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Digital circuits
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* An analog signal x(t) is represented by a real number at a given time point.

* A digital signal is “binary” in nature, i.e., it takes on only two values: low (0) or high (1).

* Although we have shown 0 and 1 as constant levels, in reality, that is not required. Any value in the low
(high) band will be interpreted as 0 (1) by digital circuits.

* The definition of low and high bands depends on the technology used, e.g.,

TTL (Transistor-Transistor Logic)

CMOS (Complementary MOS)

ECL (Emitter-Coupled Logic)
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A simple digital circuit
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* If Vi is low (“0”), Vo is high (“1”).
If Vi is high (“1”), Vo is low (“0”).

* The circuit is called an “inverter” because it inverts the logic level of the input. If the input is 0, it makes
the output 1, and vice versa.

* Digital circuits are made using a variety of devices. The simple BJT inverter is only an illustration.

* Most of the VLSI circuits today employ the MOS technology because of the high packing density, high
speed, and low power consumption it offers.
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Digital circuits
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* A major advantage of digital systems is that, even if the original data gets distorted (e.g., in transmitting
through optical fibre or storing on a CD) due to noise, attenuation, etc., it can be retrieved easily.

* There are several other benefits of using digital representation:

- can use computers to process the data.
- can store in a variety of storage media.

- can program the functionality. For example, the behaviour of a digital filter can be changed simply

by changing its coefficients.
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Logical operations
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Logical operations

* The AND operation is commutative.

→ A · B = B · A.

* The AND operation is associative.

→ (A · B) · C = A · (B · C).

* The OR operation is commutative.

→ A + B = B + A.

* The OR operation is associative.

→ (A + B) + C = A + (B + C).
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Boolean algebra (George Boole, 1815-1864)

* Theorem: A = A.

The theorem can be proved by constructing a truth table:

A A A

0 1 0

1 0 1

Therefore, for all possible values that A can take (i.e., 0 and 1), A is the same as A.

⇒ A = A.

* Similarly, the following theorems can be proved:

A + 0 = A A · 1 = A

A + 1 = 1 A · 0 = 0

A + A = A A · A = A

A + A = 1 A · A = 0

Note the duality: (+←→ ·) and (1←→ 0).
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De Morgan’s theorems

A B A + B A + B A B A · B A · B A · B A + B

0 0

0 1 1 1 1 0 1 1

0 1

1 0 1 0 0 0 1 1

1 0

1 0 0 1 0 0 1 1

1 1

1 0 0 0 0 1 0 0

* Comparing the truth tables for A + B and AB, we conclude that A + B = AB.

* Similarly, A · B = A + B.

* Similar relations hold for more than two variables, e.g.,

A · B · C = A + B + C ,

A + B + C + D = A · B · C · D,

(A + B) · C = (A + B) + C = A · B + C .
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Distributive laws

1. A · (B + C) = AB + AC .

A B C B + C A · (B + C) AB AC AB + AC

0 0 0

0 0 0 0 0

0 0 1

1 0 0 0 0

0 1 0

1 0 0 0 0

0 1 1

1 0 0 0 0

1 0 0
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1 0 1

1 1 0 1 1

1 1 0

1 1 1 0 1

1 1 1

1 1 1 1 1
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Useful theorems

* A + AB = A.

To prove this theorem, we can follow two approaches:

(a) Construct truth tables for LHS and RHS for all possible input combinations, and show that they are
the same.

(b) Use identities and theorems stated earlier to show that LHS=RHS.

A + AB = A · 1 + A · B
= A · (1 + B)
= A · (1)
= A

* A · (A + B) = A.

Proof: A · (A + B) = A · A + A · B
= A + AB
= A
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Duality

A + AB = A ←→ A · (A + B) = A.

Note the duality between OR and AND.

Dual of A + (AB) (LHS): AB → A + B
A + AB → A · (A + B).

Dual of A (RHS) = A (since there are no operations involved).

⇒ A · (A + B) = A.

Similarly, consider A + A = 1, with (+←→ .) and (1←→ 0).

Dual of LHS = A · A.

Dual of RHS = 0.

⇒ A · A = 0.
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Useful theorems

* A + AB = A + B.

Proof: A + AB = (A + A) · (A + B) (by distributive law)

= 1 · (A + B)

= A + B

Dual theorem: A · (A + B) = AB.

* AB + AB = A.

Proof: AB + AB = A · (B + B) (by distributive law)

= A · 1
= A

Dual theorem: (A + B) · (A + B) = A.
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A game of words

In an India-Australia match, India will win if one or more of the following conditions are met:

(a) Tendulkar scores a century.

(b) Tendulkar does not score a century AND Warne fails (to get wickets).

(c) Tendulkar does not score a century AND Sehwag scores a century.

Let T ≡ Tendulkar scores a century.

S ≡ Sehwag scores a century.

W ≡ Warne fails.

I ≡ India wins.

I = T + T W + T S

= T + T + T W + T S

= (T + T W ) + (T + T S)

= (T + T ) · (T + W ) + (T + T ) · (T + S)

= T + W + T + S

= T + W + S

i.e., India will win if one or more of the following hold:

(a) Tendulkar strikes, (b) Warne fails, (c) Sehwag strikes.
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Logical functions in standard forms

Consider a function X of three variables A, B, C :

X = AB C + AB C + AB C + AB C

≡ X1 + X2 + X3 + X4

This form is called the “sum of products” form (“sum” corresponding to OR
and “product” corresponding to AND).

We can construct the truth table for X in a systematic manner:

(1) Enumerate all possible combinations of A, B, C .
Since each of A, B, C can take two values (0 or 1), we have 23 possibilities.

(2) Tabulate X1 = AB C , etc. Note that X1 is 1 only if A=B =C = 1 (i.e., A= 0, B = 1, C = 0),
and 0 otherwise.

(3) Since X = X1 + X2 + X3 + X4,
X is 1 if any of X1, X2, X3, X4 is 1; else X is 0.
→ tabulate X .
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“Sum of products” form

XCBA X4X3X2X1
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Logical functions in standard forms

Consider a function Y of three variables A, B, C :

Y = (A + B + C) · (A + B + C) · (A + B + C) · (A + B + C)

≡ Y1 · Y2 · Y3 · Y4

This form is called the “product of sums” form (“sum” corresponding to OR,
and “product” corresponding to AND).

We can construct the truth table for Y in a systematic manner:

(1) Enumerate all possible combinations of A, B, C .
Since each of A, B, C can take two values (0 or 1), we have 23 possibilities.

(2) Tabulate Y1 = A + B + C , etc. Note that Y1 is 0 only if A=B =C = 0;
Y1 is 1 otherwise.

(3) Since Y = Y1 Y2 Y3 Y4,
Y is 0 if any of Y1, Y2, Y3, Y4 is 0; else Y is 1.
→ tabulate Y .
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“Product of sums” form
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Standard sum-of-products form

Consider a function X of three variables A, B, C :

X = AB C + AB C + AB C

This form is called the standard sum-of-products form, and each individual term (consisting of all three
variables) is called a “minterm.”

In the truth table for X , the numbers of 1s is the same as the number of minterms, as we have seen in an
example.

X can be rewritten as,

X = AB C + AB (C + C)

= AB C + AB.

This is also a sum-of-products form, but not the standard one.
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Standard product-of-sums form

Consider a function X of three variables A, B, C :

X = (A + B + C) (A + B + C) (A + B + C)

This form is called the standard product-of-sums form, and each individual term (consisting of all three
variables) is called a “maxterm.”

In the truth table for X , the numbers of 0s is the same as the number of maxterms, as we have seen in an
example.

X can be rewritten as,

X = (A + B + C) (A + B + C) (A + B + C)

= (A + B + C) (A + C + B) (A + C + B)

= (A + B + C) (A + C + B B)

= (A + B + C) (A + C).

This is also a product-of-sums form, but not the standard one.
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The “don’t care” condition

I want to design a box (with inputs A, B, C , and output S) which will help in scheduling my appointments.

A ≡ I am in town, and the time slot being suggested for the appointment is free.

B ≡ My favourite player is scheduled to play a match (which I can watch on TV).

C ≡ The appointment is crucial for my business.

S ≡ Schedule the appointment.

The following truth table summarizes the expected functioning of the box.

A B C S

0 X X 0

1 0 X 1

1 1 0 0

1 1 1 1

Note that we have a new entity called X in the truth table.

X can be 0 or 1 (it does not matter) and is therefore called the “don’t care” condition.

Don’t care conditions can often be used to get a more efficient implementation of a logical function.
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