0 = 1 kHz.

At this frequency, |H| = 0.33, i.e., β(jω) = 1/3.

For A β = 1→ A = 3, as derived analytically.
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Ref.: S. Franco, "Design with Op Amps and analog ICs"
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* ω0 =
1

RC
=

1

(158 k)× (1 nF)
→ f0 = 1 kHz.

* Since the amplifier gain is required to be A = 3, we must have 1 +
R2

R1
= 3→ R2 = 2 R1.

* For gain limiting, diodes have been used. With one of the two diodes conducting, R2 → R2 ‖ R3, and the gain reduces.

* Note that there was no need to consider loading of the β network by the amplifier because of the large input resistance of
the op-amp. That is why β could be computed independently.
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Let R1 = R2 = R = 10 k, G = 1/R, and C1 = C2 = C3 = C = 16 nF .

Using nodal analysis,

sC(VA − V ) + GVA + sC(VA − VB ) = 0 (1)

sC(VB − VA) + GVB + sCVB = 0 (2)

Solving (1) and (2), we get I =
1

R

(sRC)3

3 (sRC)2 + 4 sRC + 1
V .

STOP
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(R1 = R2 = R = 10 k, and C1 = C2 = C3 = C = 16 nF .)

β(jω) =
I (jω)

V (jω)
=

1

R

(jωRC)3

3(jωRC)2 + 4 jωRC + 1
.

For β(jω) to be a real number, the denominator must be purely imaginary.

→ −3(ωRC)2 + 1 = 0, i.e., 3(ωRC)2 = 1 → ω ≡ ω0 =
1
√

3

1

RC
→ f0 = 574 Hz .

Note that, at ω = ω0, β(jω0) =
1

R

(j/
√

3)3

4 j/
√

3
= −

1

12 R
= −8.33× 10−6.
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Note that the functioning of the β network as a stand-alone circuit (left figure) and as a feedback block (right figure) is the
same, thanks to the virtual ground provided by the op-amp.

The amplifier gain is A(jω) ≡
V (jω)

I (jω)
=

0− Rf I (jω)

I (jω)
= −Rf .

→ A(jω)β(jω) = −Rf
1

R

(jωRC)3

3(jωRC)2 + 4 jωRC + 1
.

As seen before, at → ω = ω0 =
1
√

3

1

RC
, we have

I (jω)

V (jω)
= −

1

12 R
.

For the circuit to oscillate, we need Aβ = 1→ −Rf

(
−

1

12 R

)
= 1, i.e., Rf = 12 R

In addition, we employ a gain limiter circuit to complete the oscillator design.

M. B. Patil, IIT Bombay



Phase-shift oscillator

A B

β network

A B

current−to−voltage

converter

Rf

R2

I

R1

V V

R1 R2

I

VC3C2C1 C1 C3C2

Note that the functioning of the β network as a stand-alone circuit (left figure) and as a feedback block (right figure) is the
same, thanks to the virtual ground provided by the op-amp.

The amplifier gain is A(jω) ≡
V (jω)

I (jω)
=

0− Rf I (jω)

I (jω)
= −Rf .

→ A(jω)β(jω) = −Rf
1

R

(jωRC)3

3(jωRC)2 + 4 jωRC + 1
.

As seen before, at → ω = ω0 =
1
√

3

1

RC
, we have

I (jω)

V (jω)
= −

1

12 R
.

For the circuit to oscillate, we need Aβ = 1→ −Rf

(
−

1

12 R

)
= 1, i.e., Rf = 12 R

In addition, we employ a gain limiter circuit to complete the oscillator design.

M. B. Patil, IIT Bombay



Phase-shift oscillator

A B

β network

A B

current−to−voltage

converter

Rf

R2

I

R1

V V

R1 R2

I

VC3C2C1 C1 C3C2

Note that the functioning of the β network as a stand-alone circuit (left figure) and as a feedback block (right figure) is the
same, thanks to the virtual ground provided by the op-amp.

The amplifier gain is A(jω) ≡
V (jω)

I (jω)
=

0− Rf I (jω)

I (jω)
= −Rf .

→ A(jω)β(jω) = −Rf
1

R

(jωRC)3

3(jωRC)2 + 4 jωRC + 1
.

As seen before, at → ω = ω0 =
1
√

3

1

RC
, we have

I (jω)

V (jω)
= −

1

12 R
.

For the circuit to oscillate, we need Aβ = 1→ −Rf

(
−

1

12 R

)
= 1, i.e., Rf = 12 R

In addition, we employ a gain limiter circuit to complete the oscillator design.

M. B. Patil, IIT Bombay



Phase-shift oscillator

A B

β network

A B

current−to−voltage

converter

Rf

R2

I

R1

V V

R1 R2

I

VC3C2C1 C1 C3C2

Note that the functioning of the β network as a stand-alone circuit (left figure) and as a feedback block (right figure) is the
same, thanks to the virtual ground provided by the op-amp.

The amplifier gain is A(jω) ≡
V (jω)

I (jω)
=

0− Rf I (jω)

I (jω)
= −Rf .

→ A(jω)β(jω) = −Rf
1

R

(jωRC)3

3(jωRC)2 + 4 jωRC + 1
.

As seen before, at → ω = ω0 =
1
√

3

1

RC
, we have

I (jω)

V (jω)
= −

1

12 R
.

For the circuit to oscillate, we need Aβ = 1→ −Rf

(
−

1

12 R

)
= 1, i.e., Rf = 12 R

In addition, we employ a gain limiter circuit to complete the oscillator design.

M. B. Patil, IIT Bombay



Phase-shift oscillator

A B

β network

A B

current−to−voltage

converter

Rf

R2

I

R1

V V

R1 R2

I

VC3C2C1 C1 C3C2

Note that the functioning of the β network as a stand-alone circuit (left figure) and as a feedback block (right figure) is the
same, thanks to the virtual ground provided by the op-amp.

The amplifier gain is A(jω) ≡
V (jω)

I (jω)
=

0− Rf I (jω)

I (jω)
= −Rf .

→ A(jω)β(jω) = −Rf
1

R

(jωRC)3

3(jωRC)2 + 4 jωRC + 1
.

As seen before, at → ω = ω0 =
1
√

3

1

RC
, we have

I (jω)

V (jω)
= −

1

12 R
.

For the circuit to oscillate, we need Aβ = 1→ −Rf

(
−

1

12 R

)
= 1, i.e., Rf = 12 R

In addition, we employ a gain limiter circuit to complete the oscillator design.

M. B. Patil, IIT Bombay



Phase-shift oscillator

A B

β network

A B

current−to−voltage

converter

Rf

R2

I

R1

V V

R1 R2

I

VC3C2C1 C1 C3C2

Note that the functioning of the β network as a stand-alone circuit (left figure) and as a feedback block (right figure) is the
same, thanks to the virtual ground provided by the op-amp.

The amplifier gain is A(jω) ≡
V (jω)

I (jω)
=

0− Rf I (jω)

I (jω)
= −Rf .

→ A(jω)β(jω) = −Rf
1

R

(jωRC)3

3(jωRC)2 + 4 jωRC + 1
.

As seen before, at → ω = ω0 =
1
√

3

1

RC
, we have

I (jω)

V (jω)
= −

1

12 R
.

For the circuit to oscillate, we need Aβ = 1→ −Rf

(
−

1

12 R

)
= 1, i.e., Rf = 12 R

In addition, we employ a gain limiter circuit to complete the oscillator design.

M. B. Patil, IIT Bombay



Phase-shift oscillator

0

−6

6

Amplifier

network

Frequency−sensitive

gain limiter β network

ImplementationBlock diagram Output voltage

amplifier

(i−to−v converter)

gain limiter

Ref.: Sedra and Smith, "Microelectronic circuits"

 0  1  2  3  4
 

 

 

 

 

t (msec)

Rf

Vo

VCC

−VEE

Vo

Xo

R1 R2

β Xo C1 C3C2

SEQUEL file: ee101 osc 3.sqproj

16 nF 16 nF 16 nF

10 k 10 k

3 k

3 k

1 k

1 k

125 k

ω0 =
1
√

3

1

RC
→ f0 = 574 Hz, T = 1.74 ms .

M. B. Patil, IIT Bombay



Amplitude control using gain limiting network

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

0

−1

I

V

VCC

D′

D

R

R′
1

R′
2

R1

R2

20 k

15 k
60 k

15 k
60 k

R1=R′
1= 15 k

25 k

40 k

20

8
I(
m
A
)

dV dI
(k
Ω
)

V (Volts)

(VCC = 15V)

40 k

25 k

R1=R′
1= 15 k

−VEE

SEQUEL file: ee101 diode circuit 15.sqproj

5 10−5 0−10

M. B. Patil, IIT Bombay



Inverting amplifier, revisited
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* As seen earlier, AV = −R2/R1 → |AV | should be independent of the signal frequency.

* However, a measurement with a real op-amp will show that |AV | starts reducing at higher frequencies.

* If |AV | is increased, the gain “roll-off” starts at lower frequencies.

* This behaviour has to do with the frequency response of the op-amp which we have not considered so far.
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Frequency response of Op-Amp 741
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The gain of the 741 op-amp starts falling at rather low frequencies, with fc ' 10 Hz!

The 741 op-amp (and many others) are designed with this feature to ensure that, in typical amplifier applications, the overall
circuit is stable (and not oscillatory).

In other words, the op-amp has been internally compensated for stability.

The gain of the 741 op-amp can be represented by,

A(s) =
A0

1 + s/ωc
,

with A0 ≈ 105 (i.e., 100 dB), ωc ≈ 2π × 10 rad/s.
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A(jω) =
A0

1 + jω/ωc
, ωc ≈ 2π × 10 rad/s.

For ω � ωc , we have A(jω) ≈
A0

jω/ωc
.

|A(jω)| becomes 1 when A0 = ω/ωc , i.e., ω = A0ωc .

This frequency, ωt = A0ωc , is called the unity-gain frequency.

For the 741 op-amp, ft = A0fc ≈ 105 × 10 = 106 Hz.

Let us see how the frequency response of the 741 op-amp affects the gain of an inverting amplifier.
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