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Op-amps: introduction

* The Operational Amplifier (Op-Amp) is a versatile building block that can be
used for realizing several electronic circuits.

* The characteristics of an op-amp are nearly ideal → op-amp circuits can be
expected to perform as per theoretical design in most cases.

* Amplifiers built with op-amps work with DC input voltages as well → useful in
sensor applications (e.g., temperature, pressure)

* The user can generally carry out circuit design without a thorough knowledge
of the intricate details of an op-amp. This makes the design process simple.
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Op-amp: equivalent circuit
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* The external resistances (∼ a few kΩ) are generally much larger than Ro and much smaller than Ri → we
can assume Ri →∞, Ro → 0 without significantly affecting the analysis.

* VCC and −VEE (∼ ±5V to ±15V ) must be supplied; an op-amp will not work without them!

In op-amp circuits, the supply voltages are often not shown explicitly.

*

Parameter Ideal Op-Amp 741

AV ∞ 105 (100 dB)

Ri ∞ 2 MΩ

Ro 0 75 Ω
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Op-Amp: equivalent circuit
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* The output voltage Vo is limited to ±Vsat, where Vsat ∼ 1.5V less than VCC .

* For −Vsat < Vo < Vsat, Vi = V+ − V− = Vo/AV , which is very small
→ V+ and V− are virtually the same.
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Op-amp circuits
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* Broadly, op-amp circuits can be divided into two categories:

- op-amp operating in the linear region

- op-amp operating in the saturation region

* Whether an op-amp in a given circuit will operate in linear or saturation region depends on

- input voltage magnitude

- type of feedback (negative or positive)

(We will take a qualitative look at feedback later.)
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Op-amp circuits (linear region)

10

−10

−5

5
saturation

linear

saturation

0
OUT

OUT

 

 

 

 

 

 0−5  5

 

 

 

 

 

VoVi
AV Vi

Ro

−VEE

VCC

Ri

iin
Vsat

−Vsat

Vi (V)

V
o
(V

)

In the linear region,

* Vo = AV (V+ − V−), i.e., V+ − V− = Vo/AV , which is very small

→ V+ ≈ V−

* Since Ri is typically much larger than other resistances in the circuit,
we can assume Ri →∞ .

→ iin ≈ 0

These two “golden rules” enable us to understand several op-amp circuits.
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Op-amp circuits (linear region)
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Since V+ ≈ V−, V− ≈ 0V → i1 = (Vi − 0)/R1 = Vi/R1 .

(The non-inverting input is at real ground here, and the inverting input is at virtual ground.)

Since ii (current entering the op-amp) is zero, i1 goes through R2 .

→ Vo = V− − i1 R2 = 0−
(
Vi

R1

)
R2 = −

(
R2

R1

)
Vi .

The circuit is called an “inverting amplifier.”

Where does the current go?

(Op-amp 741 can source or sink about 25 mA.)
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Op-amp circuits: inverting amplifier
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* The gain of the inverting amplifier is −R2/R1. It is called the “closed-loop gain” (to distinguish it from
the “open-loop gain” of the op-amp which is ∼ 105).

* The gain can be adjusted simply by changing R1 or R2 !

* For the common-emitter amplifier, on the other hand, the gain −gm (RC ‖ RL) depends on how the BJT is
biased (since gm depends on IC ).

(SEQUEL file: ee101 inv amp 1.sqproj)
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* The output voltage is limited to ±Vsat.

* Vsat is ∼ 1.5 V less than the supply voltage VCC .
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Op-amp circuits: inverting amplifier
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* If the signal frequency is too high, a practical op-amp cannot keep up with the input due to its “slew rate”
limitation.

* The slew rate of an op-amp is the maximum rate at which the op-amp output can rise (or fall).

* For the 741, the slew rate is 0.5V /µsec.
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Op-amp circuits: inverting amplifier

RLRL

R2R2

R1R1
ViVi VoVo

Circuit 1 Circuit 2

What if the + (non-inverting) and − (inverting) inputs of the op-amp are interchanged?

Our previous analysis would once again give us Vo = −R2

R1
Vi .

However, from Circuit 1 to Circuit 2, the nature of the feedback changes from negative to positive.

→ Our assumption that the op-amp is working in the linear region does not hold for Circuit 2, and

Vo = −R2

R1
Vi does not apply any more.

(Circuit 2 is also useful, and we will discuss it later.)
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Op-amp circuits (linear region)

ii

i1

i2

RL

R2

R1

Vi

Vo

* V+ ≈ V− = Vi

→ i1 = (0− Vi )/R1 = −Vi/R1 .

* Since ii = 0, i2 = i1 → Vo = V− − i2 R2 = V+ − i1 R2 = Vi −
(
−Vi

R1

)
R2 = Vi

(
1 +

R2

R1

)
.

* This circuit is known as the “non-inverting amplifier.”

* Again, interchanging + and − changes the nature of the feedback from negative to positive, and the
circuit operation becomes completely different.
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Inverting or non-inverting?

Inverting amplifier

Non−inverting amplifier

RL

RL

R2

R2

R1

R1

Vs

Vs

Vo = −R2

R1
Vs

Vo =

(
1+

R2

R1

)
Vs

i1
Vs

RL

R1

R2

VoVi
AV Vi

Ro

Ri

Vs

RL

R1

R2

VoVi
AV Vi

Ro

Ri

* If the sign of the output voltage is not a concern, which configuration should be preferred?

* For the inverting amplifier, since V− ≈ 0V , i1 = Vs/R1 → Rin = Vs/i1 = R1 .

* For the non-inverting amplifier, Rin ∼ Ri AV
R1

R1 + R2
. Huge!
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Inverting and non-inverting amplifiers: summary

Inverting amplifier Non−inverting amplifier

RL RL

R2 R2

R1 R1
Vs
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Vo = −R2
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Vs Vo =
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1+
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R1

)
Vs
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Non-inverting amplifier
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Non-inverting amplifier
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Non-inverting amplifier

RL RL

R2

R1 Vo Vo

Vi Vi

Consider R1 →∞ , R2 → 0 .

Vo

Vi
→ 1 +

R2

R1
→ 1 , i.e., Vo = Vi .

This circuit is known as unity-gain amplifier/voltage follower/buffer.

What has been achieved?
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Loading effects

Vs RL

Rs

Vi Vo
AV Vi

Ro

Ri

Consider an amplifier of gain AV . We would like to have Vo = AV Vs .

However, the actual output voltage is,

Vo =
RL

Ro + RL
AV Vi = AV

RL

Ro + RL

Ri

Ri + Rs
Vs .

To obtain the desired Vo , we need Ri →∞ and Ro → 0 .

The buffer (voltage follower) provides these features.
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Op-amp buffer: input resistance

Non−inverting amplifier

A
B

ISRL

R2

R1

VS

RL

R1

R2

VS

Vi
AV Vi

Ro

Ri
Vo =

(
1+

R2

R1

)
Vs

KCL at B:
VB

RL
+

VB − AVVi

Ro
+

VB − VA

R2
= 0.

Source current: IS =
VA

R1
+

VA − VB

R2
.

Using Vi = ISRi , VA =VS − Vi , and after some algebra, we get

Rin =
VS

IS
=

(
1 +

Ro

RL
+

Ro

R2

)
+ Ri

[(
1

R1
+

1

R2

)(
1 +

Ro

RL
+

Ro

R2

)
− Ro

R2
2

+
AV

R2

]
(

1

R1
+

1

R2

)(
1 +

Ro

RL
+

Ro

R2

)
− Ro

R2
2

. STOP
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Non-inverting amplifier: input resistance (continued)

Non−inverting amplifier
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Vi
AV Vi
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Ri
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R2

R1
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Vs
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VS

IS
=
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1 +

Ro

RL
+

Ro

R2
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+ Ri
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1

R1
+

1

R2

)(
1 +

Ro

RL
+

Ro

R2

)
− Ro

R2
2

+
AV

R2

]
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1

R1
+

1

R2

)(
1 +

Ro

RL
+

Ro

R2

)
− Ro

R2
2

.

Since Ro is much smaller than R1, R2, RL, or Ri ,
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1

R1
+

1

R2

)
+

AV

R2

]
(

1

R1
+

1

R2
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Ri
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R1 + R2

R1R2
+

AV

R2

]
R1 + R2

R1R2

≈ AVRi
R1

R1 + R2
.
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Non-inverting amplifier: input resistance (continued)
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Op-amp buffer: input resistance

Buffer

ISRL

VS

RL

Vs

Vi
AV Vi

Ro

Ri

Vo=Vs

Let Ro → 0.

VS = Vi + AVVi = Vi (1 + AV ).

IS =
Vi

Ri
.

→ Rin =
VS

IS
= Ri (AV + 1)
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Op-amp buffer: output resistance

Non−inverting amplifier

RL

Vo

R2

R1

Vs

RL

Vs

R1

R2

Vi
AV Vi

Ro

Ri

Rout

To find Rout,

* Deactivate the input source.

* Replace RL with a test source V ′.

* Find the current (I ′) through V ′.

* Rout =
V ′

I ′
.
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Op-amp buffer: output resistance (continued)

Non−inverting amplifier

I′

I2

I1

RL

Vo

R2

V′

V′−Vi

R1

R1

R2

Vs

Vi
AV Vi

Ro

Ri

AV Vi

Vi = − (Ri ‖ R1)

R2 + (Ri ‖ R1)
V ′ ≡ −kV ′.

I ′ = I1 + I2 =
V ′ − AVVi

Ro
+

V ′ − (−Vi )

R2
=

1

Ro

(
V ′ + kAVV

′) +
1

R2

(
V ′ − kV ′

)
.

I ′

V ′
=

1

Ro
(1 + kAV ) +

1

R2
(1− k)→ Rout =

V ′

I ′
=

Ro

(1 + kAV )
‖ R2

(1− k)
≈ Ro

(1 + kAV )

Special case: Op-amp buffer

k =
(Ri ‖ R1)

R2 + (Ri ‖ R1)
→ 1 ⇒ Rout≈

Ro

1 + AV
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Op-amp buffer: output resistance (continued)
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Op-amp buffer: output resistance (continued)
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Op-amp buffer: output resistance (continued)

Non−inverting amplifier
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Op-amp buffer: output resistance (continued)

Non−inverting amplifier
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Op-amp buffer

RL

Vs RL
Vs Vs

Rin Rout

In summary, the buffer (voltage follower) provides

* a large input resistance Rin as seen from the source.

* a small output resistance Rout as seen from the load.

* a gain of 1, i.e., the output voltage simply follows the input voltage.
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Loading effects (revisited)

Vs RL

Rs

Vi Vo
AV Vi

Ro

Ri

Problem: We would like to have Vo = AV Vs .

But the actual output voltage is,

Vo =
RL

Ro + RL
AV Vi = AV

RL

Ro + RL

Ri

Ri + Rs
Vs .
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Op-amp buffer

buffer 2

load

amplifier

buffer 1

source

RL

Vs

Rs

Vi
AV Vi

Ro

Ri

Vo

i1

i2

Vo1 Vo2

Since the buffer has a large input resistance, i1 ≈ 0A,

and V+ (on the source side) = Vs → Vo1 = Vs .

Similarly, i2 ≈ 0A, and Vo2 = AV Vi = AV Vs .

Finally, Vo = Vo2 = AV Vs , as desired, irrespective of RS and RL.

Note that the load current is supplied by the second buffer which acts as a voltage source (=AVVs) with zero
source resistance.
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Op-amp circuits (linear region)

Vi3

Vi2

Vi1

RL

Vo

Rf

R3

R2

R1

i3

i2

i1 i ii

if

V− ≈ V+ = 0V → i1 = Vi1/R1, i2 = Vi2/R2, i3 = Vi3/R3 .

i = i1 + i2 + i3 =

(
Vi1

R1
+

Vi2

R2
+

Vi3

R3

)
.

Because of the large input resistance of the op-amp, ii ≈ 0→ if = i , which gives

Vo = V− − if Rf = 0−
(
Vi1

R1
+

Vi2

R2
+

Vi3

R3

)
Rf = −

(
Rf

R1
Vi1 +

Rf

R2
Vi2 +

Rf

R3
Vi3

)
,

i.e., Vo is a weighted sum of Vi1, Vi2, Vi3.

If R1 = R2 = R3 = R , the circuit acts as a summer, giving

Vo = −K (Vi1 + Vi2 + Vi3) with K = Rf /R .
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Summer example

1.2

0.6

0

−0.6

−1

−2

−3

 

 

 

 

 

 

 

 0  1  2  3  4
t (msec)

Vi3

Vi2

Vi1

RL

Vo

Rf

R3

R2

R1

SEQUEL file: ee101 summer.sqproj

R1 = R2 = R3 = 1 kΩ

Rf = 2 kΩ

→ Vo = −2 (Vi1 + Vi2 + Vi3)

i3

i2

i1 i ii

if

Vi2

Vi1

Vi3

Vo

* Note that the summer also works with DC inputs (so do inverting and non-inverting amplifiers).

* Op-amps make life simpler! Think of adding voltages in any other way.
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Choice of resistance values

* If resistances are too small, they draw larger currents → increased power
dissipation

* If resistances are too large,

- The effect of offset voltage and input bias currents becomes more
pronounced (to be discussed).

- Combined with parasitic (wiring) capacitances, large resistances can
affect the frequency response and stability of the circuit.

- Thermal noise increases as R increases, and it may not be desirable in

some applications.

* Typical resistance values: 0.1 k to 100 k.
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Design an amplifier with Rin = 10 k and AV =−100.

Vo

Vi

Rin

R′
2

R′
1

Vo

Vi

R′
1

I1
V10V

Rin = R′1 = 10 k.

AV = − R′2
R′1

= −100→ R′2 = 100× 10 k = 1 MΩ

R′2 may be unacceptable from practical considerations.

→ need a design with smaller resistances.

If we ensure
V1

I1
= R′2, we will satisfy the gain condition.
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I1
V1

I2R1

R2

R3

I2 =
V1

R3 + (R1 ‖ R2)

I1 =
R2

R1 + R2
I2 =

R2

R1 + R2
× R1 + R2

R3(R1 + R2) + R1R2
V1

Reff ≡
V1

I1
=

R1R2 + R2R3 + R3R1

R2

→ Choose R1, R2, R3 such that Reff =R′2 = 1 MΩ.

Vo

Vi

R′
2

Vo

Vi

R2
R′
1

R′
1

R1 R3
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Vo

Vi

R′
2

Vo

Vi

R2
R′
1

R′
1

R1 R3

Reff =
R1R2 + R2R3 + R3R1

R2

We want Reff = R′2 = 1 MΩ.

Let R1 = R3 ≡ R → Reff =
R2 + 2R R2

R2
= R

(
R

R2
+ 2

)
→ R2 =

R

Reff

R
− 2

For R = 10 k, R2 =
10 k

100− 2
≈ 102 Ω.

Ref: Wait et al, Introduction to op-amp theory and applications, McGraw-Hill, 1992.
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