Bode Plots

M. B. Patil mbpatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel

Department of Electrical Engineering Indian Institute of Technology Bombay * The unit dB is used to represent quantities on a logarithmic scale.

- * The unit dB is used to represent quantities on a logarithmic scale.
- * Because of the log scale, dB is convenient for representing numbers that vary in a wide range.

- * The unit dB is used to represent quantities on a logarithmic scale.
- * Because of the log scale, dB is convenient for representing numbers that vary in a wide range.
- * log scaling roughly corresponds to human perception of sound and light.

- * The unit dB is used to represent quantities on a logarithmic scale.
- * Because of the log scale, dB is convenient for representing numbers that vary in a wide range.
- * log scaling roughly corresponds to human perception of sound and light.
- * log scale allows \times and \div to be replaced by + and \rightarrow simpler!

- * The unit dB is used to represent quantities on a logarithmic scale.
- * Because of the log scale, dB is convenient for representing numbers that vary in a wide range.
- * log scaling roughly corresponds to human perception of sound and light.
- * log scale allows \times and \div to be replaced by + and \rightarrow simpler!
- * The unit "Bel" was developed in the 1920s by Bell Labs engineers to quantify attenuation of an audio signal over one mile of cable.

- * The unit dB is used to represent quantities on a logarithmic scale.
- * Because of the log scale, dB is convenient for representing numbers that vary in a wide range.
- * log scaling roughly corresponds to human perception of sound and light.
- * log scale allows \times and \div to be replaced by + and \rightarrow simpler!
- * The unit "Bel" was developed in the 1920s by Bell Labs engineers to quantify attenuation of an audio signal over one mile of cable.

Interesting facts:

- Alexander Graham Bell, who invented the telephone in 1876, could never talk to his wife on the phone (she was deaf).

- * The unit dB is used to represent quantities on a logarithmic scale.
- * Because of the log scale, dB is convenient for representing numbers that vary in a wide range.
- * log scaling roughly corresponds to human perception of sound and light.
- * log scale allows \times and \div to be replaced by + and \rightarrow simpler!
- * The unit "Bel" was developed in the 1920s by Bell Labs engineers to quantify attenuation of an audio signal over one mile of cable.

Interesting facts:

- Alexander Graham Bell, who invented the telephone in 1876, could never talk to his wife on the phone (she was deaf).
- Bell considered the telephone an intrusion and refused to put one in his office.

- * The unit dB is used to represent quantities on a logarithmic scale.
- * Because of the log scale, dB is convenient for representing numbers that vary in a wide range.
- * log scaling roughly corresponds to human perception of sound and light.
- * log scale allows \times and \div to be replaced by + and \rightarrow simpler!
- * The unit "Bel" was developed in the 1920s by Bell Labs engineers to quantify attenuation of an audio signal over one mile of cable.

Interesting facts:

- Alexander Graham Bell, who invented the telephone in 1876, could never talk to his wife on the phone (she was deaf).
- Bell considered the telephone an intrusion and refused to put one in his office.
- * The unit Bel turned out to be too large in practice \rightarrow deciBel (i.e., one tenth of a Bel).

* dB is a unit that describes a quantity, on a log scale, with respect to a *reference quantity*. X (in dB) = $10 \log_{10} (X/X_{ref})$.

- $\ast\,$ dB is a unit that describes a quantity, on a log scale, with respect to a reference quantity.
 - X (in dB) = $10 \log_{10} (X/X_{ref})$. For example, if $P_1 = 20 W$ and $P_{ref} = 1 W$, $P_1 = 10 \log_{10} (20 W/1 W) = 10 \log_{10} (20) = 13 dB$.

 $\ast~$ dB is a unit that describes a quantity, on a log scale, with respect to a reference quantity.

X (in dB) = $10 \log_{10} (X/X_{ref})$.

For example, if $P_1 = 20 W$ and $P_{ref} = 1 W$, $P_1 = 10 \log_{10} (20 W/1 W) = 10 \log_{10} (20) = 13 dB$.

* The gain of a voltage-to-voltage amplifier is often expressed in dB. In that case, the ratio V_o^2/V_i^2 is considered (since $P \propto V^2$ or $P \propto I^2$ for a resistor).

 A_V in dB = 10 log₁₀ $|V_o/V_i|^2 = 20 \log_{10} |V_o/V_i|$,

* "dBm" is a related unit used to describe voltages with a reference of 1 mV.

For example, 2.2 V: 20 $\log_{10}\left(\frac{2.2 \text{ V}}{1 \text{ mV}}\right) = 6.85 \text{ dBm}.$

$$V_i(t)$$
 Amplifier $V_o(t)$

Let \hat{V}_i and \hat{V}_o be the input and output amplitudes. If $\hat{V}_i = 2.5 \text{ mV}$ and $A_V = 36.3 \text{ dB}$, compute \hat{V}_o in dBm and mV.

Let \hat{V}_i and \hat{V}_o be the input and output amplitudes. If $\hat{V}_i = 2.5 \text{ mV}$ and $A_V = 36.3 \text{ dB}$, compute \hat{V}_o in dBm and mV.

$$\widehat{V}_i = 20 \, \log_{10} \left(\frac{2.5 \, \mathrm{mV}}{1 \, \mathrm{mV}}\right) = 7.96 \, \mathrm{dBm}$$

Let \hat{V}_i and \hat{V}_o be the input and output amplitudes. If $\hat{V}_i = 2.5 \text{ mV}$ and $A_V = 36.3 \text{ dB}$, compute \hat{V}_o in dBm and mV.

$$\widehat{V}_{i} = 20 \log_{10} \left(\frac{2.5 \text{ mV}}{1 \text{ mV}}\right) = 7.96 \text{ dBm.}$$

$$20 \log_{10} \left(\frac{\widehat{V}_{o}}{1 \text{ mV}}\right) = 20 \log_{10} \left(\frac{A_{V} \widehat{V}_{i}}{1 \text{ mV}}\right)$$

Let \hat{V}_i and \hat{V}_o be the input and output amplitudes. If $\hat{V}_i = 2.5 \text{ mV}$ and $A_V = 36.3 \text{ dB}$, compute \hat{V}_o in dBm and mV.

$$\begin{aligned} \widehat{V}_i &= 20 \, \log_{10} \left(\frac{2.5 \, \mathrm{mV}}{1 \, \mathrm{mV}} \right) = 7.96 \, \mathrm{dBm}. \\ 20 \, \log_{10} \left(\frac{\widehat{V_o}}{1 \, \mathrm{mV}} \right) &= 20 \, \log_{10} \left(\frac{A_V \, \widehat{V}_i}{1 \, \mathrm{mV}} \right) \\ &= 20 \, \log_{10} A_V + 20 \, \log_{10} \left(\frac{\widehat{V}_i}{1 \, \mathrm{mV}} \right) \end{aligned}$$

Let \hat{V}_i and \hat{V}_o be the input and output amplitudes. If $\hat{V}_i = 2.5 \text{ mV}$ and $A_V = 36.3 \text{ dB}$, compute \hat{V}_o in dBm and mV.

$$\widehat{V}_{i} = 20 \log_{10} \left(\frac{2.5 \text{ mV}}{1 \text{ mV}}\right) = 7.96 \text{ dBm.}$$

$$20 \log_{10} \left(\frac{\widehat{V}_{o}}{1 \text{ mV}}\right) = 20 \log_{10} \left(\frac{A_{V} \widehat{V}_{i}}{1 \text{ mV}}\right)$$

$$= 20 \log_{10} A_{V} + 20 \log_{10} \left(\frac{\widehat{V}_{i}}{1 \text{ mV}}\right)$$

$$\widehat{V}_{v} = 36.3 \pm 7.96 = 44.22 \text{ dBm}$$

Let \hat{V}_i and \hat{V}_o be the input and output amplitudes. If $\hat{V}_i = 2.5 \text{ mV}$ and $A_V = 36.3 \text{ dB}$, compute \hat{V}_o in dBm and mV.

$$\begin{split} \widehat{V_i} &= 20 \, \log_{10} \left(\frac{2.5 \, \mathrm{mV}}{1 \, \mathrm{mV}} \right) = 7.96 \, \mathrm{dBm}. \\ 20 \, \log_{10} \left(\frac{\widehat{V_o}}{1 \, \mathrm{mV}} \right) &= 20 \, \log_{10} \left(\frac{A_V \, \widehat{V_i}}{1 \, \mathrm{mV}} \right) \\ &= 20 \, \log_{10} A_V + 20 \, \log_{10} \left(\frac{\widehat{V_i}}{1 \, \mathrm{mV}} \right) \\ \widehat{V_o} &= 36.3 + 7.96 = 44.22 \, \mathrm{dBm}. \\ \mathrm{Since} \, \widehat{V_o} \, (\mathrm{dBm}) &= 20 \, \log_{10} \left(\frac{\widehat{V_o}}{1 \, \mathrm{mV}} \right), \\ \widehat{V_o} &= 10^{\times} \times 1 \, \mathrm{mV}, \text{ where } x = \frac{1}{20} \, \widehat{V_o} \, (\mathrm{in} \, \mathrm{dBm}) \end{split}$$

Let \hat{V}_i and \hat{V}_o be the input and output amplitudes. If $\hat{V}_i = 2.5 \text{ mV}$ and $A_V = 36.3 \text{ dB}$, compute \hat{V}_o in dBm and mV.

Method 1:

 $\widehat{V}_i = 20 \log_{10} \left(\frac{2.5 \,\mathrm{mV}}{1 \,\mathrm{mV}} \right) = 7.96 \,\mathrm{dBm}.$ $20 \log_{10} \left(\frac{\widehat{V_o}}{1 \, \text{mV}} \right) = 20 \, \log_{10} \left(\frac{A_V \, \widehat{V_i}}{1 \, \text{mV}} \right)$ $= 20 \log_{10} A_V + 20 \log_{10} \left(\frac{\widehat{V}_i}{1 \,\mathrm{mV}} \right)$ $\hat{V}_{2} = 36.3 + 7.96 = 44.22 \,\mathrm{dBm}$ Since $\widehat{V}_o(dBm) = 20 \log_{10}\left(\frac{\widehat{V}_o}{1 \text{ mV}}\right)$, $\widehat{V}_o = 10^{\times} \times 1 \,\mathrm{mV}$, where $x = \frac{1}{20} \,\widehat{V}_o$ (in dBm) $\rightarrow \hat{V}_{2} = 162.5 \,\mathrm{mV}.$

$$V_i(t)$$
 Amplifier $V_o(t)$

Let \hat{V}_i and \hat{V}_o be the input and output amplitudes. If $\hat{V}_i = 2.5 \text{ mV}$ and $A_V = 36.3 \text{ dB}$, compute \hat{V}_o in dBm and mV.

Method 1:

$$\begin{split} \widehat{V_i} &= 20 \, \log_{10} \left(\frac{2.5 \, \mathrm{mV}}{1 \, \mathrm{mV}} \right) = 7.96 \, \mathrm{dBm}. \\ 20 \, \log_{10} \left(\frac{\widehat{V_o}}{1 \, \mathrm{mV}} \right) &= 20 \, \log_{10} \left(\frac{A_V \, \widehat{V_i}}{1 \, \mathrm{mV}} \right) \\ &= 20 \, \log_{10} A_V + 20 \, \log_{10} \left(\frac{\widehat{V_i}}{1 \, \mathrm{mV}} \right) \\ \widehat{V}_o &= 36.3 + 7.96 = 44.22 \, \mathrm{dBm}. \\ \mathrm{Since} \, \widehat{V}_o \, (\mathrm{dBm}) &= 20 \, \log_{10} \left(\frac{\widehat{V}_o}{1 \, \mathrm{mV}} \right), \\ \widehat{V}_o &= 10^{\mathrm{x}} \times 1 \, \mathrm{mV}, \, \mathrm{where} \, \mathrm{x} = \frac{1}{20} \, \widehat{V}_o \, (\mathrm{in} \, \mathrm{dBm}) \\ &\rightarrow \widehat{V}_o = 162.5 \, \mathrm{mV}. \end{split}$$

Method 2:

 $A_V = 36.3 \,\mathrm{dB}$

$$\rightarrow 20 \log_{10} A_V = 36.3 \rightarrow A_V = 65.2$$

$$V_i(t)$$
 Amplifier $V_o(t)$

Let \hat{V}_i and \hat{V}_o be the input and output amplitudes. If $\hat{V}_i = 2.5 \text{ mV}$ and $A_V = 36.3 \text{ dB}$, compute \hat{V}_o in dBm and mV.

Method 1:

$$\begin{split} \widehat{V}_i &= 20 \, \log_{10} \left(\frac{2.5 \, \mathrm{mV}}{1 \, \mathrm{mV}} \right) = 7.96 \, \mathrm{dBm}. \\ 20 \, \log_{10} \left(\frac{\widehat{V_o}}{1 \, \mathrm{mV}} \right) &= 20 \, \log_{10} \left(\frac{A_V \, \widehat{V}_i}{1 \, \mathrm{mV}} \right) \\ &= 20 \, \log_{10} A_V + 20 \, \log_{10} \left(\frac{\widehat{V}_i}{1 \, \mathrm{mV}} \right) \\ \widehat{V}_o &= 36.3 + 7.96 = 44.22 \, \mathrm{dBm}. \\ \mathrm{Since} \, \widehat{V}_o \, (\mathrm{dBm}) &= 20 \, \log_{10} \left(\frac{\widehat{V}_o}{1 \, \mathrm{mV}} \right), \\ \widehat{V}_o &= 10^{\mathrm{x}} \times 1 \, \mathrm{mV}, \, \mathrm{where} \, \mathrm{x} = \frac{1}{20} \, \widehat{V}_o \, (\mathrm{in} \, \mathrm{dBm}) \\ &\rightarrow \widehat{V}_o = 162.5 \, \mathrm{mV}. \end{split}$$

Method 2:

$$\begin{split} A_V &= 36.3\,\mathrm{dB} \\ &\rightarrow 20\,\log_{10}\,A_V = 36.3 \rightarrow A_V = 65. \\ &\widehat{V}_o = A_V \times \,\widehat{V}_i = 65 \times 2.5\,\mathrm{mV} = 162.5\,\mathrm{mV}. \end{split}$$

$$V_i(t)$$
 Amplifier $V_o(t)$

Let \hat{V}_i and \hat{V}_o be the input and output amplitudes. If $\hat{V}_i = 2.5 \text{ mV}$ and $A_V = 36.3 \text{ dB}$, compute \hat{V}_o in dBm and mV.

Method 1:

$$\begin{split} \widehat{V}_i &= 20 \, \log_{10} \left(\frac{2.5 \, \mathrm{mV}}{1 \, \mathrm{mV}} \right) = 7.96 \, \mathrm{dBm}. \\ 20 \, \log_{10} \left(\frac{\widehat{V_o}}{1 \, \mathrm{mV}} \right) &= 20 \, \log_{10} \left(\frac{A_V \, \widehat{V_i}}{1 \, \mathrm{mV}} \right) \\ &= 20 \, \log_{10} A_V + 20 \, \log_{10} \left(\frac{\widehat{V_i}}{1 \, \mathrm{mV}} \right) \\ \widehat{V}_o &= 36.3 + 7.96 = 44.22 \, \mathrm{dBm}. \\ \mathrm{Since} \, \widehat{V}_o \, (\mathrm{dBm}) &= 20 \, \log_{10} \left(\frac{\widehat{V}_o}{1 \, \mathrm{mV}} \right), \\ \widehat{V}_o &= 10^{\mathrm{x}} \times 1 \, \mathrm{mV}, \, \mathrm{where} \, \mathrm{x} = \frac{1}{20} \, \widehat{V}_o \, (\mathrm{in} \, \mathrm{dBm}) \\ &\rightarrow \widehat{V}_o = 162.5 \, \mathrm{mV}. \end{split}$$

Method 2:

$$\begin{aligned} A_V &= 36.3 \, \mathrm{dB} \\ &\to 20 \, \log_{10} \, A_V = 36.3 \to A_V = 65. \\ &\widehat{V}_o = A_V \times \widehat{V}_i = 65 \times 2.5 \, \mathrm{mV} = 162.5 \, \mathrm{mV}. \\ &\widehat{V}_o \text{ in } \mathrm{dBm} = 20 \, \log_{10} \left(\frac{162.5 \, \mathrm{mV}}{1 \, \mathrm{mV}} \right) = 44.2 \, \mathrm{dBm}. \end{aligned}$$

* When sound intensity is specified in dB, the reference pressure is $P_{\text{ref}} = 20 \,\mu Pa$ (our hearing threshold). If the pressure corresponding to the sound being measured is P, we say that it is $20 \log (P/P_{\text{ref}}) dB$.

- * When sound intensity is specified in dB, the reference pressure is $P_{ref} = 20 \,\mu Pa$ (our hearing threshold). If the pressure corresponding to the sound being measured is *P*, we say that it is $20 \log (P/P_{ref}) dB$.
- * Some interesting numbers:

mosquito 3 m away 0 dB

- * When sound intensity is specified in dB, the reference pressure is $P_{\text{ref}} = 20 \,\mu Pa$ (our hearing threshold). If the pressure corresponding to the sound being measured is P, we say that it is $20 \log (P/P_{\text{ref}}) dB$.
- * Some interesting numbers:

mosquito 3 m away	0 dB
whisper	20 dB

- * When sound intensity is specified in dB, the reference pressure is $P_{ref} = 20 \,\mu Pa$ (our hearing threshold). If the pressure corresponding to the sound being measured is *P*, we say that it is $20 \log (P/P_{ref}) dB$.
- * Some interesting numbers:

mosquito 3 m away	0 dB
whisper	20 dB
normal conversation	60 to 70 dB

- * When sound intensity is specified in dB, the reference pressure is $P_{\text{ref}} = 20 \,\mu Pa$ (our hearing threshold). If the pressure corresponding to the sound being measured is P, we say that it is $20 \log (P/P_{\text{ref}}) dB$.
- * Some interesting numbers:

mosquito 3 m away	0 dB
whisper	20 dB
normal conversation	60 to 70 dB
noisy factory	90 to 100 dB

- * When sound intensity is specified in dB, the reference pressure is $P_{\text{ref}} = 20 \,\mu Pa$ (our hearing threshold). If the pressure corresponding to the sound being measured is P, we say that it is $20 \log (P/P_{\text{ref}}) dB$.
- * Some interesting numbers:

mosquito 3 m away	0 dB
whisper	20 dB
normal conversation	60 to 70 dB
noisy factory	90 to 100 dB
loud thunder	110 dB

- * When sound intensity is specified in dB, the reference pressure is $P_{\text{ref}} = 20 \,\mu Pa$ (our hearing threshold). If the pressure corresponding to the sound being measured is P, we say that it is $20 \log (P/P_{\text{ref}}) dB$.
- * Some interesting numbers:

0 dB
20 dB
60 to 70 dB
90 to 100 dB
110 dB
120 dB

- * When sound intensity is specified in dB, the reference pressure is $P_{ref} = 20 \,\mu Pa$ (our hearing threshold). If the pressure corresponding to the sound being measured is *P*, we say that it is $20 \log (P/P_{ref}) dB$.
- * Some interesting numbers:

0 dB
20 dB
60 to 70 dB
90 to 100 dB
110 dB
120 dB
163 dB

- * When sound intensity is specified in dB, the reference pressure is $P_{ref} = 20 \,\mu Pa$ (our hearing threshold). If the pressure corresponding to the sound being measured is *P*, we say that it is $20 \log (P/P_{ref}) dB$.
- * Some interesting numbers:

mosquito 3 m away	0 dB
whisper	20 dB
normal conversation	60 to 70 dB
noisy factory	90 to 100 dB
loud thunder	110 dB
loudest sound human ear can tolerate	120 dB
windows break	163 dB

* Permissible day-time dB levels in India (from MoEF, Govt of India)

- * When sound intensity is specified in dB, the reference pressure is $P_{ref} = 20 \,\mu Pa$ (our hearing threshold). If the pressure corresponding to the sound being measured is *P*, we say that it is $20 \log (P/P_{ref}) dB$.
- * Some interesting numbers:

mosquito 3 m away	0 dB
whisper	20 dB
normal conversation	60 to 70 dB
noisy factory	90 to 100 dB
loud thunder	110 dB
loudest sound human ear can tolerate	120 dB
windows break	163 dB

* Permissible day-time dB levels in India (from MoEF, Govt of India)

Industrial area 75 dB

- * When sound intensity is specified in dB, the reference pressure is $P_{ref} = 20 \,\mu Pa$ (our hearing threshold). If the pressure corresponding to the sound being measured is *P*, we say that it is $20 \log (P/P_{ref}) dB$.
- * Some interesting numbers:

mosquito 3 m away	0 dB
whisper	20 dB
normal conversation	60 to 70 dB
noisy factory	90 to 100 dB
loud thunder	110 dB
loudest sound human ear can tolerate	120 dB
windows break	163 dB

* Permissible day-time dB levels in India (from MoEF, Govt of India)

Industrial area	75 dB
Commercial area	65 dB

- * When sound intensity is specified in dB, the reference pressure is $P_{ref} = 20 \,\mu Pa$ (our hearing threshold). If the pressure corresponding to the sound being measured is *P*, we say that it is $20 \log (P/P_{ref}) dB$.
- * Some interesting numbers:

mosquito 3 m away	0 dB
whisper	20 dB
normal conversation	60 to 70 dB
noisy factory	90 to 100 dB
loud thunder	110 dB
loudest sound human ear can tolerate	120 dB
windows break	163 dB

* Permissible day-time dB levels in India (from MoEF, Govt of India)

Industrial area	75 dB
Commercial area	65 dB
Residential area	55 dB

dB in audio measurements

- * When sound intensity is specified in dB, the reference pressure is $P_{ref} = 20 \,\mu Pa$ (our hearing threshold). If the pressure corresponding to the sound being measured is *P*, we say that it is $20 \log (P/P_{ref}) dB$.
- * Some interesting numbers:

mosquito 3 m away	0 dB
whisper	20 dB
normal conversation	60 to 70 dB
noisy factory	90 to 100 dB
loud thunder	110 dB
loudest sound human ear can tolerate	120 dB
windows break	163 dB

* Permissible day-time dB levels in India (from MoEF, Govt of India)

Industrial area	75 dB
Commercial area	65 dB
Residential area	55 dB
Silence zone	50 dB

$$V_i(s) \bullet H(s) \bullet V_o(s)$$

* The transfer function of a circuit such as an amplifier or a filter is given by, $H(s) = V_o(s)/V_i(s), \quad s = j\omega.$ e.g., $H(s) = \frac{K}{1 + s\tau} = \frac{K}{1 + j\omega\tau}$

$$V_i(s) \bullet H(s) \bullet V_o(s)$$

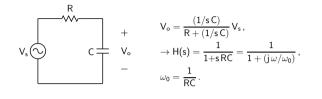
- * The transfer function of a circuit such as an amplifier or a filter is given by, $H(s) = V_o(s)/V_i(s), s = i\omega.$ e.g., $H(s) = \frac{K}{1+s\tau} = \frac{K}{1+i\omega\tau}$
- * $H(j\omega)$ is a complex number, and a complete description of $H(j\omega)$ involves (a) a plot of $|H(j\omega)|$ versus ω (Bode magnitude plot), (b) a plot of $\angle H(j\omega)$ versus ω (Bode phase plot).

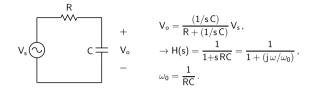
$$V_i(s)$$
 $H(s)$ $V_o(s)$

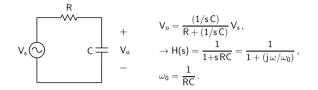
* The transfer function of a circuit such as an amplifier or a filter is given by, $H(s) = V_o(s)/V_i(s), \quad s = j\omega.$

e.g.,
$$H(s) = \frac{\kappa}{1+s\tau} = \frac{\kappa}{1+j\omega\tau}$$

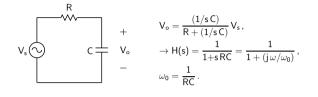
- *H*(*jω*) is a complex number, and a complete description of *H*(*jω*) involves
 (a) a plot of |*H*(*jω*)| versus ω (Bode magnitude plot),
 (b) a plot of ∠*H*(*jω*) versus ω (Bode phase plot).
- * Bode gave simple rules which allow construction of the above plots in an approximate (asymptotic) manner.



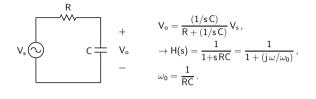




For $\omega \ll \omega_0$, $\frac{\omega}{\omega_0} \ll 1$, $|H(j\omega)| \to 1$.



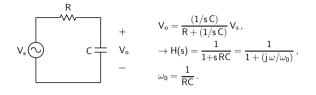
For
$$\omega \ll \omega_0$$
, $\frac{\omega}{\omega_0} \ll 1$, $|H(j\omega)| \to 1$.
For $\omega \gg \omega_0$, $\frac{\omega}{\omega_0} \gg 1$, $H(j\omega) \approx \frac{1}{j\frac{\omega}{\omega_0}}$, and $|H(j\omega)| \to \frac{1}{\omega}$.



For
$$\omega \ll \omega_0$$
, $\frac{\omega}{\omega_0} \ll 1$, $|H(j\omega)| \to 1$.
For $\omega \gg \omega_0$, $\frac{\omega}{\omega_0} \gg 1$, $H(j\omega) \approx \frac{1}{j\frac{\omega}{\omega_0}}$, and $|H(j\omega)| \to \frac{1}{\omega}$.

* The magnitude and phase of $H(j\omega)$ are given by,

$$|H(j\omega)| = rac{1}{\sqrt{1+(\omega/\omega_0)^2}}, \quad \angle H(j\omega) = - an^{-1}\left(rac{\omega}{\omega_0}
ight).$$

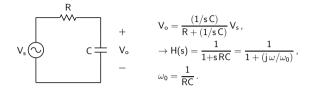


For
$$\omega \ll \omega_0$$
, $\frac{\omega}{\omega_0} \ll 1$, $|H(j\omega)| \to 1$.
For $\omega \gg \omega_0$, $\frac{\omega}{\omega_0} \gg 1$, $H(j\omega) \approx \frac{1}{j\frac{\omega}{\omega_0}}$, and $|H(j\omega)| \to \frac{1}{\omega}$.

* The magnitude and phase of $H(j\omega)$ are given by,

$$|H(j\omega)| = rac{1}{\sqrt{1+(\omega/\omega_0)^2}}, \quad \angle H(j\omega) = - an^{-1}\left(rac{\omega}{\omega_0}
ight)$$

* We are generally interested in a large variation in ω (several orders), and its effect on |H| and $\angle H$.

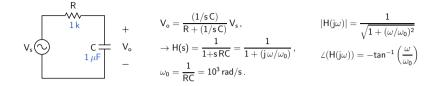


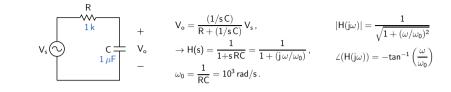
For
$$\omega \ll \omega_0$$
, $\frac{\omega}{\omega_0} \ll 1$, $|H(j\omega)| \to 1$.
For $\omega \gg \omega_0$, $\frac{\omega}{\omega_0} \gg 1$, $H(j\omega) \approx \frac{1}{j\frac{\omega}{\omega_0}}$, and $|H(j\omega)| \to \frac{1}{\omega}$.

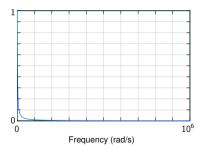
* The magnitude and phase of $H(j\omega)$ are given by,

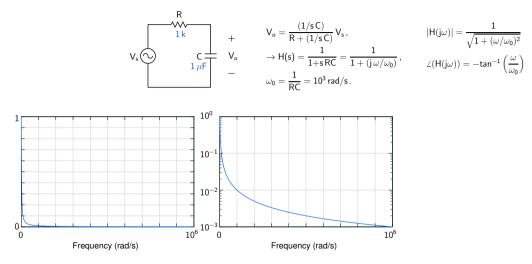
$$|H(j\omega)|=rac{1}{\sqrt{1+(\omega/\omega_0)^2}}, \hspace{1em} \angle H(j\omega)=- an^{-1}\left(rac{\omega}{\omega_0}
ight)$$

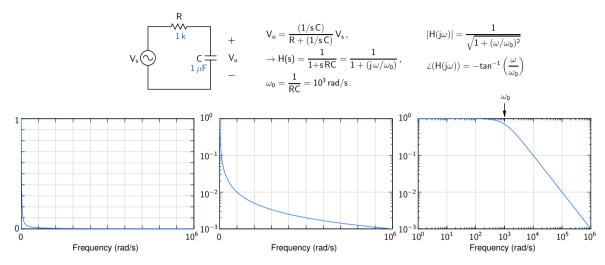
- * We are generally interested in a large variation in ω (several orders), and its effect on |H| and $\angle H$.
- * The magnitude (|H|) varies by orders of magnitude as well. The phase $(\angle H)$ varies from 0 (for $\omega \ll \omega_0$) to $-\pi/2$ (for $\omega \gg \omega_0$).

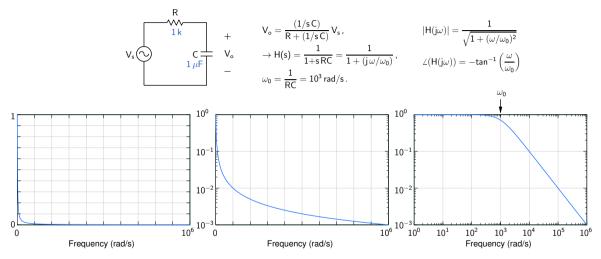




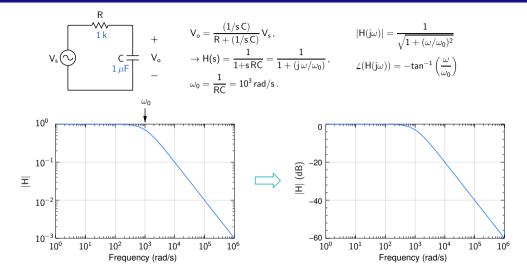


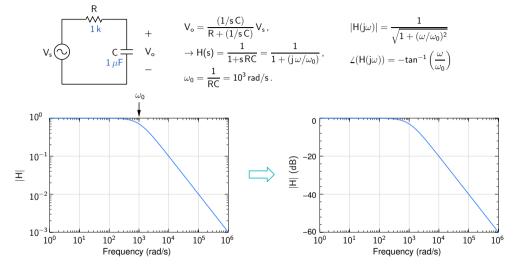




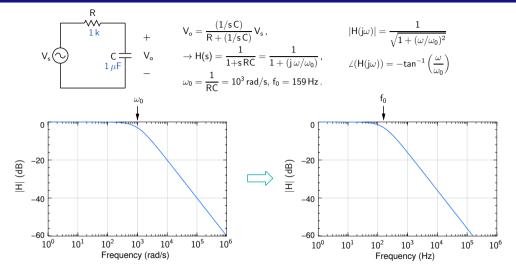


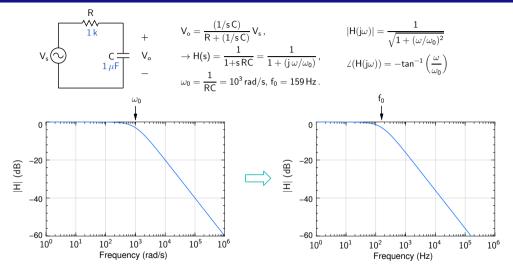
Since ω and $|H(j\omega)|$ vary by several orders of magnitude, a linear ω - or |H|-axis is not appropriate $\rightarrow \log |H|$ is plotted against $\log \omega$.





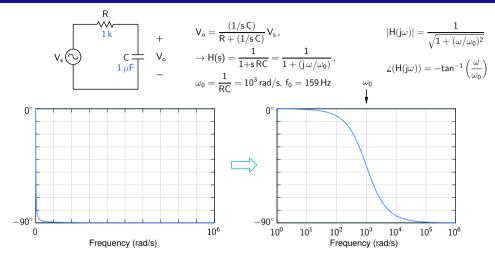
Note that the *shape* of the plot does not change. |H| (dB) = 20 log |H| is simply a scaled version of log |H|.



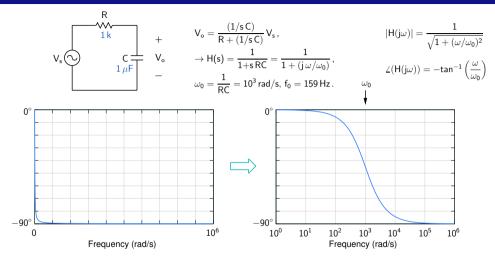


Since $\omega = 2\pi f$, $\log \omega = \log(2\pi) + \log f$ which causes a shift in the x direction, but the shape of the plot does not change.

A simple transfer function: phase

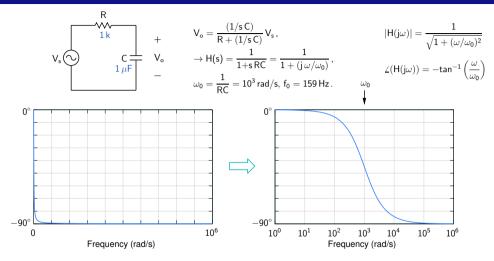


A simple transfer function: phase



* Since $\angle H = -\tan^{-1}(\omega/\omega_0)$ varies in a limited range (0° to -90° in this example), a linear axis is appropriate for $\angle H$.

A simple transfer function: phase



- * Since $\angle H = -\tan^{-1}(\omega/\omega_0)$ varies in a limited range (0° to -90° in this example), a linear axis is appropriate for $\angle H$.
- * As in the magnitude plot, we use a log axis for ω , since we are interested in a wide range of ω .

Consider
$$H(s) = \frac{K(1 + s/z_1)(1 + s/z_2)\cdots(1 + s/z_M)}{(1 + s/p_1)(1 + s/p_2)\cdots(1 + s/p_N)}$$
.

Consider
$$H(s) = \frac{K(1 + s/z_1)(1 + s/z_2)\cdots(1 + s/z_M)}{(1 + s/p_1)(1 + s/p_2)\cdots(1 + s/p_N)}$$
.

 $-z_1, -z_2, \cdots$ are called the "zeros" of H(s).

Consider $H(s) = \frac{K(1 + s/z_1)(1 + s/z_2)\cdots(1 + s/z_M)}{(1 + s/p_1)(1 + s/p_2)\cdots(1 + s/p_N)}$. $-z_1, -z_2, \cdots$ are called the "zeros" of H(s).

 $-p_1$, $-p_2$, \cdots are called the "poles" of H(s).

Consider $H(s) = \frac{K(1 + s/z_1)(1 + s/z_2)\cdots(1 + s/z_M)}{(1 + s/p_1)(1 + s/p_2)\cdots(1 + s/p_N)}$.

 $-z_1$, $-z_2$, \cdots are called the "zeros" of H(s).

 $-p_1$, $-p_2$, \cdots are called the "poles" of H(s).

(In addition, there could be terms like s, s^2, \cdots in the numerator.)

Consider $H(s) = \frac{K(1+s/z_1)(1+s/z_2)\cdots(1+s/z_M)}{(1+s/p_1)(1+s/p_2)\cdots(1+s/p_N)}$. $-z_1, -z_2, \cdots$ are called the "zeros" of H(s).

- $-p_1$, $-p_2$, \cdots are called the "poles" of H(s).
- (In addition, there could be terms like s, s^2, \cdots in the numerator.)

We will assume, for simplicity, that the zeros and poles are real and distinct.

Consider $H(s) = \frac{K(1+s/z_1)(1+s/z_2)\cdots(1+s/z_M)}{(1+s/p_1)(1+s/p_2)\cdots(1+s/p_N)}$.

 $-z_1$, $-z_2$, \cdots are called the "zeros" of H(s).

 $-p_1$, $-p_2$, \cdots are called the "poles" of H(s).

(In addition, there could be terms like s, s^2, \cdots in the numerator.)

We will assume, for simplicity, that the zeros and poles are real and distinct.

Construction of Bode plots involves

(a) computing approximate contribution of each pole/zero as a function of ω .

Consider $H(s) = \frac{K(1+s/z_1)(1+s/z_2)\cdots(1+s/z_M)}{(1+s/p_1)(1+s/p_2)\cdots(1+s/p_N)}$.

 $-z_1$, $-z_2$, \cdots are called the "zeros" of H(s).

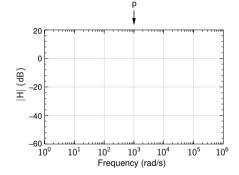
 $-p_1$, $-p_2$, \cdots are called the "poles" of H(s).

(In addition, there could be terms like s, s^2, \cdots in the numerator.)

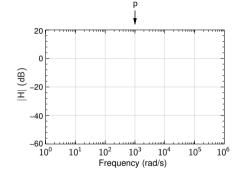
We will assume, for simplicity, that the zeros and poles are real and distinct.

Construction of Bode plots involves

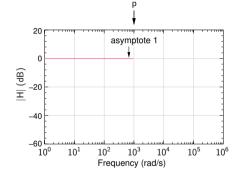
- (a) computing approximate contribution of each pole/zero as a function of ω .
- (b) combining the various contributions to obtain |H| and $\angle H$ versus ω .



Consider
$$H(s) = \frac{1}{1 + s/p} \rightarrow H(j\omega) = \frac{1}{1 + j(\omega/p)}$$
, $|H(j\omega)| = \frac{1}{\sqrt{1 + (\omega/p)^2}}$.
n this example, $p = 10^3$ rad/s.

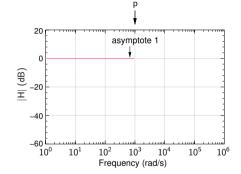


Consider
$$H(s) = \frac{1}{1 + s/p} \rightarrow H(j\omega) = \frac{1}{1 + j(\omega/p)}$$
, $|H(j\omega)| = \frac{1}{\sqrt{1 + (\omega/p)^2}}$.
In this example, $p = 10^3$ rad/s.
Asymptote 1:
 $\omega \ll p$: $|H| \rightarrow 1$, $20 \log |H| = 0$ dB.



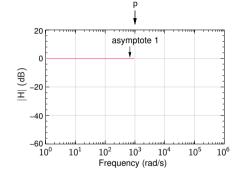
Consider
$$H(s) = \frac{1}{1 + s/p} \rightarrow H(j\omega) = \frac{1}{1 + j(\omega/p)}, |H(j\omega)| = \frac{1}{\sqrt{1 + (\omega/p)^2}}.$$

In this example, $p = 10^3 \text{ rad/s}.$
Asymptote 1:
 $\omega \ll p: |H| \rightarrow 1, \ 20 \log |H| = 0 \text{ dB}.$



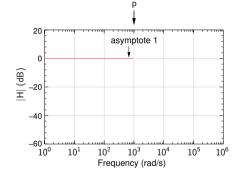
Consider
$$H(s) = \frac{1}{1 + s/p} \rightarrow H(j\omega) = \frac{1}{1 + j(\omega/p)}, |H(j\omega)| = \frac{1}{\sqrt{1 + (\omega/p)^2}}$$
.
In this example, $p = 10^3 \text{ rad/s.}$
Asymptote 1:
 $\omega \ll p$: $|H| \rightarrow 1$, $20 \log |H| = 0 \text{ dB.}$
Asymptote 2:

$$\omega \gg p$$
: $|H| \rightarrow \frac{1}{\omega/p} = \frac{p}{\omega} \rightarrow |H| = 20 \log p - 20 \log \omega$ (dB)



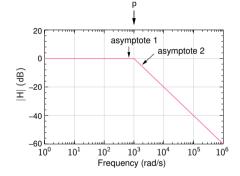
Consider
$$H(s) = \frac{1}{1 + s/p} \rightarrow H(j\omega) = \frac{1}{1 + j(\omega/p)}, |H(j\omega)| = \frac{1}{\sqrt{1 + (\omega/p)^2}}$$
.
In this example, $p = 10^3$ rad/s.
Asymptote 1:
 $\omega \ll p: |H| \rightarrow 1, \ 20 \log |H| = 0 \text{ dB.}$
Asymptote 2:
 $\omega \gg p: |H| \rightarrow \frac{1}{\omega/p} = \frac{p}{\omega} \rightarrow |H| = 20 \log p - 20 \log \omega \text{ (dB)}$
Consider two values of $\omega: \omega_1$ and $10 \omega_1$.
 $|H|_1 = 20 \log p - 20 \log \omega_1 \text{ (dB)}$

 $|H|_2 = 20 \log p - 20 \log (10 \omega_1) \text{ (dB)}$



Consider
$$H(s) = \frac{1}{1 + s/p} \rightarrow H(j\omega) = \frac{1}{1 + j(\omega/p)}, |H(j\omega)| = \frac{1}{\sqrt{1 + (\omega/p)^2}}$$

In this example, $p = 10^3$ rad/s.
Asymptote 1:
 $\omega \ll p: |H| \rightarrow 1, \ 20 \log |H| = 0 \text{ dB}.$
Asymptote 2:
 $\omega \gg p: |H| \rightarrow \frac{1}{\omega/p} = \frac{p}{\omega} \rightarrow |H| = 20 \log p - 20 \log \omega \text{ (dB)}$
Consider two values of $\omega: \omega_1$ and $10 \omega_1$.
 $|H|_1 = 20 \log p - 20 \log \omega_1 \text{ (dB)}$
 $|H|_2 = 20 \log p - 20 \log (10 \omega_1) \text{ (dB)}$
 $|H|_1 - |H|_2 = -20 \log \frac{\omega_1}{10 \omega_1} = 20 \text{ dB}.$
 $\rightarrow |H|$ versus ω has a slope of $-20 \text{ dB}/\text{decade}.$

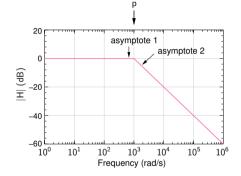


Consider
$$H(s) = \frac{1}{1 + s/p} \rightarrow H(j\omega) = \frac{1}{1 + j(\omega/p)}, |H(j\omega)| = \frac{1}{\sqrt{1 + (\omega/p)^2}}$$

In this example, $p = 10^3$ rad/s.
Asymptote 1:
 $\omega \ll p$: $|H| \rightarrow 1$, $20 \log |H| = 0$ dB.
Asymptote 2:
 $\omega \gg p$: $|H| \rightarrow \frac{1}{\omega/p} = \frac{p}{\omega} \rightarrow |H| = 20 \log p - 20 \log \omega$ (dB)
Consider two values of ω : ω_1 and $10 \omega_1$.
 $|H|_1 = 20 \log p - 20 \log \omega_1$ (dB)
 $|H|_2 = 20 \log p - 20 \log (10 \omega_1)$ (dB)
 $|H|_2 = 20 \log p - 20 \log (0 \omega_1) = 20$ dB

$$|\Pi|_1 - |\Pi|_2 = -20 \log \frac{1}{10 \omega_1} = 20 \text{ dB}.$$

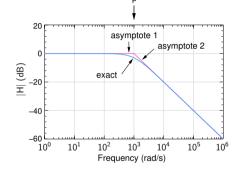
 \rightarrow $|{\it H}|$ versus ω has a slope of $-20\,{\rm dB/decade}.$



Consider
$$H(s) = \frac{1}{1+s/p} \rightarrow H(j\omega) = \frac{1}{1+j(\omega/p)}, |H(j\omega)| = \frac{1}{\sqrt{1+(\omega/p)^2}}$$

In this example, $p = 10^3$ rad/s.
Asymptote 1:
 $\omega \ll p: |H| \rightarrow 1, \ 20 \log |H| = 0 \, dB.$
Asymptote 2:
 $\omega \gg p: |H| \rightarrow \frac{1}{\omega/p} = \frac{p}{\omega} \rightarrow |H| = 20 \log p - 20 \log \omega \, (dB)$
Consider two values of $\omega: \omega_1$ and $10 \omega_1$.
 $|H|_1 = 20 \log p - 20 \log \omega_1 \, (dB)$
 $|H|_2 = 20 \log p - 20 \log (10 \omega_1) \, (dB)$
 $|H|_1 - |H|_2 = -20 \log \frac{\omega_1}{10 \omega_1} = 20 \, dB.$
 $\rightarrow |H|$ versus ω has a slope of $-20 \, dB/decade.$

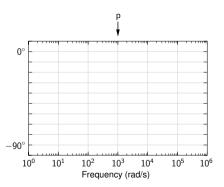
Note that, at $\omega = p$, the actual value of |H| is $1/\sqrt{2}$ (i.e., -3 dB).



Δ

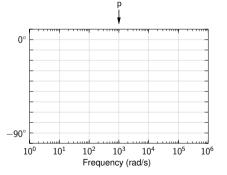
Consider
$$H(s) = \frac{1}{1 + s/p} \rightarrow H(j\omega) = \frac{1}{1 + j(\omega/p)}, |H(j\omega)| = \frac{1}{\sqrt{1 + (\omega/p)^2}}$$

In this example, $p = 10^3$ rad/s.
Asymptote 1:
 $\omega \ll p: |H| \rightarrow 1, \ 20 \log |H| = 0 \, dB.$
Asymptote 2:
 $\omega \gg p: |H| \rightarrow \frac{1}{\omega/p} = \frac{p}{\omega} \rightarrow |H| = 20 \log p - 20 \log \omega \, (dB)$
Consider two values of $\omega: \omega_1$ and $10 \omega_1$.
 $|H|_1 = 20 \log p - 20 \log (\omega_1 \, (dB))$
 $|H|_2 = 20 \log p - 20 \log (10 \omega_1) \, (dB)$
 $|H|_1 - |H|_2 = -20 \log \frac{\omega_1}{10 \omega_1} = 20 \, dB.$
 $\rightarrow |H|$ versus ω has a slope of $-20 \, dB/decade.$
Note that, at $\omega = p$, the actual value of $|H|$ is $1/\sqrt{2}$ (i.e., $-3 \, dB$).



Consider
$$H(s) = \frac{1}{1 + s/p} = \frac{1}{1 + j(\omega/p)} \rightarrow \angle H = -\tan^{-1}\left(\frac{\omega}{p}\right)$$

n this example, $p = 10^3$ rad/s.

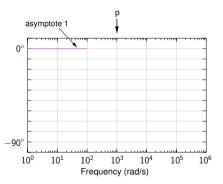


Consider
$$H(s) = \frac{1}{1 + s/p} = \frac{1}{1 + j(\omega/p)} \rightarrow \angle H = -\tan^{-1}\left(\frac{\omega}{p}\right)$$

In this example, $p = 10^3$ rad/s.

Asymptote 1:

 $\omega \ll p ext{ (say, } \omega < p/10): ext{ } H(s) pprox 1
ightarrow ar{\angle} H = 0.$

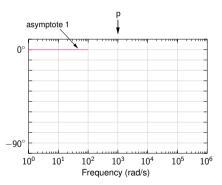


Consider
$$H(s) = \frac{1}{1 + s/p} = \frac{1}{1 + j(\omega/p)} \rightarrow \angle H = -\tan^{-1}\left(\frac{\omega}{p}\right)$$

In this example, $p = 10^3$ rad/s.

Asymptote 1:

 $\omega \ll p ext{ (say, } \omega < p/10): ext{ } H(s) pprox 1
ightarrow ar{\angle} H = 0.$



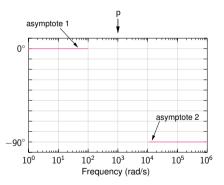
Consider
$$H(s) = \frac{1}{1 + s/p} = \frac{1}{1 + j(\omega/p)} \rightarrow \angle H = -\tan^{-1}\left(\frac{\omega}{p}\right)$$

In this example, $p = 10^3$ rad/s.

Asymptote 1: $\omega \ll p \text{ (say, } \omega < p/10\text{): } H(s) \approx 1 \rightarrow \angle H = 0.$

Asymptote 2:

$$\omega \gg
ho$$
 (say, $\omega > 10~
ho)$: $H(s) pprox rac{1}{j(\omega/p)}
ightarrow \angle H = -\pi/2$



Consider
$$H(s) = \frac{1}{1 + s/p} = \frac{1}{1 + j(\omega/p)} \rightarrow \angle H = -\tan^{-1}\left(\frac{\omega}{p}\right)$$

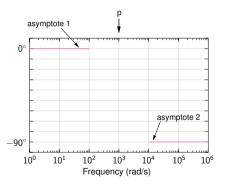
In this example, $p = 10^3$ rad/s.

Asymptote 1:

 $\omega \ll p ext{ (say, } \omega < p/10): ext{ } H(s) pprox 1
ightarrow ar{\angle} H = 0.$

Asymptote 2:

$$\omega \gg p \;(ext{say, } \omega > ext{10 } p) ext{:}\; H(s) pprox rac{1}{j(\omega/p)}
ightarrow ar{arepsilon} H = -\pi/2$$



Consider
$$H(s) = \frac{1}{1 + s/p} = \frac{1}{1 + j(\omega/p)} \rightarrow \angle H = -\tan^{-1}\left(\frac{\omega}{p}\right)$$

In this example, $p = 10^3$ rad/s.

Asymptote 1: $\omega \ll p \text{ (say, } \omega < p/10\text{): } H(s) \approx 1 \rightarrow \angle H = 0.$

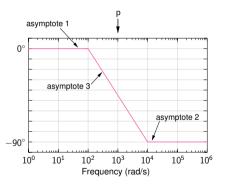
Asymptote 2:

$$\omega \gg
ho$$
 (say, $\omega > 10\,
ho)$: $H(s) pprox rac{1}{j(\omega/
ho)}
ightarrow \angle H = -\pi/2$

Asymptote 3:

For $p/10 < \omega < 10 p$, $\angle H$ is assumed to vary linearly with log ω \rightarrow at $\omega = p$, $\angle H = -\pi/4$ (which is also the extra lumber of $\angle H$)

(which is also the actual value of $\angle H$).



Consider
$$H(s) = \frac{1}{1 + s/p} = \frac{1}{1 + j(\omega/p)} \rightarrow \angle H = -\tan^{-1}\left(\frac{\omega}{p}\right)$$

In this example, $p = 10^3$ rad/s.

Asymptote 1: $\omega \ll p \text{ (say, } \omega < p/10): H(s) \approx 1 \rightarrow \angle H = 0.$

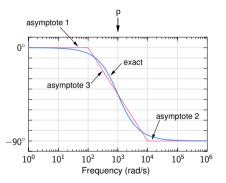
Asymptote 2:

$$\omega \gg
ho$$
 (say, $\omega > 10\,
ho)$: $H(s) pprox rac{1}{j(\omega/
ho)}
ightarrow \angle H = -\pi/2$

Asymptote 3:

For $p/10 < \omega < 10 p$, $\angle H$ is assumed to vary linearly with log ω \rightarrow at $\omega = p$, $\angle H = -\pi/4$ (which is also the extra lumber of $\angle H$)

(which is also the actual value of $\angle H$).



Consider
$$H(s) = \frac{1}{1 + s/p} = \frac{1}{1 + j(\omega/p)} \rightarrow \angle H = -\tan^{-1}\left(\frac{\omega}{p}\right)$$

In this example, $p = 10^3$ rad/s.

Asymptote 1:

 $\omega \ll p ext{ (say, } \omega < p/10): ext{ } H(s) pprox 1
ightarrow ar{\angle} H = 0.$

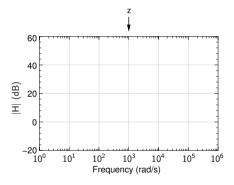
Asymptote 2:

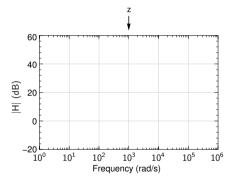
$$\omega \gg
ho$$
 (say, $\omega > 10~
ho)$: $H(s) pprox rac{1}{j(\omega/p)}
ightarrow \angle H = -\pi/2$

Asymptote 3:

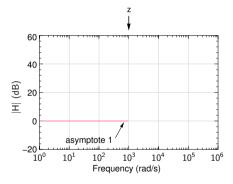
For $p/10 < \omega < 10 p$, $\angle H$ is assumed to vary linearly with log ω \rightarrow at $\omega = p$, $\angle H = -\pi/4$ (which is also the actual value of $\angle H$)

(which is also the actual value of $\angle H$).

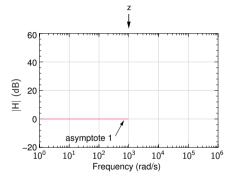




Asymptote 1: $\omega \ll z$: $|H| \rightarrow 1$, $20 \log |H| = 0 dB$.



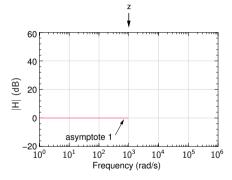
Asymptote 1: $\omega \ll z$: $|H| \rightarrow 1$, $20 \log |H| = 0 dB$.



Asymptote 1: $\omega \ll z$: $|H| \rightarrow 1$, $20 \log |H| = 0 dB$.

Asymptote 2:

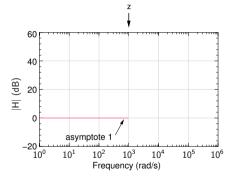
$$\omega \gg z$$
: $|H|
ightarrow rac{\omega}{z}
ightarrow |H| = 20 \log \omega - 20 \log z$ (dB)



Asymptote 1: $\omega \ll z$: $|H| \rightarrow 1$, $20 \log |H| = 0 \text{ dB}$.

Asymptote 2:

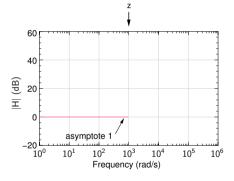
$$\begin{split} \omega \gg z; \ |H| \to \frac{\omega}{z} \to |H| = 20 \ \log \omega - 20 \ \log z \ (dB) \\ \text{Consider two values of } \omega; \ \omega_1 \ \text{and} \ 10 \ \omega_1. \\ |H|_1 = 20 \ \log \omega_1 - 20 \ \log z \ (dB) \\ |H|_2 = 20 \ \log (10 \ \omega_1) - 20 \ \log z \ (dB) \end{split}$$



Asymptote 1: $\omega \ll z$: $|H| \rightarrow 1$, $20 \log |H| = 0 \text{ dB}$.

Asymptote 2:

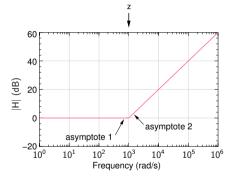
$$\begin{split} \omega \gg z; \ |H| &\to \frac{\omega}{z} \to |H| = 20 \ \log \omega - 20 \ \log z \ (dB) \\ \text{Consider two values of } \omega: \ \omega_1 \ \text{and} \ 10 \ \omega_1. \\ |H|_1 &= 20 \ \log \omega_1 - 20 \ \log z \ (dB) \\ |H|_2 &= 20 \ \log (10 \ \omega_1) - 20 \ \log z \ (dB) \\ |H|_1 &- |H|_2 &= 20 \ \log \ \frac{\omega_1}{10 \ \omega_1} = -20 \ \text{dB}. \end{split}$$



Asymptote 1: $\omega \ll z$: $|H| \rightarrow 1$, $20 \log |H| = 0 \text{ dB}$.

Asymptote 2:

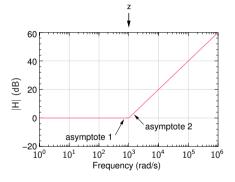
$$\begin{split} \omega \gg z; \ |H| \to \frac{\omega}{z} \to |H| = 20 \log \omega - 20 \log z \text{ (dB)} \\ \text{Consider two values of } \omega: \omega_1 \text{ and } 10 \omega_1. \\ |H|_1 = 20 \log \omega_1 - 20 \log z \text{ (dB)} \\ |H|_2 = 20 \log (10 \omega_1) - 20 \log z \text{ (dB)} \\ |H|_1 - |H|_2 = 20 \log \frac{\omega_1}{10 \omega_1} = -20 \text{ dB.} \\ \to |H| \text{ versus } \omega \text{ has a slope of } +20 \text{ dB/decade.} \end{split}$$



Asymptote 1: $\omega \ll z$: $|H| \rightarrow 1$, $20 \log |H| = 0 \text{ dB}$.

Asymptote 2:

$$\begin{split} \omega \gg z; \ |H| \to \frac{\omega}{z} \to |H| = 20 \ \log \omega - 20 \ \log z \ (dB) \\ \text{Consider two values of } \omega: \ \omega_1 \ \text{and} \ 10 \ \omega_1. \\ |H|_1 = 20 \ \log \omega_1 - 20 \ \log z \ (dB) \\ |H|_2 = 20 \ \log (10 \ \omega_1) - 20 \ \log z \ (dB) \\ |H|_1 - |H|_2 = 20 \ \log \frac{\omega_1}{10 \ \omega_1} = -20 \ \text{dB}. \\ \to |H| \ \text{versus } \omega \ \text{has a slope of } +20 \ \text{dB}/\text{decade.} \end{split}$$

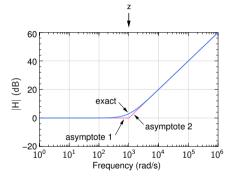


Asymptote 1: $\omega \ll z$: $|H| \rightarrow 1$, $20 \log |H| = 0 dB$.

Asymptote 2:

$$\begin{split} \omega \gg z: \ |H| \to \frac{\omega}{z} \to |H| = 20 \ \log \omega - 20 \ \log z \ (dB) \\ \text{Consider two values of } \omega: \ \omega_1 \ \text{and} \ 10 \ \omega_1. \\ |H|_1 = 20 \ \log \omega_1 - 20 \ \log z \ (dB) \\ |H|_2 = 20 \ \log (10 \ \omega_1) - 20 \ \log z \ (dB) \\ |H|_1 - |H|_2 = 20 \ \log \frac{\omega_1}{10 \ \omega_1} = -20 \ \text{dB}. \\ \to |H| \ \text{versus } \omega \ \text{has a slope of } +20 \ \text{dB}/\text{decade.} \end{split}$$

Note that, at $\omega = z$, the actual value of |H| is $\sqrt{2}$ (i.e., 3 dB).

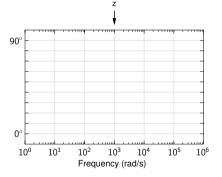


Asymptote 1: $\omega \ll z$: $|H| \rightarrow 1$, $20 \log |H| = 0 dB$.

Asymptote 2:

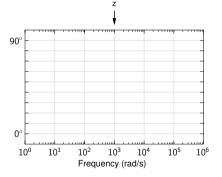
$$\begin{split} \omega \gg z: \ |H| \to \frac{\omega}{z} \to |H| = 20 \ \log \omega - 20 \ \log z \ \text{(dB)} \\ \text{Consider two values of } \omega: \ \omega_1 \ \text{and} \ 10 \ \omega_1. \\ |H|_1 = 20 \ \log \omega_1 - 20 \ \log z \ \text{(dB)} \\ |H|_2 = 20 \ \log (10 \ \omega_1) - 20 \ \log z \ \text{(dB)} \\ |H|_1 - |H|_2 = 20 \ \log \frac{\omega_1}{10 \ \omega_1} = -20 \ \text{dB}. \\ \to |H| \ \text{versus } \omega \ \text{has a slope of } +20 \ \text{dB}/\text{decade.} \end{split}$$

Note that, at $\omega = z$, the actual value of |H| is $\sqrt{2}$ (i.e., 3 dB).



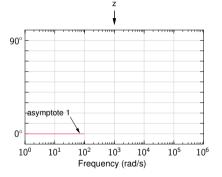
Consider
$$H(s) = 1 + s/z = 1 + j(\omega/z) \rightarrow \angle H = \tan^{-1}\left(\frac{\omega}{z}\right)$$

In this example, $z = 10^3$ rad/s.



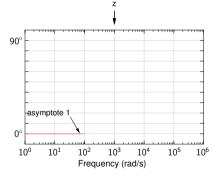
Asymptote 1:

 $\omega \ll z$ (say, $\omega < z/10$): $\angle H = 0$.



Asymptote 1:

 $\omega \ll z$ (say, $\omega < z/10$): $\angle H = 0$.

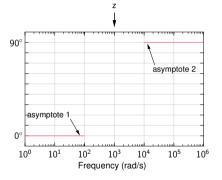


Asymptote 1:

 $\omega \ll z$ (say, $\omega < z/10$): $\angle H = 0$.

Asymptote 2:

 $\omega \gg z$ (say, $\omega > 10 z$): $\angle H = \pi/2$.

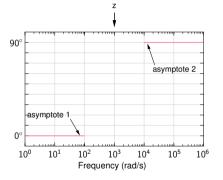


Asymptote 1:

 $\omega \ll z$ (say, $\omega < z/10$): $\angle H = 0$.

Asymptote 2:

 $\omega \gg z$ (say, $\omega > 10 z$): $\angle H = \pi/2$.



Asymptote 1:

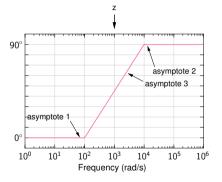
 $\omega \ll z$ (say, $\omega < z/10$): $\angle H = 0$.

Asymptote 2:

 $\omega \gg z$ (say, $\omega > 10 z$): $\angle H = \pi/2$.

Asymptote 3:

For $z/10 < \omega < 10 z$, $\angle H$ is assumed to vary linearly with log ω \rightarrow at $\omega = z$, $\angle H = \pi/4$ (which is also the actual value of $\angle H$).



Asymptote 1:

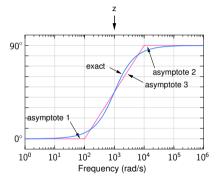
 $\omega \ll z$ (say, $\omega < z/10$): $\angle H = 0$.

Asymptote 2:

 $\omega \gg z$ (say, $\omega > 10 z$): $\angle H = \pi/2$.

Asymptote 3:

For $z/10 < \omega < 10 z$, $\angle H$ is assumed to vary linearly with log ω \rightarrow at $\omega = z$, $\angle H = \pi/4$ (which is also the actual value of $\angle H$).



Asymptote 1:

 $\omega \ll z$ (say, $\omega < z/10$): $\angle H = 0$.

Asymptote 2:

 $\omega \gg z$ (say, $\omega > 10 z$): $\angle H = \pi/2$.

Asymptote 3:

For $z/10 < \omega < 10 z$, $\angle H$ is assumed to vary linearly with log ω \rightarrow at $\omega = z$, $\angle H = \pi/4$ (which is also the actual value of $\angle H$).

*
$$H(s) = K$$

20 log $|H| = 20$ log K (a constant), and $\angle H = 0$.

- * H(s) = K20 log |H| = 20 log K (a constant), and $\angle H = 0$.
- * H(s) = s

* H(s) = K

20 $\log |H| = 20 \log K$ (a constant), and $\angle H = 0$.

* H(s) = s

 $H(j\omega) = j\omega, |H| = \omega \rightarrow |H| (dB) = 20 \log \omega.$

If $\omega \rightarrow 10 \, \omega$, $\log \omega \rightarrow \log \omega + \log 10$, $|H| \rightarrow |H| + 20$ (dB),

* H(s) = K

20 log |H| = 20 log K (a constant), and $\angle H = 0$.

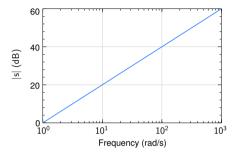
* H(s) = s

 $H(j\omega) = j\omega, |H| = \omega \rightarrow |H| (dB) = 20 \log \omega.$

If $\omega \to 10 \,\omega$, $\log \omega \to \log \omega + \log 10$, $|H| \to |H| + 20$ (dB),

i.e., a straight line in the |H| (dB)-log ω plane with a slope of 20 dB/decade, passing through (1,0).

Contribution of K (constant), s, and s^2



* H(s) = K

20 log |H| = 20 log K (a constant), and $\angle H = 0$.

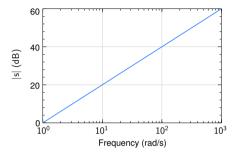
* H(s) = s

 $H(j\omega) = j\omega, |H| = \omega \rightarrow |H| (dB) = 20 \log \omega.$

If $\omega \to 10 \, \omega$, $\log \omega \to \log \omega + \log 10$, $|H| \to |H| + 20$ (dB),

i.e., a straight line in the |H| (dB)-log ω plane with a slope of 20 dB/decade, passing through (1,0).

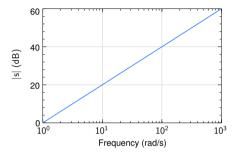
Contribution of K (constant), s, and s^2



* H(s) = K

20 log |H| = 20 log K (a constant), and $\angle H = 0$.

* H(s) = s $H(j\omega) = j\omega$, $|H| = \omega \rightarrow |H| (dB) = 20 \log \omega$. If $\omega \rightarrow 10 \omega$, $\log \omega \rightarrow \log \omega + \log 10$, $|H| \rightarrow |H| + 20 (dB)$, i.e., a straight line in the |H| (dB)-log ω plane with a slope of 20 dB/decade, passing through (1, 0). $\angle H = \pi/2$ (irrespective of ω).

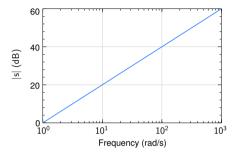


* H(s) = K

20 log |H| = 20 log K (a constant), and $\angle H = 0$.

* H(s) = s $H(j\omega) = j\omega, |H| = \omega \rightarrow |H| (dB) = 20 \log \omega.$ If $\omega \rightarrow 10 \omega$, $\log \omega \rightarrow \log \omega + \log 10, |H| \rightarrow |H| + 20 (dB)$, i.e., a straight line in the |H| (dB)-log ω plane with a slope of 20 dB/decade, passing through (1,0). $\angle H = \pi/2$ (irrespective of ω).

* $H(s) = s^2$



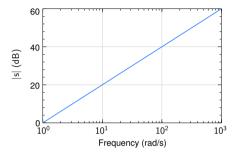
* H(s) = K

20 log |H| = 20 log K (a constant), and $\angle H = 0$.

* H(s) = s $H(j\omega) = j\omega, |H| = \omega \rightarrow |H| (dB) = 20 \log \omega.$ If $\omega \rightarrow 10 \omega$, $\log \omega \rightarrow \log \omega + \log 10, |H| \rightarrow |H| + 20 (dB)$, i.e., a straight line in the |H| (dB)-log ω plane with a slope of 20 dB/decade, passing through (1,0). $\angle H = \pi/2$ (irrespective of ω).

*
$$H(s) = s^2$$

 $H(j\omega) = -\omega^2$, $|H| = \omega^2 \rightarrow |H| (dB) = 40 \log \omega$.
If $\omega \rightarrow 10 \omega$, $\log \omega \rightarrow \log \omega + \log 10$, $|H| \rightarrow |H| + 40 (dB)$,



* H(s) = K

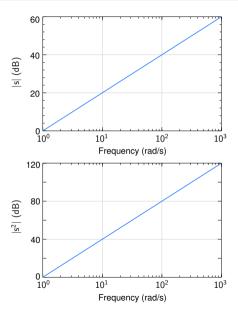
20 log |H| = 20 log K (a constant), and $\angle H = 0$.

* H(s) = s $H(j\omega) = j\omega, |H| = \omega \rightarrow |H| (dB) = 20 \log \omega.$ If $\omega \rightarrow 10 \omega$, $\log \omega \rightarrow \log \omega + \log 10, |H| \rightarrow |H| + 20 (dB)$, i.e., a straight line in the |H| (dB)-log ω plane with a slope of 20 dB/decade, passing through (1,0). $\angle H = \pi/2$ (irrespective of ω).

*
$$H(s) = s^2$$

 $H(j\omega) = -\omega^2$, $|H| = \omega^2 \rightarrow |H| (dB) = 40 \log \omega$. If $\omega \rightarrow 10 \omega$, $\log \omega \rightarrow \log \omega + \log 10$, $|H| \rightarrow |H| + 40 (dB)$, i.e., a straight line in the |H| (dB)-log ω plane with

a slope of $40 \, dB/decade$, passing through (1,0).



* H(s) = K

20 log |H| = 20 log K (a constant), and $\angle H = 0$.

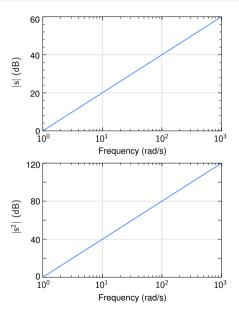
* H(s) = s $H(j\omega) = j\omega, |H| = \omega \rightarrow |H| (dB) = 20 \log \omega.$ If $\omega \rightarrow 10 \omega$, $\log \omega \rightarrow \log \omega + \log 10, |H| \rightarrow |H| + 20 (dB)$, i.e., a straight line in the |H| (dB)-log ω plane with a slope of 20 dB/decade, passing through (1,0). $\angle H = \pi/2$ (irrespective of ω).

* $H(s) = s^2$

 $H(j\omega)=-\omega^2,\ |H|=\omega^2
ightarrow |H|\,({
m dB})=40\,\log\omega.$

If $\omega \rightarrow 10 \, \omega$, $\log \omega \rightarrow \log \omega + \log 10$, $|H| \rightarrow |H| + 40 \, (dB)$,

i.e., a straight line in the |H| (dB)-log ω plane with a slope of 40 dB/decade, passing through (1,0).



* H(s) = K

20 log |H| = 20 log K (a constant), and $\angle H = 0$.

- * H(s) = s $H(j\omega) = j\omega, |H| = \omega \rightarrow |H| (dB) = 20 \log \omega.$ If $\omega \rightarrow 10 \omega$, $\log \omega \rightarrow \log \omega + \log 10, |H| \rightarrow |H| + 20 (dB)$, i.e., a straight line in the |H| (dB)-log ω plane with a slope of 20 dB/decade, passing through (1,0). $\angle H = \pi/2$ (irrespective of ω).
- * $H(s) = s^2$ $H(j\omega) = -\omega^2$, $|H| = \omega^2 \rightarrow |H| (dB) = 40 \log \omega$. If $\omega \rightarrow 10 \omega$, $\log \omega \rightarrow \log \omega + \log 10$, $|H| \rightarrow |H| + 40 (dB)$, i.e., a straight line in the |H| (dB)-log ω plane with a slope of 40 dB/decade, passing through (1,0). $\angle H = \pi$ (irrespective of ω).

Magnitude:

 $|H(j\omega)| = |H_1(j\omega)| \times |H_2(j\omega)|.$ 20 log |H| = 20 log $|H_1| + 20$ log $|H_2|.$

Magnitude:

 $|H(j\omega)| = |H_1(j\omega)| \times |H_2(j\omega)|.$

20 $\log |H| = 20 \log |H_1| + 20 \log |H_2|$.

 \rightarrow In the Bode magnitude plot, the contributions due to ${\it H}_1$ and ${\it H}_2$ simply get added.

Magnitude:

 $|H(j\omega)| = |H_1(j\omega)| \times |H_2(j\omega)|.$

20 $\log |H| = 20 \log |H_1| + 20 \log |H_2|$.

 \rightarrow In the Bode magnitude plot, the contributions due to H_1 and H_2 simply get added.

Phase:

 $H_1(j\omega)$ and $H_2(j\omega)$ are complex numbers. At a given ω , let $H_1 = K_1 \angle \alpha = K_1 e^{j\alpha}$, and $H_2 = K_2 \angle \beta = K_2 e^{j\beta}$. Then, $H_1H_2 = K_1 K_2 e^{j(\alpha+\beta)} = K_1K_2 \angle (\alpha + \beta)$. i.e., $\angle H = \angle H_1 + \angle H_2$.

Magnitude:

 $|H(j\omega)| = |H_1(j\omega)| \times |H_2(j\omega)|.$

20 $\log |H| = 20 \log |H_1| + 20 \log |H_2|$.

 \rightarrow In the Bode magnitude plot, the contributions due to H_1 and H_2 simply get added.

Phase:

 $H_1(j\omega)$ and $H_2(j\omega)$ are complex numbers.

At a given ω , let $H_1 = K_1 \angle \alpha = K_1 e^{j\alpha}$, and $H_2 = K_2 \angle \beta = K_2 e^{j\beta}$.

Then, $H_1H_2 = K_1 K_2 e^{j(\alpha+\beta)} = K_1K_2 \angle (\alpha+\beta)$.

i.e., $\angle H = \angle H_1 + \angle H_2$.

In the Bode phase plot, the contributions due to H_1 and H_2 also get added.

Magnitude:

 $|H(j\omega)| = |H_1(j\omega)| \times |H_2(j\omega)|.$

20 $\log |H| = 20 \log |H_1| + 20 \log |H_2|$.

 \rightarrow In the Bode magnitude plot, the contributions due to ${\it H}_1$ and ${\it H}_2$ simply get added.

Phase:

 $H_1(j\omega)$ and $H_2(j\omega)$ are complex numbers. At a given ω , let $H_1 = K_1 \angle \alpha = K_1 e^{j\alpha}$, and $H_2 = K_2 \angle \beta = K_2 e^{j\beta}$.

Then, $H_1 H_2 = K_1 K_2 e^{j(\alpha + \beta)} = K_1 K_2 \angle (\alpha + \beta)$.

i.e., $\angle H = \angle H_1 + \angle H_2$.

In the Bode phase plot, the contributions due to H_1 and H_2 also get added.

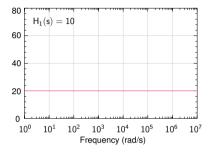
The same reasoning applies to more than two terms as well.

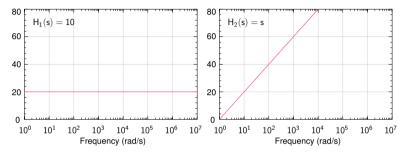
Consider
$$H(s) = \frac{10 s}{(1 + s/10^2) (1 + s/10^5)}$$
.

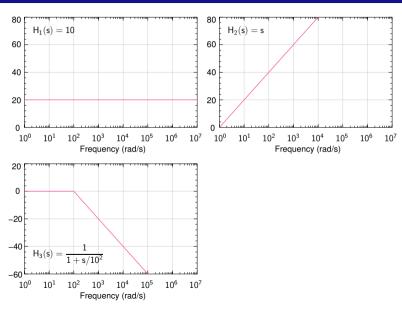
Consider
$$H(s) = \frac{10 s}{(1 + s/10^2) (1 + s/10^5)}$$
.
Let $H(s) = H_1(s) H_2(s) H_3(s) H_4(s)$, where
 $H_1(s) = 10$,
 $H_2(s) = s$,
 $H_3(s) = \frac{1}{1 + s/p_1}$, $p_1 = 10^2 \text{ rad/s}$,
 $H_4(s) = \frac{1}{1 + s/p_2}$, $p_2 = 10^5 \text{ rad/s}$.

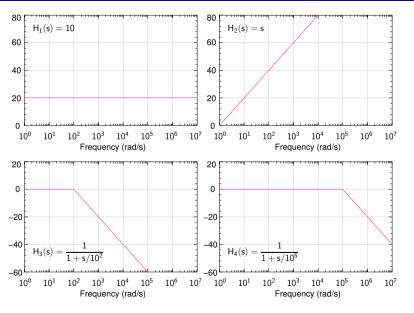
Consider $H(s) = \frac{10 s}{(1 + s/10^2) (1 + s/10^5)}$. Let $H(s) = H_1(s) H_2(s) H_3(s) H_4(s)$, where $H_1(s) = 10$, $H_2(s) = s$, $H_3(s) = \frac{1}{1 + s/p_1}$, $p_1 = 10^2$ rad/s, $H_4(s) = \frac{1}{1 + s/p_2}$, $p_2 = 10^5$ rad/s.

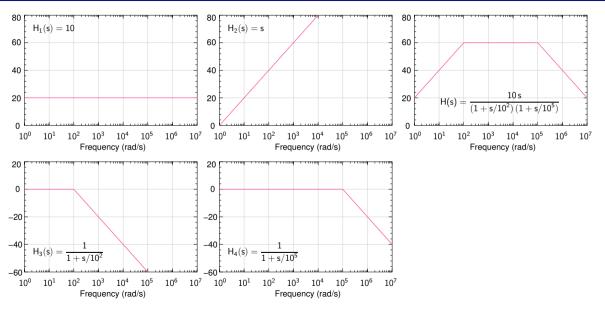
We can now plot the magnitude and phase of H_1 , H_2 , H_3 , H_4 individually versus ω and then simply add them to obtain |H| and $\angle H$.

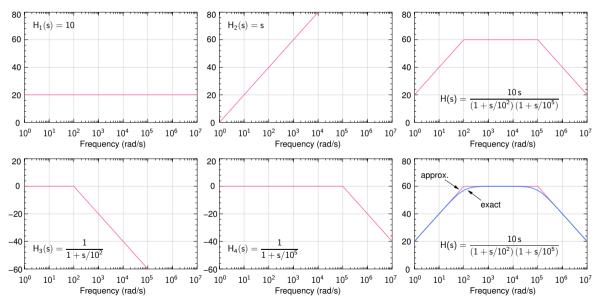


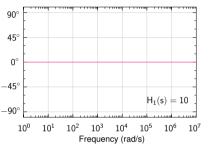


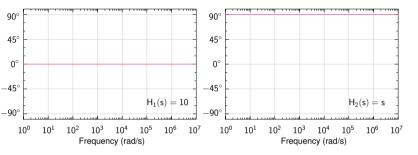


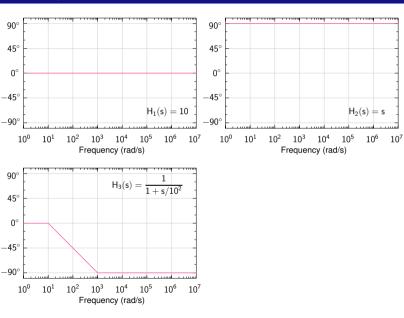


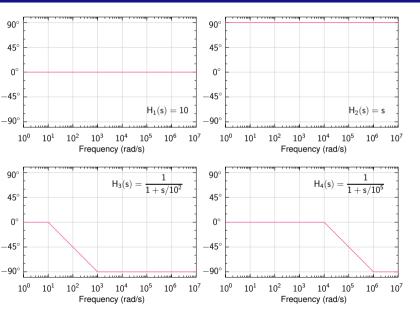


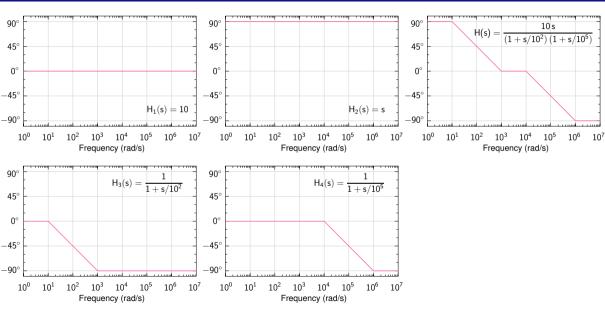




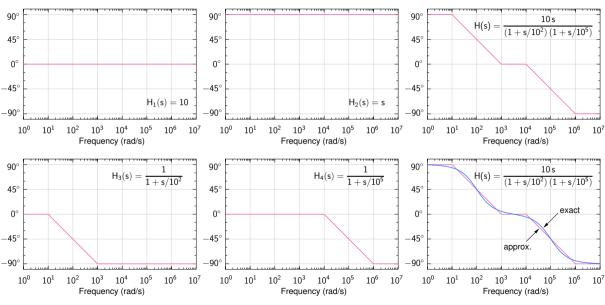








M. B. Patil, IIT Bombay



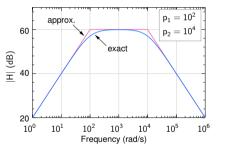
* As we have seen, the contribution of a pole to the magnitude and phase plots is well represented by the asymptotes when $\omega \ll p$ or $\omega \gg p$ (similarly for a zero).

- * As we have seen, the contribution of a pole to the magnitude and phase plots is well represented by the asymptotes when $\omega \ll p$ or $\omega \gg p$ (similarly for a zero).
- * Near $\omega = p$ (or $\omega = z$), there is some error.

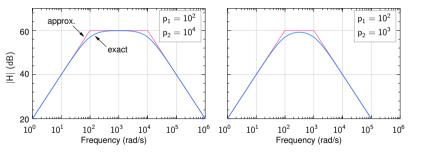
- * As we have seen, the contribution of a pole to the magnitude and phase plots is well represented by the asymptotes when $\omega \ll p$ or $\omega \gg p$ (similarly for a zero).
- * Near $\omega = p$ (or $\omega = z$), there is some error.
- * If two poles p_1 and p_2 are close to each other (say, separated by less than a decade in ω), the error becomes larger (next slide).

- * As we have seen, the contribution of a pole to the magnitude and phase plots is well represented by the asymptotes when $\omega \ll p$ or $\omega \gg p$ (similarly for a zero).
- * Near $\omega = p$ (or $\omega = z$), there is some error.
- * If two poles p_1 and p_2 are close to each other (say, separated by less than a decade in ω), the error becomes larger (next slide).
- * When the poles and zeros are not sufficiently separated, the Bode approximation should be used only for a rough estimate, follwed by a numerical calculation. However, even in such cases, it does give a good idea of the *asymptotic* magnitude and phase plots, which is valuable in amplifier design.

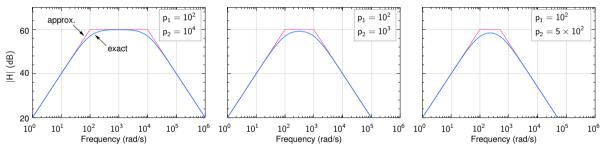
Consider
$$H(s) = \frac{10 s}{(1 + s/p_1) (1 + s/p_2)}$$



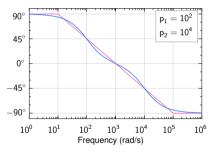
Consider $H(s) = rac{10 \, s}{(1+s/p_1) \, (1+s/p_2)}$.



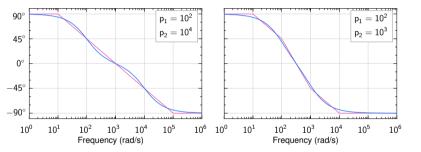
Consider $H(s) = rac{10 \, s}{(1 + s/p_1) \, (1 + s/p_2)}$.



Consider
$$H(s) = \frac{10 s}{(1 + s/p_1) (1 + s/p_2)}$$



Consider $H(s) = rac{10 \, s}{(1+s/p_1) \, (1+s/p_2)}$.



Consider $H(s) = rac{10 \, s}{(1 + s/p_1) \, (1 + s/p_2)}$.

