Corrections for

Basic Electronic Devices and Circuits

Author: Mahesh B. Patil PHI Learning Pvt. Ltd., New Delhi, 2013

- 1. Page 14, second line from bottom:
 - 5×10^{22} atoms per cubic metre.
 - should be replaced with
 - 5×10^{22} atoms per cm³.
- 2. Page 23, Fig. 2.9: The correct figure is given below. (The x-axis label for plot (b) was not correct in the original figure.)

3. Page 25, Eq. 2.15 should be

$$p = \frac{(m_p^*)^{3/2}}{\pi^2 \hbar^3} \int_{-\infty}^{E_v} \frac{\sqrt{2(E_v - E)}}{1 + e^{-(E - E_F)/kT}} dE.$$

4. Page 33, Fig. 2.17: The correct figure is given below.

5. Page 60, Fig. 2.33: The correct figure is given below.

6. Page 65, Fig. 3.4: The correct figure is given below.

7. Page 81, just before Eq. 3.31:

$$\psi(x_n) - \psi(x_p) = q V_j$$

should be replaced with $\psi(x_n) - \psi(x_p) = V_j$

8. Page 82, the equations,

$$n(x_p) = n_{p0} \exp\left(\frac{V_{\text{bi}} - V_a}{V_T}\right) = 4.83 \times 10^8.$$

$$p(x_n) = p_{n0} \exp\left(\frac{V_{\text{bi}} - V_a}{V_T}\right) = 2.41 \times 10^7.$$

should be replaced with

$$n(x_p) = n_{p0} \exp\left(\frac{V_a}{V_T}\right) = 4.83 \times 10^8 \,\mathrm{cm}^{-3}.$$

$$p(x_n) = p_{n0} \exp\left(\frac{V_a}{V_T}\right) = 2.41 \times 10^7 \,\mathrm{cm}^{-3}.$$

9. Page 84:

$$L_p = \sqrt{12.0 \times (1 \times 10^{-9})} = 1.14 \,\mu\text{m.}$$

should be replaced with $L_p = \sqrt{12.9 \times (1 \times 10^{-9})} = 1.14 \,\mu\text{m.}$

10. Page 93:

$$L_p = \sqrt{D_p \tau_p} = \sqrt{12.9 \times 5 \times 10^{-6}} \text{ cm} = 80.3 \,\mu\text{m},$$

 $L_n = \sqrt{D_p \tau_p} = \sqrt{38.7 \times 2 \times 10^{-6}} \text{ cm} = 88 \,\mu\text{m}.$

should be replaced with

$$\begin{split} L_p &= \sqrt{D_p \tau_p} = \sqrt{12.9 \times 5 \times 10^{-6}} \, \mathrm{cm} = 80.3 \, \mathrm{\mu m}, \\ L_n &= \sqrt{D_n \tau_n} = \sqrt{38.7 \times 2 \times 10^{-6}} \, \mathrm{cm} = 88 \, \mathrm{\mu m}. \end{split}$$

11. Page 106:

The electric field must be continuous ... should be replaced with The electric displacement $D = \epsilon \mathcal{E}$ must be continuous ...

12. Page 111:

As we have seen, turn-off of a pn junction ... should be replaced with As we will see, turn-off of a pn junction ...

13. Page 112, Fig. 3.40: The correct figure is given below.

14. Page 126, Eq. 4.15 should be

$$i(t) = I_s \left[\exp\left(\frac{V_a(t)}{V_T}\right) - 1 \right] \approx I_s \exp\left(\frac{V_a(t)}{V_T}\right).$$

15. Page 138:

 \dots enters the forward bias regime (sometimes between \dots should be replaced with

... enters the forward bias regime (at some time between ...

16. Page 205:

(b) With $E \leftrightarrow C$, we have

$$\frac{D_{nE}}{D_{pB}} \frac{W}{L_{nE}} \frac{N_{dB}}{N_{aE}} \to \frac{D_{nC}}{D_{pB}} \frac{W}{L_{nC}} \frac{N_{dB}}{N_{aC}} = \frac{1500}{500} \frac{2 \times 10^{-4}}{6.22 \times 10^{-3}} \frac{5 \times 10^{16}}{10^{15}} = 4.823,$$

$$\gamma = \frac{1}{1 + 4.823} = 0.1717,$$

$$\alpha_T = \frac{1}{1 + \frac{1}{2}(2/62.2)^2} = 0.99948, \quad \alpha = 0.1716, \quad \beta = 0.2,$$

should be replaced with

(b) With $E \leftrightarrow C$, we have

$$\frac{D_{nE}}{D_{pB}} \frac{W}{L_{nE}} \frac{N_{dB}}{N_{aE}} \to \frac{D_{nC}}{D_{pB}} \frac{W}{L_{nC}} \frac{N_{dB}}{N_{aC}} = \frac{1500}{500} \frac{2 \times 10^{-4}}{6.22 \times 10^{-3}} \frac{5 \times 10^{16}}{10^{15}} = 4.823,$$

$$\gamma = \frac{1}{1 + 4.823} = 0.1717,$$

$$\alpha_T = \frac{1}{1 + \frac{1}{2}(2/35.9)^2} = 0.9985, \quad \alpha = 0.1714, \quad \beta = 0.2,$$

17. Page 210, line 3:

... as long as $V_{CB} < 0$ V (i.e., a reverse bias across the C-B junction), since the C-B diode current is negligibly small in that case.

should be replaced with

... as long as $V_{CB} > 0$ V (i.e., a reverse bias across the C-B junction), since the C-B diode current is negligibly small in that case.

18. Page 280:

where
$$h = a - W = \sqrt{\frac{2\epsilon}{qN_d}(V_{\text{bi}} - V_G)}$$
.

should be replaced with

where
$$h = a - W = a - \sqrt{\frac{2\epsilon}{qN_d}(V_{\text{bi}} - V_G)}$$
.

19. Page 280: Eq. 9.3 should be

$$R_{\rm ch} = \frac{1}{\sigma} \frac{L}{A} = \frac{1}{q N_d \mu_n} \frac{L}{2hZ}$$

5

20. Page 289:

The caption of Fig. 9.10 should include: The gate voltage is $V_G = -1 \text{ V}$.

21. Page 308, Fig. 10.7: the correct figure is given below.

22. Page 310, Fig. 10.9 (b): the correct figure is given below.

23. Page 312, Fig. 10.10: the correct figure is given below.

24. Page 311: Eq. 10.11 should be

$$\frac{d\mathcal{E}_y}{dy} = \frac{\rho}{\epsilon} \to \int_{0^+}^{Y_{\text{dep}}} d\mathcal{E}_y = \frac{1}{\epsilon_{\text{Si}}} \int_{0^+}^{Y_{\text{dep}}} \rho \, dy \to \mathcal{E}_y(0^+) = \frac{q N_a Y_{\text{dep}}}{\epsilon_{\text{Si}}}.$$

25. Page 317, Fig. 10.14: the correct figure is given below.

26. Page 326: Eq. 10.30 should be

$$\oint_{AA'B'B} \mathbf{D} \cdot d\mathbf{A} = - \oint_{AA'B'B} \epsilon \, \mathcal{E}_x(x, y) \, dA,$$

$$\oint_{DD'C'C} \mathbf{D} \cdot d\mathbf{A} = + \oint_{DD'C'C} \epsilon \, \mathcal{E}_x(x, y) \, dA.$$

27. Page 327: Eq. 10.31 should be

$$\Delta x \Delta z \int_0^\infty q \left(p - n - N_a^- \right) dy = -\Delta x \Delta z \, \epsilon_{\text{ox}} \mathcal{E}_{\text{ox}}^y(x).$$

28. Page 329: Eq. 10.39 should be

$$I_D = \iint q \, n(x_1, y, z) \, \mu_n \, \frac{dV_c}{dx} \, dy dz$$
$$= \mu_n W \, \frac{dV_c}{dx} \int q \, n(x_1, y) \, dy = -\mu_n W \, \frac{dV_c}{dx} \, Q_I(x_1).$$

29. Page 334: Eq. 10.45 should have $\frac{\lambda I_D}{1 + \lambda V_{DS}}$ instead of $\frac{\lambda I_D}{1 + \lambda I_D}$.