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What is deciBel (dB)?

* The unit dB is used to represent quantities on a logarithmic scale.

* Because of the log scale, dB is convenient for representing numbers that vary in a wide range.

* log scaling roughly corresponds to human perception of sound and light.

* log scale allows × and ÷ to be replaced by + and − → simpler!

* The unit “Bel” was developed in the 1920s by Bell Labs engineers to quantify attenuation of an audio
signal over one mile of cable.

Interesting facts:

- Alexander Graham Bell, who invented the telephone in 1876, could never talk to his wife on the phone

(she was deaf).

- Bell considered the telephone an intrusion and refused to put one in his office.

* The unit Bel turned out to be too large in practice → deciBel (i.e., one tenth of a Bel).

M. B. Patil, IIT Bombay



What is deciBel (dB)?

* The unit dB is used to represent quantities on a logarithmic scale.

* Because of the log scale, dB is convenient for representing numbers that vary in a wide range.

* log scaling roughly corresponds to human perception of sound and light.

* log scale allows × and ÷ to be replaced by + and − → simpler!

* The unit “Bel” was developed in the 1920s by Bell Labs engineers to quantify attenuation of an audio
signal over one mile of cable.

Interesting facts:

- Alexander Graham Bell, who invented the telephone in 1876, could never talk to his wife on the phone

(she was deaf).

- Bell considered the telephone an intrusion and refused to put one in his office.

* The unit Bel turned out to be too large in practice → deciBel (i.e., one tenth of a Bel).

M. B. Patil, IIT Bombay



What is deciBel (dB)?

* The unit dB is used to represent quantities on a logarithmic scale.

* Because of the log scale, dB is convenient for representing numbers that vary in a wide range.

* log scaling roughly corresponds to human perception of sound and light.

* log scale allows × and ÷ to be replaced by + and − → simpler!

* The unit “Bel” was developed in the 1920s by Bell Labs engineers to quantify attenuation of an audio
signal over one mile of cable.

Interesting facts:

- Alexander Graham Bell, who invented the telephone in 1876, could never talk to his wife on the phone

(she was deaf).

- Bell considered the telephone an intrusion and refused to put one in his office.

* The unit Bel turned out to be too large in practice → deciBel (i.e., one tenth of a Bel).

M. B. Patil, IIT Bombay



What is deciBel (dB)?

* The unit dB is used to represent quantities on a logarithmic scale.

* Because of the log scale, dB is convenient for representing numbers that vary in a wide range.

* log scaling roughly corresponds to human perception of sound and light.

* log scale allows × and ÷ to be replaced by + and − → simpler!

* The unit “Bel” was developed in the 1920s by Bell Labs engineers to quantify attenuation of an audio
signal over one mile of cable.

Interesting facts:

- Alexander Graham Bell, who invented the telephone in 1876, could never talk to his wife on the phone

(she was deaf).

- Bell considered the telephone an intrusion and refused to put one in his office.

* The unit Bel turned out to be too large in practice → deciBel (i.e., one tenth of a Bel).

M. B. Patil, IIT Bombay



What is deciBel (dB)?

* The unit dB is used to represent quantities on a logarithmic scale.

* Because of the log scale, dB is convenient for representing numbers that vary in a wide range.

* log scaling roughly corresponds to human perception of sound and light.

* log scale allows × and ÷ to be replaced by + and − → simpler!

* The unit “Bel” was developed in the 1920s by Bell Labs engineers to quantify attenuation of an audio
signal over one mile of cable.

Interesting facts:

- Alexander Graham Bell, who invented the telephone in 1876, could never talk to his wife on the phone

(she was deaf).

- Bell considered the telephone an intrusion and refused to put one in his office.

* The unit Bel turned out to be too large in practice → deciBel (i.e., one tenth of a Bel).

M. B. Patil, IIT Bombay



What is deciBel (dB)?

* The unit dB is used to represent quantities on a logarithmic scale.

* Because of the log scale, dB is convenient for representing numbers that vary in a wide range.

* log scaling roughly corresponds to human perception of sound and light.

* log scale allows × and ÷ to be replaced by + and − → simpler!

* The unit “Bel” was developed in the 1920s by Bell Labs engineers to quantify attenuation of an audio
signal over one mile of cable.

Interesting facts:

- Alexander Graham Bell, who invented the telephone in 1876, could never talk to his wife on the phone

(she was deaf).

- Bell considered the telephone an intrusion and refused to put one in his office.

* The unit Bel turned out to be too large in practice → deciBel (i.e., one tenth of a Bel).

M. B. Patil, IIT Bombay



What is deciBel (dB)?

* The unit dB is used to represent quantities on a logarithmic scale.

* Because of the log scale, dB is convenient for representing numbers that vary in a wide range.

* log scaling roughly corresponds to human perception of sound and light.

* log scale allows × and ÷ to be replaced by + and − → simpler!

* The unit “Bel” was developed in the 1920s by Bell Labs engineers to quantify attenuation of an audio
signal over one mile of cable.

Interesting facts:

- Alexander Graham Bell, who invented the telephone in 1876, could never talk to his wife on the phone

(she was deaf).

- Bell considered the telephone an intrusion and refused to put one in his office.

* The unit Bel turned out to be too large in practice → deciBel (i.e., one tenth of a Bel).

M. B. Patil, IIT Bombay



What is deciBel (dB)?

* The unit dB is used to represent quantities on a logarithmic scale.

* Because of the log scale, dB is convenient for representing numbers that vary in a wide range.

* log scaling roughly corresponds to human perception of sound and light.

* log scale allows × and ÷ to be replaced by + and − → simpler!

* The unit “Bel” was developed in the 1920s by Bell Labs engineers to quantify attenuation of an audio
signal over one mile of cable.

Interesting facts:

- Alexander Graham Bell, who invented the telephone in 1876, could never talk to his wife on the phone

(she was deaf).

- Bell considered the telephone an intrusion and refused to put one in his office.

* The unit Bel turned out to be too large in practice → deciBel (i.e., one tenth of a Bel).

M. B. Patil, IIT Bombay



What is deciBel (dB)?

* dB is a unit that describes a quantity, on a log scale, with respect to a reference quantity.

X (in dB) = 10 log10 (X/Xref).

For example, if P1 = 20W and Pref = 1W ,

P1 = 10 log10 (20W /1W ) = 10 log10 (20) = 13 dB.

* The gain of a voltage-to-voltage amplifier is often expressed in dB. In that case, the ratio V 2
o /V

2
i is

considered (since P ∝ V 2 or P ∝ I 2 for a resistor).

AV in dB = 10 log10 |Vo/Vi |2 = 20 log10 |Vo/Vi |,
* “dBm” is a related unit used to describe voltages with a reference of 1 mV.

For example, 2.2 V: 20 log10

(
2.2 V

1 mV

)
= 6.85 dBm.
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Example

Amplifier Vo(t)Vi(t)
Let V̂i and V̂o be the input and output amplitudes.

If V̂i = 2.5 mV and AV = 36.3 dB, compute V̂o in dBm and mV.

Method 1:

V̂i = 20 log10

(
2.5 mV

1 mV

)
= 7.96 dBm.

20 log10

(
V̂o

1 mV

)
= 20 log10

(
AV V̂i

1 mV

)

= 20 log10 AV + 20 log10

(
V̂i

1 mV

)
V̂o = 36.3 + 7.96 = 44.22 dBm.

Since V̂o (dBm) = 20 log10

(
V̂o

1 mV

)
,

V̂o = 10x × 1 mV, where x =
1

20
V̂o (in dBm)

→ V̂o = 162.5 mV.

Method 2:

AV = 36.3 dB

→ 20 log10 AV = 36.3→ AV = 65.

V̂o = AV × V̂i = 65× 2.5 mV = 162.5 mV.

V̂o in dBm = 20 log10

(
162.5 mV

1 mV

)
= 44.2 dBm.
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dB in audio measurements

* When sound intensity is specified in dB, the reference pressure is Pref = 20µPa (our hearing threshold).

If the pressure corresponding to the sound being measured is P, we say that it is 20 log (P/Pref) dB.

* Some interesting numbers:

mosquito 3 m away 0 dB

whisper 20 dB

normal conversation 60 to 70 dB

noisy factory 90 to 100 dB

loud thunder 110 dB

loudest sound human ear can tolerate 120 dB

windows break 163 dB

* Permissible day-time dB levels in India (from MoEF, Govt of India)

Industrial area 75 dB

Commercial area 65 dB

Residential area 55 dB

Silence zone 50 dB
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Bode plots

Vo(s)Vi(s) H(s)

* The transfer function of a circuit such as an amplifier or a filter is given by,

H(s) = Vo(s)/Vi (s), s = jω.

e.g., H(s) =
K

1 + sτ
=

K

1 + jωτ

* H(jω) is a complex number, and a complete description of H(jω) involves

(a) a plot of |H(jω)| versus ω (Bode magnitude plot),

(b) a plot of ∠H(jω) versus ω (Bode phase plot).

* Bode gave simple rules which allow construction of the above plots in an
approximate (asymptotic) manner.
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A simple transfer function

ω0 =
1

RC
.

→ H(s) =
1

1+sRC
=

1

1+ (jω/ω0)
,

Vo =
(1/sC)

R+ (1/sC)
Vs ,

Vs VoC

R

* The circuit behaves like a low-pass filter.

For ω � ω0,
ω

ω0
� 1, |H(jω)| → 1.

For ω � ω0,
ω

ω0
� 1, H(jω) ≈ 1

j
ω

ω0

, and |H(jω)| → 1

ω
.

* The magnitude and phase of H(jω) are given by,

|H(jω)| =
1√

1 + (ω/ω0)2
, ∠H(jω) = − tan−1

(
ω

ω0

)
.

* We are generally interested in a large variation in ω (several orders), and its effect on |H| and ∠H.

* The magnitude (|H|) varies by orders of magnitude as well.

The phase (∠H) varies from 0 (for ω � ω0) to −π/2 (for ω � ω0).
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A simple transfer function: magnitude

|H(jω)| = 1√
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A simple transfer function: magnitude
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Note that the shape of the plot does not change.

|H| (dB) = 20 log |H| is simply a scaled version of log |H|.
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A simple transfer function: phase
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* Since ∠H = − tan−1(ω/ω0) varies in a limited range (0◦ to −90◦ in this example), a linear axis is
appropriate for ∠H.

* As in the magnitude plot, we use a log axis for ω, since we are interested in a wide range of ω.
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Construction of Bode plots

Consider H(s) =
K (1 + s/z1)(1 + s/z2) · · · (1 + s/zM)

(1 + s/p1)(1 + s/p2) · · · (1 + s/pN)
.

−z1, −z2, · · · are called the “zeros” of H(s).

−p1, −p2, · · · are called the “poles” of H(s).

(In addition, there could be terms like s, s2, · · · in the numerator.)

We will assume, for simplicity, that the zeros and poles are real and distinct.

Construction of Bode plots involves

(a) computing approximate contribution of each pole/zero as a function of ω.

(b) combining the various contributions to obtain |H| and ∠H versus ω.
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Contribution of a pole: magnitude
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106105104103102101100

p

|H
|(
dB

)

asymptote 1

asymptote 2

exact

Consider H(s) =
1

1 + s/p
→ H(jω) =

1

1 + j (ω/p)
, |H(jω)| =

1√
1 + (ω/p)2

.

In this example, p = 103 rad/s.

Asymptote 1:

ω � p: |H| → 1, 20 log |H| = 0 dB.

Asymptote 2:

ω � p: |H| →
1

ω/p
=

p

ω
→ |H| = 20 log p − 20 logω (dB)

Consider two values of ω: ω1 and 10ω1.

|H|1 = 20 log p − 20 logω1 (dB)

|H|2 = 20 log p − 20 log (10ω1) (dB)

|H|1 − |H|2 = −20 log
ω1

10ω1
= 20 dB.

→ |H| versus ω has a slope of −20 dB/decade.

Note that, at ω = p, the actual value of |H| is 1/
√

2 (i.e., −3 dB).
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Contribution of a pole: phase
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asymptote 1

asymptote 2

asymptote 3

exact

Consider H(s) =
1

1 + s/p
=

1

1 + j (ω/p)
→ ∠H = − tan−1

(
ω

p

)
In this example, p = 103 rad/s.

Asymptote 1:

ω � p (say, ω < p/10): H(s) ≈ 1→ ∠H = 0.

Asymptote 2:

ω � p (say, ω > 10 p): H(s) ≈
1

j(ω/p)
→ ∠H = −π/2.

Asymptote 3:

For p/10 < ω < 10 p , ∠H is assumed to vary linearly with logω

→ at ω = p, ∠H = −π/4

(which is also the actual value of ∠H).
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Contribution of a zero: magnitude
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Consider H(s) = 1 + s/z → H(jω) = 1 + j (ω/z) , |H(jω)| =
√

1 + (ω/z)2 .

In this example, z = 103 rad/s.

Asymptote 1:

ω � z: |H| → 1, 20 log |H| = 0 dB.

Asymptote 2:

ω � z: |H| →
ω

z
→ |H| = 20 logω − 20 log z (dB)

Consider two values of ω: ω1 and 10ω1.

|H|1 = 20 logω1 − 20 log z (dB)

|H|2 = 20 log (10ω1)− 20 log z (dB)

|H|1 − |H|2 = 20 log
ω1

10ω1
= −20 dB.

→ |H| versus ω has a slope of +20 dB/decade.

Note that, at ω = z, the actual value of |H| is
√

2 (i.e., 3 dB).
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0◦

90◦

z

asymptote 1

asymptote 2

asymptote 3

exact

Consider H(s) = 1 + s/z = 1 + j (ω/z)→ ∠H = tan−1

(
ω

z

)
In this example, z = 103 rad/s.

Asymptote 1:

ω � z (say, ω < z/10): ∠H = 0.

Asymptote 2:

ω � z (say, ω > 10 z): ∠H = π/2.

Asymptote 3:

For z/10 < ω < 10 z , ∠H is assumed to vary linearly with logω

→ at ω = z, ∠H = π/4 (which is also the actual value of ∠H).
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)

* H(s) = K

20 log |H| = 20 log K (a constant), and ∠H = 0.

* H(s) = s

H(jω) = jω, |H| = ω → |H| (dB) = 20 logω.

If ω → 10ω, logω → logω + log 10, |H| → |H|+ 20 (dB),

i.e., a straight line in the |H| (dB)-logω plane with
a slope of 20 dB/decade, passing through (1, 0).

∠H = π/2 (irrespective of ω).

* H(s) = s2

H(jω) = −ω2, |H| = ω2 → |H| (dB) = 40 logω.

If ω → 10ω, logω → logω + log 10, |H| → |H|+ 40 (dB),

i.e., a straight line in the |H| (dB)-logω plane with
a slope of 40 dB/decade, passing through (1, 0).

∠H = π (irrespective of ω).
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Combining different terms

Consider H(s) = H1(s)× H2(s).

Magnitude:

|H(jω)| = |H1(jω)| × |H2(jω)|.
20 log |H| = 20 log |H1|+ 20 log |H2|.
→ In the Bode magnitude plot, the contributions due to H1 and H2 simply get added.

Phase:

H1(jω) and H2(jω) are complex numbers.

At a given ω, let H1 = K1∠α = K1 e jα, and H2 = K2∠β = K2 e jβ .

Then, H1H2 = K1 K2 e j(α+β) = K1K2∠ (α+ β) .

i.e., ∠H = ∠H1 + ∠H2 .

In the Bode phase plot, the contributions due to H1 and H2 also get added.

The same reasoning applies to more than two terms as well.
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Combining different terms: example

Consider H(s) =
10 s

(1 + s/102) (1 + s/105)
.

Let H(s) = H1(s)H2(s)H3(s)H4(s) , where

H1(s) = 10 ,

H2(s) = s ,

H3(s) =
1

1 + s/p1
, p1 = 102 rad/s,

H4(s) =
1

1 + s/p2
, p2 = 105 rad/s.

We can now plot the magnitude and phase of H1, H2, H3, H4 individually versus ω
and then simply add them to obtain |H| and ∠H.
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Phase plot
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How good are the approximations?

* As we have seen, the contribution of a pole to the magnitude and phase plots is well represented by the
asymptotes when ω � p or ω � p (similarly for a zero).

* Near ω = p (or ω = z), there is some error.

* If two poles p1 and p2 are close to each other (say, separated by less than a decade in ω), the error
becomes larger (next slide).

* When the poles and zeros are not sufficiently separated, the Bode approximation should be used only for a
rough estimate, follwed by a numerical calculation. However, even in such cases, it does give a good idea
of the asymptotic magnitude and phase plots, which is valuable in amplifier design.
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How good are the approximations?

Consider H(s) =
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(1 + s/p1) (1 + s/p2)
.
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