Bipolar Junction Transistors

- Bipolar: both electrons and holes contribute to conduction
- Junction: device includes two p-n junctions (as opposed to a "point-contact" transistor, the first transistor)
- Transistor: "transfer resistor" When Bell Labs had an informal contest to name their new invention, one engineer pointed out that it acts like a resistor, but a resistor where the voltage is transferred across the device to control the resulting current.
- Invented in 1947 by Shockley, Bardeen, and Brattain at Bell Laboratories.
- BJT is still used extensively, and anyone interested in electronics must have at least a working knowledge of this device.
- "A BJT is two diodes connected back-to-back." WRONG! Let us see why.

M. B. Patil, IIT Bombay
Bipolar Junction Transistors

* Bipolar: both electrons and holes contribute to conduction
- Bipolar: both electrons and holes contribute to conduction
- Junction: device includes two p-n junctions (as opposed to a “point-contact” transistor, the first transistor)
Bipolar Junction Transistors

- Bipolar: both electrons and holes contribute to conduction
- Junction: device includes two p-n junctions (as opposed to a “point-contact” transistor, the first transistor)
- Transistor: “transfer resistor”

When Bell Labs had an informal contest to name their new invention, one engineer pointed out that it acts like a resistor, but a resistor where the voltage is transferred across the device to control the resulting current.

(http://amasci.com/amateur/trshort.html)
* Bipolar: both electrons and holes contribute to conduction

* Junction: device includes two p-n junctions (as opposed to a “point-contact" transistor, the first transistor)

* Transistor: “transfer resistor”

 When Bell Labs had an informal contest to name their new invention, one engineer pointed out that it acts like a resistor, but a resistor where the voltage is transferred across the device to control the resulting current.

 (http://amasci.com/amateur/trshort.html)

* invented in 1947 by Shockley, Bardeen, and Brattain at Bell Laboratories.
Bipolar Junction Transistors

- **Bipolar**: both electrons and holes contribute to conduction
- **Junction**: device includes two p-n junctions (as opposed to a “point-contact” transistor, the first transistor)
- **Transistor**: “transfer resistor”

 When Bell Labs had an informal contest to name their new invention, one engineer pointed out that it acts like a resistor, but a resistor where the voltage is transferred across the device to control the resulting current.

 (http://amasci.com/amateur/trshort.html)

* invented in 1947 by Shockley, Bardeen, and Brattain at Bell Laboratories.

* BJT is still used extensively, and anyone interested in electronics must have at least a working knowledge of this device.
Bipolar Junction Transistors

* Bipolar: both electrons and holes contribute to conduction

* Junction: device includes two p-n junctions (as opposed to a “point-contact” transistor, the first transistor)

* Transistor: “transfer resistor”
 When Bell Labs had an informal contest to name their new invention, one engineer pointed out that it acts like a resistor, but a resistor where the voltage is transferred across the device to control the resulting current.
 (http://amasci.com/amateur/trshort.html)

* invented in 1947 by Shockley, Bardeen, and Brattain at Bell Laboratories.

* BJT is still used extensively, and anyone interested in electronics must have at least a working knowledge of this device.

* “A BJT is two diodes connected back-to-back.”
Bipolar Junction Transistors

- Bipolar: both electrons and holes contribute to conduction
- Junction: device includes two p-n junctions (as opposed to a “point-contact” transistor, the first transistor)
- Transistor: “transfer resistor”
 When Bell Labs had an informal contest to name their new invention, one engineer pointed out that it acts like a resistor, but a resistor where the voltage is transferred across the device to control the resulting current.
 (http://amasci.com/amateur/trshort.html)
- invented in 1947 by Shockley, Bardeen, and Brattain at Bell Laboratories.
- BJT is still used extensively, and anyone interested in electronics must have at least a working knowledge of this device.
- “A BJT is two diodes connected back-to-back.”
 WRONG! Let us see why.
Consider a \textit{pnp} BJT in the following circuit:

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{circuit.png}
\end{figure}

If the transistor is replaced with two diodes connected back-to-back, we get:

Assuming $V_{on} = 0.7\,\text{V}$ for $D1$, we get $I_1 = 5\,\text{V} - 0.7\,\text{V}$, $I_2 = 0$ (since $D2$ is reverse biased), and $I_3 \approx I_1 = 4.3\,\text{mA}$.

M. B. Patil, IIT Bombay
Consider a \(pnp \) BJT in the following circuit:

If the transistor is replaced with two diodes connected back-to-back, we get

Assuming \(V_{on} = 0.7 \) V for \(D1 \), we get

\[I_1 = \frac{5 \text{ V} - 0.7 \text{ V}}{1 \text{ k}\Omega} = 4.3 \text{ mA}, \]

\[I_2 = 0 \] (since \(D2 \) is reverse biased), and

\[I_3 \approx I_1 = 4.3 \text{ mA}. \]
Consider a \textit{pnp} BJT in the following circuit:

![Bipolar Junction Transistor Circuit](image)

If the transistor is replaced with two diodes connected back-to-back, we get

![Diodes Connected Back-to-Back](image)

Assuming $V_{on} = 0.7$ V for D1, we get

\[
l_1 = \frac{5 \, \text{V} - 0.7 \, \text{V}}{R_1} = 4.3 \, \text{mA},
\]

$l_2 = 0$ (since D2 is reverse biased), and $l_3 \approx l_1 = 4.3$ mA.
Using a more realistic equivalent circuit for the BJT, we obtain,

\[I_1 = 5 \text{ V} - 0.7 \text{ V} \]
\[R_1 = 4.3 \text{ mA} \text{ (as before)}, \]
\[I_2 = \alpha I_1 \approx 4.3 \text{ mA} \text{ (since} \alpha \approx 1 \text{ for a typical BJT), and} \]
\[I_3 = I_1 - I_2 = (1 - \alpha) I_1 \approx 0 \text{ A} \]

The values of \(I_2 \) and \(I_3 \) are dramatically different than the ones obtained earlier, viz., \(I_2 \approx 0 \), \(I_3 \approx 4.3 \text{ mA} \).

Conclusion: A BJT is NOT the same as two diodes connected back-to-back (although it does have two p-n junctions).
Bipolar Junction Transistors

Using a more realistic equivalent circuit for the BJT, we obtain,

\[
\begin{align*}
\text{We now get,} \\
I_1 &= \frac{5 \text{ V} - 0.7 \text{ V}}{R_1} = 4.3 \text{ mA (as before)},
\end{align*}
\]
Using a more realistic equivalent circuit for the BJT, we obtain,

\[
\begin{align*}
&\text{We now get,} \\
&I_1 = \frac{5 \text{ V} - 0.7 \text{ V}}{R_1} = 4.3 \text{ mA (as before),} \\
&I_2 = \alpha I_1 \approx 4.3 \text{ mA (since } \alpha \approx 1 \text{ for a typical BJT), and}
\end{align*}
\]
Using a more realistic equivalent circuit for the BJT, we obtain,

\[\begin{align*}
\text{We now get,} \\
I_1 &= \frac{5 \text{ V} - 0.7 \text{ V}}{R_1} = 4.3 \text{ mA (as before),} \\
I_2 &= \alpha I_1 \approx 4.3 \text{ mA (since } \alpha \approx 1 \text{ for a typical BJT), and} \\
I_3 &= I_1 - I_2 = (1 - \alpha) I_1 \approx 0 \text{ A.}
\end{align*} \]
Using a more realistic equivalent circuit for the BJT, we obtain,

We now get,

\[I_1 = \frac{5 \text{V} - 0.7 \text{V}}{R_1} = 4.3 \text{ mA} \] (as before),

\[I_2 = \alpha I_1 \approx 4.3 \text{ mA} \] (since \(\alpha \approx 1 \) for a typical BJT), and

\[I_3 = I_1 - I_2 = (1 - \alpha) I_1 \approx 0 \text{ A}. \]

The values of \(I_2 \) and \(I_3 \) are dramatically different than the ones obtained earlier, viz., \(I_2 \approx 0, I_3 \approx 4.3 \text{ mA} \).
Using a more realistic equivalent circuit for the BJT, we obtain,

We now get,

\[I_1 = \frac{5 \text{ V} - 0.7 \text{ V}}{R_1} = 4.3 \text{ mA} \] (as before),

\[I_2 = \alpha I_1 \approx 4.3 \text{ mA} \] (since \(\alpha \approx 1 \) for a typical BJT), and

\[I_3 = I_1 - I_2 = (1 - \alpha) I_1 \approx 0 \text{ A}. \]

The values of \(I_2 \) and \(I_3 \) are dramatically different than the ones obtained earlier, viz., \(I_2 \approx 0 \), \(I_3 \approx 4.3 \text{ mA} \).

Conclusion: A BJT is NOT the same as two diodes connected back-to-back (although it does have two p-n junctions).

M. B. Patil, IIT Bombay
What is wrong with the two-diode model of a BJT?
What is wrong with the two-diode model of a BJT?

* When we replace a BJT with two diodes, we assume that there is no interaction between the two diodes, which may be expected if they are “far apart.”
What is wrong with the two-diode model of a BJT?

* When we replace a BJT with two diodes, we assume that there is no interaction between the two diodes, which may be expected if they are “far apart.”

* However, in a BJT, exactly the opposite is true. For a higher performance, the base region is made as short as possible, and the two diodes cannot be treated as independent devices.
What is wrong with the two-diode model of a BJT?

* When we replace a BJT with two diodes, we assume that there is no interaction between the two diodes, which may be expected if they are “far apart.”

* However, in a BJT, exactly the opposite is true. For a higher performance, the base region is made as short as possible, and the two diodes cannot be treated as independent devices.

* Later, we will look at the “Ebers-Moll model” of a BJT, which is a fairly accurate representation of the transistor action.
In the active mode of a BJT, the B-E junction is under forward bias, and the B-C junction is under reverse bias.

- For a pnp transistor, $V_{BE} > 0$ V and $V_{BC} < 0$ V.

- For an npn transistor, $V_{BE} > 0$ V and $V_{BC} < 0$ V.

Since the B-E junction is under forward bias, the voltage (magnitude) is typically 0.6 to 0.75 V.

The B-C voltage can be several Volts (or even hundreds of Volts), and is limited by the breakdown voltage of the B-C junction.

The symbol for a BJT includes an arrow for the emitter terminal, its direction indicating the current direction when the transistor is in active mode.

Analog circuits, including amplifiers, are generally designed to ensure that the BJTs are operating in the active mode.

M. B. Patil, IIT Bombay
In the active mode of a BJT, the B-E junction is under forward bias, and the B-C junction is under reverse bias.

- For a pnp transistor, $V_{EB} > 0 \text{ V}$, and $V_{CB} < 0 \text{ V}$.
- For an npn transistor, $V_{BE} > 0 \text{ V}$, and $V_{BC} < 0 \text{ V}$.
In the active mode of a BJT, the B-E junction is under forward bias, and the B-C junction is under reverse bias.

- For a *pnp* transistor, $V_{EB} > 0 \, V$, and $V_{CB} < 0 \, V$.
- For an *npn* transistor, $V_{BE} > 0 \, V$, and $V_{BC} < 0 \, V$.

Since the B-E junction is under forward bias, the voltage (magnitude) is typically 0.6 to 0.75 V.
In the active mode of a BJT, the B-E junction is under forward bias, and the B-C junction is under reverse bias.

- For a \textit{pnp} transistor, \(V_{EB} > 0 \) \(V \), and \(V_{CB} < 0 \) \(V \).
- For an \textit{npn} transistor, \(V_{BE} > 0 \) \(V \), and \(V_{BC} < 0 \) \(V \).

* Since the B-E junction is under forward bias, the voltage (magnitude) is typically 0.6 to 0.75 \(V \).

* The B-C voltage can be several Volts (or even hundreds of Volts), and is limited by the breakdown voltage of the B-C junction.
In the active mode of a BJT, the B-E junction is under forward bias, and the B-C junction is under reverse bias.

- For a pnp transistor, $V_{EB} > 0$ V, and $V_{CB} < 0$ V.
- For an npn transistor, $V_{BE} > 0$ V, and $V_{BC} < 0$ V.

Since the B-E junction is under forward bias, the voltage (magnitude) is typically 0.6 to 0.75 V.

The B-C voltage can be several Volts (or even hundreds of Volts), and is limited by the breakdown voltage of the B-C junction.

The symbol for a BJT includes an arrow for the emitter terminal, its direction indicating the current direction when the transistor is in active mode.
BJT in active mode

* In the active mode of a BJT, the B-E junction is under forward bias, and the B-C junction is under reverse bias.
 - For a \textit{pnp} transistor, \(V_{EB} > 0 \text{ V} \), and \(V_{CB} < 0 \text{ V} \).
 - For an \textit{npn} transistor, \(V_{BE} > 0 \text{ V} \), and \(V_{BC} < 0 \text{ V} \).

* Since the B-E junction is under forward bias, the voltage (magnitude) is typically 0.6 to 0.75 V.

* The B-C voltage can be several Volts (or even hundreds of Volts), and is limited by the breakdown voltage of the B-C junction.

* The symbol for a BJT includes an arrow for the emitter terminal, its direction indicating the current direction when the transistor is in active mode.

* Analog circuits, including amplifiers, are generally designed to ensure that the BJTs are operating in the active mode.
In the active mode, $I_C = \alpha I_E$, $\alpha \approx 1$ (slightly less than 1).

The ratio I_C/I_B is defined as the current gain β of the transistor.

$\beta = \frac{I_C}{I_B} = \frac{\alpha}{1 - \alpha}$.

β is a function of I_C and temperature. However, we will generally treat it as a constant, a useful approximation to simplify things and still get a good insight.
* In the active mode, \(I_C = \alpha I_E \), \(\alpha \approx 1 \) (slightly less than 1).
In the active mode, $I_C = \alpha I_E$, $\alpha \approx 1$ (slightly less than 1).

* $I_B = I_E - I_C = I_E (1 - \alpha)$.
In the active mode, \(I_C = \alpha I_E \), \(\alpha \approx 1 \) (slightly less than 1).

\(I_B = I_E - I_C = I_E (1 - \alpha) \).

The ratio \(I_C/I_B \) is defined as the current gain \(\beta \) of the transistor.

\[
\beta = \frac{I_C}{I_B} = \frac{\alpha}{1 - \alpha}.
\]
BJT in active mode

* In the active mode, \(I_C = \alpha I_E \), \(\alpha \approx 1 \) (slightly less than 1).

* \(I_B = I_E - I_C = I_E (1 - \alpha) \).

* The ratio \(I_C/I_B \) is defined as the current gain \(\beta \) of the transistor.

\[
\beta = \frac{I_C}{I_B} = \frac{\alpha}{1 - \alpha} .
\]

* \(\beta \) is a function of \(I_C \) and temperature. However, we will generally treat it as a constant, a useful approximation to simplify things and still get a good insight.
BJT in active mode

\[
\beta = \frac{i_C}{i_B} = \frac{\alpha}{1 - \alpha}
\]

Transistors are generally designed to get a high value of \(\beta\) (typically 100 to 250, but can be as high as 2000 for "super-\(\beta\)" transistors). A large \(\beta\) \(\Rightarrow\) \(i_B \ll i_C\) or \(i_E\) when the transistor is in the active mode.
BJT in active mode

\[\beta = \frac{i_C}{i_B} = \frac{\alpha}{1 - \alpha} \]

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>9</td>
</tr>
<tr>
<td>0.95</td>
<td>19</td>
</tr>
<tr>
<td>0.99</td>
<td>99</td>
</tr>
<tr>
<td>0.995</td>
<td>199</td>
</tr>
</tbody>
</table>

Transistors are generally designed to get a high value of \(\beta \) (typically 100 to 250, but can be as high as 2000 for “super-\(\beta \) transistors).
A large \(\beta \Rightarrow i_B \ll i_C \) or \(i_E \) when the transistor is in the active mode.
\(\beta \) increases substantially as \(\alpha \rightarrow 1 \).
$\beta = \frac{I_C}{I_B} = \frac{\alpha}{1 - \alpha}$

* β increases substantially as $\alpha \to 1$.

<table>
<thead>
<tr>
<th>α</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>9</td>
</tr>
<tr>
<td>0.95</td>
<td>19</td>
</tr>
<tr>
<td>0.99</td>
<td>99</td>
</tr>
<tr>
<td>0.995</td>
<td>199</td>
</tr>
</tbody>
</table>

M. B. Patil, IIT Bombay
BJT in active mode

\[\beta = \frac{I_C}{I_B} = \frac{\alpha}{1 - \alpha} \]

* \(\beta \) increases substantially as \(\alpha \to 1 \).

* Transistors are generally designed to get a high value of \(\beta \) (typically 100 to 250, but can be as high as 2000 for “super-\(\beta \)” transistors).
BJT in active mode

\[\beta = \frac{I_C}{I_B} = \frac{\alpha}{1 - \alpha} \]

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>9</td>
</tr>
<tr>
<td>0.95</td>
<td>19</td>
</tr>
<tr>
<td>0.99</td>
<td>99</td>
</tr>
<tr>
<td>0.995</td>
<td>199</td>
</tr>
</tbody>
</table>

* \(\beta \) increases substantially as \(\alpha \to 1 \).

* Transistors are generally designed to get a high value of \(\beta \) (typically 100 to 250, but can be as high as 2000 for “super-\(\beta \)” transistors).

* A large \(\beta \Rightarrow I_B \ll I_C \) or \(I_E \) when the transistor is in the active mode.
Assume the BJT to be in the active mode ⇒ $V_{BE} = 0.7\text{ V}$ and $I_C = \alpha I_E = \beta I_B$.

$I_B = V_{BB} - V_{BE} R_B = 2\text{ V} - 0.7\text{ V} \times 100\text{ k}\Omega = 13\mu\text{ A}$.

$I_C = \beta \times I_B = 100 \times 13\mu\text{ A} = 1.3\text{ mA}$.

$V_C = V_{CC} - I_C R_C = 10\text{ V} - 1.3\text{ mA} \times 1\text{ k}\Omega = 8.7\text{ V}$.

Let us check whether our assumption of active mode is correct. We need to check whether the B-C junction is under reverse bias.

$V_{BC} = V_B - V_C = 0.7\text{ V} - 8.7\text{ V} = -8.0\text{ V}$, i.e., the B-C junction is indeed under reverse bias.
A simple BJT circuit

Assume the BJT to be in the active mode ⇒ $V_{BE} = 0.7$ V and $I_C = \alpha I_E = \beta I_B$.

$I_B = V_{BB} - V_{BE} R_B = 2 V - 0.7 V 100 k = 13 \mu A$.

$I_C = \beta I_B = 100 \times 13 \mu A = 1.3$ mA.

$V_C = V_{CC} - I_C R_C = 10 V - 1.3 m A \times 1 k = 8.7 V$.

Let us check whether our assumption of active mode is correct. We need to check whether the B-C junction is under reverse bias.

$V_{BC} = V_B - V_C = 0.7 V - 8.7 V = -8.0 V$, i.e., the B-C junction is indeed under reverse bias.
Assume the BJT to be in the active mode $\Rightarrow V_{BE} = 0.7$. Then $I_C = \beta I_E = 100 \times 13\, \mu A = 1.3\, mA$.

$V_C = V_{CC} - I_C R_C = 10\, V - 1.3\, mA \times 1\, k = 8.7\, V$.

Let us check whether our assumption of active mode is correct. We need to check whether the B-C junction is under reverse bias. $V_{BC} = V_B - V_C = 0.7 - 8.7 = -8\, V$, i.e., the B-C junction is indeed under reverse bias.

M. B. Patil, IIT Bombay
A simple BJT circuit

Assume the BJT to be in the active mode $\Rightarrow V_{BE} = 0.7 \, V$ and $I_C = \alpha I_E = \beta I_B$.

M. B. Patil, IIT Bombay
A simple BJT circuit

Assume the BJT to be in the active mode ⇒ $V_{BE} = 0.7$ V and $I_C = \alpha I_E = \beta I_B$.

$I_B = \frac{V_{BB} - V_{BE}}{R_B} = \frac{2 \text{ V} - 0.7 \text{ V}}{100 \text{ k}} = 13 \mu\text{A}$.
A simple BJT circuit

Assume the BJT to be in the active mode \(\Rightarrow V_{BE} = 0.7 \text{ V} \) and \(I_C = \alpha I_E = \beta I_B \).

\[
I_B = \frac{V_{BB} - V_{BE}}{R_B} = \frac{2 \text{ V} - 0.7 \text{ V}}{100 \text{ k}} = 13 \mu\text{A}.
\]

\[
I_C = \beta \times I_B = 100 \times 13 \mu\text{A} = 1.3 \text{ mA}.
\]
A simple BJT circuit

Assume the BJT to be in the active mode ⇒ $V_{BE} = 0.7 \, V$ and $I_C = \alpha I_E = \beta I_B$.

$L_B = \frac{V_{BB} - V_{BE}}{R_B} = \frac{2 \, V - 0.7 \, V}{100 \, k} = 13 \, \mu A$.

$I_C = \beta \times I_B = 100 \times 13 \, \mu A = 1.3 \, mA$.

$V_C = V_{CC} - I_C R_C = 10 \, V - 1.3 \, mA \times 1 \, k = 8.7 \, V$.

M. B. Patil, IIT Bombay
A simple BJT circuit

Assume the BJT to be in the active mode ⇒ $V_{BE} = 0.7 \text{ V}$ and $I_C = \alpha I_E = \beta I_B$.

$I_B = \frac{V_{BB} - V_{BE}}{R_B} = \frac{2 \text{ V} - 0.7 \text{ V}}{100 \text{ k}} = 13 \mu\text{A}$.

$I_C = \beta \times I_B = 100 \times 13 \mu\text{A} = 1.3 \text{ mA}$.

$V_C = V_{CC} - I_C R_C = 10 \text{ V} - 1.3 \text{ mA} \times 1 \text{ k} = 8.7 \text{ V}$.

Let us check whether our assumption of active mode is correct. We need to check whether the B-C junction is under reverse bias.

M. B. Patil, IIT Bombay
A simple BJT circuit

Assume the BJT to be in the active mode \(\Rightarrow V_{BE} = 0.7 \, V \) and \(I_C = \alpha I_E = \beta I_B \).

\[
I_B = \frac{V_{BB} - V_{BE}}{R_B} = \frac{2 \, V - 0.7 \, V}{100 \, k} = 13 \, \mu A.
\]

\[
I_C = \beta \times I_B = 100 \times 13 \, \mu A = 1.3 \, mA.
\]

\[
V_C = V_{CC} - I_C R_C = 10 \, V - 1.3 \, mA \times 1 \, k = 8.7 \, V.
\]

Let us check whether our assumption of active mode is correct. We need to check whether the B-C junction is under reverse bias.

\[
V_{BC} = V_B - V_C = 0.7 \, V - 8.7 \, V = -8.0 \, V,
\]

i.e., the B-C junction is indeed under reverse bias.

M. B. Patil, IIT Bombay
What happens if R_B is changed from 100 k to 10 k?
A simple BJT circuit: continued

What happens if R_B is changed from 100 k to 10 k?

Assuming the BJT to be in the active mode again, we have $V_{BE} \approx 0.7 \, V$, and $I_C = \beta I_B$.

M. B. Patil, IIT Bombay
What happens if R_B is changed from 100 k to 10 k?

Assuming the BJT to be in the active mode again, we have $V_{BE} \approx 0.7$ V, and $I_C = \beta I_B$.

\[
I_B = \frac{V_{BB} - V_{BE}}{R_B} = \frac{2V - 0.7V}{10k} = 130 \mu A
\]
What happens if R_B is changed from 100 k to 10 k?

Assuming the BJT to be in the active mode again, we have $V_{BE} \approx 0.7$ V, and $I_C = \beta I_B$.

$$I_B = \frac{V_{BB} - V_{BE}}{R_B} = \frac{2 \text{ V} - 0.7 \text{ V}}{10 \text{ k}} = 130 \mu\text{A} \rightarrow I_C = \beta \times I_B = 100 \times 130 \mu\text{A} = 13 \text{ mA}.$$
What happens if R_B is changed from 100 k to 10 k?
Assuming the BJT to be in the active mode again, we have $V_{BE} \approx 0.7 \ V$, and $I_C = \beta I_B$.

$$I_B = \frac{V_{BB} - V_{BE}}{R_B} = \frac{2 \ V - 0.7 \ V}{10 \ k} = 130 \ \mu A \rightarrow I_C = \beta \times I_B = 100 \times 130 \ \mu A = 13 \ mA.$$

$$V_C = V_{CC} - I_C R_C = 10 \ V - 13 \ mA \times 1 \ k = -3 \ V$$
What happens if R_B is changed from 100 k to 10 k?

Assuming the BJT to be in the active mode again, we have $V_{BE} \approx 0.7$ V, and $I_C = \beta I_B$.

$I_B = \frac{V_{BB} - V_{BE}}{R_B} = \frac{2 \text{ V} - 0.7 \text{ V}}{10 \text{ k}} = 130 \mu\text{A} \rightarrow I_C = \beta \times I_B = 100 \times 130 \mu\text{A} = 13 \text{ mA}.$

$V_C = V_{CC} - I_C R_C = 10 \text{ V} - 13 \text{ mA} \times 1 \text{ k} = -3 \text{ V}$

$\rightarrow V_{BC} = V_B - V_C = 0.7 \text{ V} - (-3) \text{ V} = 3.7 \text{ V}.$
What happens if R_B is changed from 100 k to 10 k?

Assuming the BJT to be in the active mode again, we have $V_{BE} \approx 0.7$ V, and $I_C = \beta I_B$.

\[
I_B = \frac{V_{BB} - V_{BE}}{R_B} = \frac{2 \text{ V} - 0.7 \text{ V}}{10 \text{ k}} = 130 \, \mu\text{A} \rightarrow I_C = \beta \times I_B = 100 \times 130 \, \mu\text{A} = 13 \text{ mA}.
\]

\[
V_C = V_{CC} - I_C R_C = 10 \text{ V} - 13 \text{ mA} \times 1 \text{ k} = -3 \text{ V}
\]

$V_{BC} = V_B - V_C = 0.7 \text{ V} - (-3) \text{ V} = 3.7 \text{ V}$.

V_{BC} is not only positive, it is huge!

\rightarrow The BJT cannot be in the active mode, and we need to take another look at the circuit.
Ebers-Moll model for a pnp transistor

Active mode ("forward" active mode): B-E in f.b. B-C in r.b.

\[I_C = \alpha I_E \]

Reverse active mode: B-E in r.b. B-C in f.b.

In the reverse active mode, emitter \leftrightarrow collector. (However, we continue to refer to the terminals with their original names.)

The two α's, α_F (forward α) and α_R (reverse α) are generally quite different. Typically, $\alpha_F > 0.98$, and α_R is in the range from 0.02 to 0.5.

The corresponding current gains (β_F and β_R) differ significantly, since $\beta = \alpha/(1 - \alpha)$.
Ebers-Moll model for a pnp transistor

Active mode ("forward" active mode): B-E in f.b. B-C in r.b.

Reverse active mode: B-E in r.b. B-C in f.b.

In the reverse active mode, emitter \leftrightarrow collector. (However, we continue to refer to the terminals with their original names.)

The two α's, α_F (forward α) and α_R (reverse α) are generally quite different. Typically, $\alpha_F > 0.98$, and α_R is in the range from 0.02 to 0.5. The corresponding current gains (β_F and β_R) differ significantly, since $\beta = \alpha / (1 - \alpha)$.

In amplifiers, the BJT is biased in the forward active mode (simply called the "active mode") in order to make use of the higher value of β in that mode.

M. B. Patil, IIT Bombay
Ebers-Moll model for a \textit{pnp} transistor

Active mode ("forward" active mode): B-E in f.b. B-C in r.b.

\begin{itemize}
\item \textbf{Active mode ("forward" active mode): B-E in f.b. B-C in r.b.}
\end{itemize}

Reverse active mode: B-E in r.b. B-C in f.b.

\begin{itemize}
\item \textbf{Reverse active mode: B-E in r.b. B-C in f.b.}
\end{itemize}

In the reverse active mode, emitter ↔ collector. (However, we continue to refer to the terminals with their original names.)
Ebers-Moll model for a \textit{pnp} transistor

Active mode ("forward" active mode): B-E in f.b. B-C in r.b.

Reverse active mode: B-E in r.b. B-C in f.b.

In the reverse active mode, emitter \leftrightarrow collector. (However, we continue to refer to the terminals with their original names.)

The two α's, α_F (forward α) and α_R (reverse α) are generally quite different.
Ebers-Moll model for a pnp transistor

Active mode ("forward" active mode): B-E in f.b. B-C in r.b.

Reverse active mode: B-E in r.b. B-C in f.b.

In the reverse active mode, emitter ↔ collector. (However, we continue to refer to the terminals with their original names.)

The two α’s, α_F (forward α) and α_R (reverse α) are generally quite different.

Typically, α_F > 0.98, and α_R is in the range from 0.02 to 0.5.
Ebers-Moll model for a pnp transistor

Active mode ("forward" active mode): B-E in f.b. B-C in r.b.

Reverse active mode: B-E in r.b. B-C in f.b.

In the reverse active mode, emitter ↔ collector. (However, we continue to refer to the terminals with their original names.)

The two α's, α_F (forward α) and α_R (reverse α) are generally quite different.

Typically, α_F > 0.98, and α_R is in the range from 0.02 to 0.5.

The corresponding current gains (β_F and β_R) differ significantly, since β = α/(1 − α).
Ebers-Moll model for a pnp transistor

Active mode ("forward" active mode): B-E in f.b. B-C in r.b.

Reverse active mode: B-E in r.b. B-C in f.b.

In the reverse active mode, emitter ↔ collector. (However, we continue to refer to the terminals with their original names.)

The two α's, \(\alpha_F \) (forward α) and \(\alpha_R \) (reverse α) are generally quite different. Typically, \(\alpha_F > 0.98 \), and \(\alpha_R \) is in the range from 0.02 to 0.5.

The corresponding current gains (\(\beta_F \) and \(\beta_R \)) differ significantly, since \(\beta = \alpha / (1 - \alpha) \).

In amplifiers, the BJT is biased in the forward active mode (simply called the "active mode") in order to make use of the higher value of \(\beta \) in that mode.
The Ebers-Moll model combines the forward and reverse operations of a BJT in a single comprehensive model.

\[I_{EC} = I_{ES} \left[\exp \left(\frac{V_{EB}}{V_T} \right) - 1 \right], \quad I_{IC} = I_{CS} \left[\exp \left(\frac{V_{CB}}{V_T} \right) - 1 \right]. \]
The Ebers-Moll model combines the forward and reverse operations of a BJT in a single comprehensive model.

The currents I'_E and I'_C are given by the Shockley diode equation:

$$I'_E = I_{ES} \left[\exp \left(\frac{V_{EB}}{V_T} \right) - 1 \right], \quad I'_C = I_{CS} \left[\exp \left(\frac{V_{CB}}{V_T} \right) - 1 \right].$$

M. B. Patil, IIT Bombay
The Ebers-Moll model combines the forward and reverse operations of a BJT in a single comprehensive model.

The currents I'_E and I'_C are given by the Shockley diode equation:

$$I'_E = I_{ES} \left[\exp \left(\frac{V_{EB}}{V_T} \right) - 1 \right], \quad I'_C = I_{CS} \left[\exp \left(\frac{V_{CB}}{V_T} \right) - 1 \right].$$

<table>
<thead>
<tr>
<th>Mode</th>
<th>B-E</th>
<th>B-C</th>
<th>$I'_E \gg I'_C$</th>
<th>$I'_C \gg I'_E$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward active</td>
<td>forward</td>
<td>reverse</td>
<td>$I'_E \gg I'_C$</td>
<td>$I'_C \gg I'_E$</td>
</tr>
<tr>
<td>Reverse active</td>
<td>reverse</td>
<td>forward</td>
<td>$I'_C \gg I'_E$</td>
<td>$I'_E \gg I'_C$</td>
</tr>
<tr>
<td>Saturation</td>
<td>forward</td>
<td>forward</td>
<td>I'_E and I'_C are comparable.</td>
<td>I'_E and I'_C are comparable.</td>
</tr>
<tr>
<td>Cut-off</td>
<td>reverse</td>
<td>reverse</td>
<td>I'_E and I'_C are negligible.</td>
<td>I'_E and I'_C are negligible.</td>
</tr>
</tbody>
</table>
Ebers-Moll model

Ebers-Moll Model Equations

For a **pnp transistor**:

- $I'_E = I_{ES} \left[\exp \left(\frac{V_{EB}}{V_T} \right) - 1 \right]$
- $I'_C = I_{CS} \left[\exp \left(\frac{V_{CB}}{V_T} \right) - 1 \right]$

For an **nnp transistor**:

- $I'_E = I_{ES} \left[\exp \left(\frac{V_{BE}}{V_T} \right) - 1 \right]$
- $I'_C = I_{CS} \left[\exp \left(\frac{V_{BC}}{V_T} \right) - 1 \right]$
Ebers-Moll model

\[I'_E = I_{ES} \left[\exp \left(\frac{V_{EB}}{V_T} \right) - 1 \right] \]

\[I'_C = I_{CS} \left[\exp \left(\frac{V_{CB}}{V_T} \right) - 1 \right] \]

\[I'_E = I_{ES} \left[\exp \left(\frac{V_{BE}}{V_T} \right) - 1 \right] \]

\[I'_C = I_{CS} \left[\exp \left(\frac{V_{BC}}{V_T} \right) - 1 \right] \]

M. B. Patil, IIT Bombay
Ebers-Moll model in active mode

\[I_{C} = \alpha F I_{E} = \beta F I_{B} \]

\[I_{C}' = I_{C} \left[\frac{e^{V_{BC}/V_{T}} - 1}{e^{V_{BC}/V_{T}} - 1} \right] \]

\[I_{E}' = I_{E} \left[\frac{e^{V_{BE}/V_{T}} - 1}{e^{V_{BE}/V_{T}} - 1} \right] \]

\[I_{B}' = I_{B} \left[\frac{e^{V_{EB}/V_{T}} - 1}{e^{V_{EB}/V_{T}} - 1} \right] \]
Ebers-Moll model in active mode

pnp transistor

\[I'_C = I_{ES} \left[\exp \left(\frac{V_{EB}}{V_T} \right) - 1 \right] \]

\[I'_E = I_{ES} \left[\exp \left(\frac{V_{EB}}{V_T} \right) - 1 \right] \]

\[I_C = \alpha_F I_E = \beta_F I_B \]

nnp transistor

\[I'_C = I_{CS} \left[\exp \left(\frac{V_{CB}}{V_T} \right) - 1 \right] \]

\[I'_E = I_{ES} \left[\exp \left(\frac{V_{BE}}{V_T} \right) - 1 \right] \]

\[I_C = \alpha_F I_E = \beta_F I_B \]
Since BJT is a three-terminal device, its behavior can be described in many different ways, e.g.,

- I_C versus V_{CB} for different values of I_E
- I_C versus V_{CE} for different values of V_{BE}

The $I-V$ relationship for a BJT is not a single curve but a "family" of curves or "characteristics."

The I_C-V_{CE} characteristics for different I_E values are useful in understanding amplifier biasing.

M. B. Patil, IIT Bombay
Since BJT is a three-terminal device, its behaviour can be described in many different ways, e.g.,
* Since BJT is a three-terminal device, its behaviour can be described in many different ways, e.g.,

- I_C versus V_{CB} for different values of I_E
* Since BJT is a three-terminal device, its behaviour can be described in many different ways, e.g.,

- I_C versus V_{CB} for different values of I_E
- I_C versus V_{CE} for different values of V_{BE}
* Since BJT is a three-terminal device, its behaviour can be described in many different ways, e.g.,

- I_C versus V_{CB} for different values of I_E
- I_C versus V_{CE} for different values of V_{BE}
- I_C versus V_{CE} for different values of I_B
Since BJT is a three-terminal device, its behaviour can be described in many different ways, e.g.,

- I_C versus V_{CB} for different values of I_E
- I_C versus V_{CE} for different values of V_{BE}
- I_C versus V_{CE} for different values of I_B

* The I-V relationship for a BJT is not a single curve but a “family” of curves or “characteristics.”
* Since BJT is a three-terminal device, its behaviour can be described in many different ways, e.g.,
 - I_C versus V_{CB} for different values of I_E
 - I_C versus V_{CE} for different values of V_{BE}
 - I_C versus V_{CE} for different values of I_B

* The $I-V$ relationship for a BJT is not a single curve but a “family” of curves or “characteristics.”

* The I_C-V_{CE} characteristics for different I_B values are useful in understanding amplifier biasing.
BJT $I-V$ characteristics

\[\alpha_F = 0.99 \rightarrow \beta_F = \frac{\alpha_F}{1 - \alpha_F} = 99 \]

\[\alpha_R = 0.5 \rightarrow \beta_R = \frac{\alpha_R}{1 - \alpha_R} = 1 \]

\[I_{ES} = 1 \times 10^{-14} \text{ A} \]

\[I_{CS} = 2 \times 10^{-14} \text{ A} \]
BJT \(I-V \) characteristics

\[\begin{align*}
\alpha_F &= 0.99 \rightarrow \beta_F = \frac{\alpha_F}{1 - \alpha_F} = 99 \\
\alpha_R &= 0.5 \rightarrow \beta_R = \frac{\alpha_R}{1 - \alpha_R} = 1 \\
I_{ES} &= 1 \times 10^{-14} \text{ A} \\
I_{CS} &= 2 \times 10^{-14} \text{ A}
\end{align*} \]

\[\begin{align*}
I'_E &= I_{ES} \left[\exp \left(\frac{V_{BE}}{V_T} \right) - 1 \right] \\
I'_C &= I_{CS} \left[\exp \left(\frac{V_{BC}}{V_T} \right) - 1 \right] \\
I_C &= \alpha_F I_E = \beta_F I_B \text{ in active mode}
\end{align*} \]
BJT \(I-V\) characteristics

\[\text{**Linear Region:** B-E under forward bias, B-C under reverse bias, } I_C = \beta_F I_B\]

\[\text{**Saturation Region:** B-E under forward bias, B-C under forward bias, } I_C < \beta_F I_B\]

\[\alpha_F = 0.99 \rightarrow \beta_F = \frac{\alpha_F}{1 - \alpha_F} = 99\]

\[\alpha_R = 0.5 \rightarrow \beta_R = \frac{\alpha_R}{1 - \alpha_R} = 1\]

\[I_{ES} = 1 \times 10^{-14} \text{ A}\]

\[I_{CS} = 2 \times 10^{-14} \text{ A}\]
BJT I-V characteristics

\[\alpha_F = 0.99 \rightarrow \beta_F = \frac{\alpha_F}{1 - \alpha_F} = 99 \]

\[\alpha_R = 0.5 \rightarrow \beta_R = \frac{\alpha_R}{1 - \alpha_R} = 1 \]

\[I_{ES} = 1 \times 10^{-14} \text{ A} \]

\[I_{CS} = 2 \times 10^{-14} \text{ A} \]

\[I'_E = I_{ES} \left[\exp \left(\frac{V_{BE}}{V_T} \right) - 1 \right] \]

\[I'_C = I_{CS} \left[\exp \left(\frac{V_{BC}}{V_T} \right) - 1 \right] \]

\[I_C = \alpha_F I_E = \beta_F I_B \text{ in active mode} \]

Linear region: B-E under forward bias, B-C under reverse bias, \(I_C = \beta_F I_B \)

Saturation region: B-E under forward bias, B-C under forward bias, \(I_C < \beta_F I_B \)

M. B. Patil, IIT Bombay
BJT $I-V$ characteristics

$\alpha_F = 0.99 \rightarrow \beta_F = \frac{\alpha_F}{1 - \alpha_F} = 99$

$\alpha_R = 0.5 \rightarrow \beta_R = \frac{\alpha_R}{1 - \alpha_R} = 1$

$I_{ES} = 1 \times 10^{-14}$ A

$I_{CS} = 2 \times 10^{-14}$ A

$I_E' = I_{ES} \left[\exp\left(\frac{V_{BE}}{V_T}\right) - 1 \right]$

$I_C' = I_{CS} \left[\exp\left(\frac{V_{BC}}{V_T}\right) - 1 \right]$

$I_C = \alpha_F I_E = \beta_F I_B$ in active mode

* linear region: B-E under forward bias, B-C under reverse bias, $I_C = \beta_F I_B$

* saturation region: B-E under forward bias, B-C under forward bias, $I_C < \beta_F I_B$

$I_B = 10 \mu A$

$I_C (mA)$

$V_{CE} (Volts)$

$V_{BE} (Volts)$

$V_{BC} (Volts)$
BJT $I-V$ characteristics

\[\alpha_F = 0.99 \rightarrow \beta_F = \frac{\alpha_F}{1 - \alpha_F} = 99 \]
\[\alpha_R = 0.5 \rightarrow \beta_R = \frac{\alpha_R}{1 - \alpha_R} = 1 \]
\[I_{ES} = 1 \times 10^{-14} \text{ A} \]
\[I_{CS} = 2 \times 10^{-14} \text{ A} \]

$\text{I} = I_{ES} \left[\exp(V_{BE}/V_T) - 1 \right]$

$\text{I} = I_{CS} \left[\exp(V_{BC}/V_T) - 1 \right]$

$\text{I} = \alpha_F \text{I} = \beta_F \text{I}_B$ in active mode

* linear region: B-E under forward bias, B-C under reverse bias, $I_C = \beta_F I_B$
* saturation region: B-E under forward bias, B-C under forward bias, $I_C < \beta_F I_B$

M. B. Patil, IIT Bombay
We are now in a position to explain what happens when R_B is decreased from 100 k to 10 k in the above circuit.
We are now in a position to explain what happens when R_B is decreased from 100 k to 10 k in the above circuit.

Let us plot $I_C - V_{CE}$ curves for $I_B \approx \frac{V_{BB} - 0.7 \text{ V}}{R_B}$ for the two values of R_B.

M. B. Patil, IIT Bombay
We are now in a position to explain what happens when R_B is decreased from 100 k to 10 k in the above circuit.

Let us plot $I_C - V_{CE}$ curves for $I_B \approx \frac{V_{BB} - 0.7 \, V}{R_B}$ for the two values of R_B.

M. B. Patil, IIT Bombay
We are now in a position to explain what happens when R_B is decreased from 100 k to 10 k in the above circuit.

Let us plot $I_C - V_{CE}$ curves for $I_B \approx \frac{V_{BB} - 0.7}{R_B}$ for the two values of R_B.

In addition to the BJT $I_C - V_{CE}$ curve, the circuit variables must also satisfy the constraint, $V_{CC} = V_{CE} + I_C R_C$, a straight line in the $I_C - V_{CE}$ plane.
A simple BJT circuit (revisited)

We are now in a position to explain what happens when R_B is decreased from 100 k to 10 k in the above circuit.

Let us plot $I_C - V_{CE}$ curves for $I_B \approx \frac{V_{BB} - 0.7 \text{ V}}{R_B}$ for the two values of R_B.

In addition to the BJT $I_C - V_{CE}$ curve, the circuit variables must also satisfy the constraint, $V_{CC} = V_{CE} + I_C R_C$, a straight line in the $I_C - V_{CE}$ plane.
We are now in a position to explain what happens when R_B is decreased from 100 k to 10 k in the above circuit. Let us plot $I_C - V_{CE}$ curves for $I_B \approx \frac{V_{BB} - 0.7V}{R_B}$ for the two values of R_B.

In addition to the BJT $I_C - V_{CE}$ curve, the circuit variables must also satisfy the constraint, $V_{CC} = V_{CE} + I_C R_C$, a straight line in the $I_C - V_{CE}$ plane.

The intersection of the load line and the BJT characteristics gives the solution for the circuit. For $R_B = 10$ k, note that the BJT operates in the saturation region, leading to $V_{CE} \approx 0.2$ V, and $I_C = 9.8$ mA.
Assuming the transistor to be operating in the active region, find R_E and R_C to obtain $I_E = 2 \text{ mA}$, and $V_{BC} = 1 \text{ V}$ ($\alpha \approx 1$).

\begin{equation}
I_E R_E = V_{EE} - V_{EB} = 5 \text{ V} - 0 = 5 \text{ V} \Rightarrow R_E = 4.3 \text{ k}\Omega.
\end{equation}

\begin{equation}
I_C R_C = V_{CC} - V_{BC} = 5 \text{ V} - 1 \text{ V} = 4 \text{ V} \Rightarrow R_C = 2 \text{ k}\Omega.
\end{equation}
Assuming the transistor to be operating in the active region, find R_E and R_C to obtain $I_E = 2\, \text{mA}$, and $V_{BC} = 1\, \text{V}$ ($\alpha \approx 1$).

\[V_{EB} - V_{EE} + I_E R_E = 0 \]
Assuming the transistor to be operating in the active region, find R_E and R_C to obtain $I_E = 2\, \text{mA}$, and $V_{BC} = 1\, \text{V} \ (\alpha \approx 1)$.

\[V_{EB} - V_{EE} + I_E R_E = 0 \quad \rightarrow \quad I_E R_E = 5 - 0.7 \]
Assuming the transistor to be operating in the active region, find R_E and R_C to obtain $I_E = 2 \, \text{mA}$, and $V_{BC} = 1 \, \text{V}$ ($\alpha \approx 1$).

\[
V_{EB} - V_{EE} + I_E R_E = 0 \quad \rightarrow \quad I_E R_E = 5 - 0.7 \quad \rightarrow \quad R_E = \frac{4.3 \, \text{V}}{2 \, \text{mA}} = 2.15 \, \text{k}.
\]
Assuming the transistor to be operating in the active region, find R_E and R_C to obtain $I_E = 2\, \text{mA}$, and $V_{BC} = 1\, \text{V}$ ($\alpha \approx 1$).

\begin{align*}
V_{EB} - V_{EE} + I_E R_E &= 0 \rightarrow I_E R_E = 5 - 0.7 \rightarrow R_E = \frac{4.3\, \text{V}}{2\, \text{mA}} = 2.15\, \text{k}.

V_{BC} + I_C R_C - V_{CC} &= 0
\end{align*}
Assuming the transistor to be operating in the active region, find R_E and R_C to obtain $I_E = 2\, \text{mA}$, and $V_{BC} = 1\, \text{V}$ ($\alpha \approx 1$).

\[V_{EB} - V_{EE} + I_E R_E = 0 \quad \rightarrow \quad I_E R_E = 5 - 0.7 \quad \rightarrow \quad R_E = \frac{4.3\, \text{V}}{2\, \text{mA}} = 2.15\, \text{k} \. \]
\[V_{BC} + I_C R_C - V_{CC} = 0 \quad \rightarrow \quad I_C R_C = V_{CC} - V_{BC} \. \]
Assuming the transistor to be operating in the active region, find R_E and R_C to obtain $I_E = 2 \text{ mA}$, and $V_{BC} = 1 \text{ V}$ ($\alpha \approx 1$).

\[
V_{EB} - V_{EE} + I_E R_E = 0 \quad \rightarrow \quad I_E R_E = 5 - 0.7 \quad \rightarrow \quad R_E = \frac{4.3 \text{ V}}{2 \text{ mA}} = 2.15 \text{ k}.
\]

\[
V_{BC} + I_C R_C - V_{CC} = 0 \quad \rightarrow \quad I_C R_C = V_{CC} - V_{BC}.
\]

Since $\alpha \approx 1$, $I_C \approx I_E$
Assuming the transistor to be operating in the active region, find R_E and R_C to obtain $I_E = 2 \text{ mA}$, and $V_{BC} = 1 \text{ V}$ ($\alpha \approx 1$).

\[V_{EB} - V_{EE} + I_E R_E = 0 \quad \rightarrow \quad I_E R_E = 5 - 0.7 \quad \rightarrow \quad R_E = \frac{4.3 \text{ V}}{2 \text{ mA}} = 2.15 \text{ k} \Omega. \]

\[V_{BC} + I_C R_C - V_{CC} = 0 \quad \rightarrow \quad I_C R_C = V_{CC} - V_{BC}. \]

Since $\alpha \approx 1$, $I_C \approx I_E \quad \rightarrow \quad I_E R_C \approx 5 - 1 \quad \rightarrow \quad R_C = \frac{4 \text{ V}}{2 \text{ mA}} = 2 \text{ k} \Omega.