Corrections for Basic Electronic Devices and Circuits

Author: Mahesh B. Patil

PHI Learning Pvt. Ltd., New Delhi, 2013

1. Page 14, second line from bottom:
5×10^{22} atoms per cubic metre.
should be replaced with
5×10^{22} atoms per cm^{3}.
2. Page 23, Fig. 2.9: The correct figure is given below. (The x-axis label for plot (b) was not correct in the original figure.)

3. Page 25, Eq. 2.15 should be

$$
p=\frac{\left(m_{p}^{*}\right)^{3 / 2}}{\pi^{2} \hbar^{3}} \int_{-\infty}^{E_{v}} \frac{\sqrt{2\left(E_{v}-E\right)}}{1+e^{-\left(E-E_{F}\right) / k T}} d E .
$$

4. Page 33, Fig. 2.17: The correct figure is given below.

5. Page 60, Fig. 2.33: The correct figure is given below.

6. Page 65, Fig. 3.4: The correct figure is given below.

7. Page 81, just before Eq. 3.31:
$\psi\left(x_{n}\right)-\psi\left(x_{p}\right)=q V_{j}$
should be replaced with
$\psi\left(x_{n}\right)-\psi\left(x_{p}\right)=V_{j}$
8. Page 82 , the equations,

$$
\begin{aligned}
& n\left(x_{p}\right)=n_{p 0} \exp \left(\frac{V_{\mathrm{bi}}-V_{a}}{V_{T}}\right)=4.83 \times 10^{8} . \\
& p\left(x_{n}\right)=p_{n 0} \exp \left(\frac{V_{\mathrm{bi}}-V_{a}}{V_{T}}\right)=2.41 \times 10^{7} .
\end{aligned}
$$

should be replaced with

$$
n\left(x_{p}\right)=n_{p 0} \exp \left(\frac{V_{a}}{V_{T}}\right)=4.83 \times 10^{8} \mathrm{~cm}^{-3}
$$

$$
p\left(x_{n}\right)=p_{n 0} \exp \left(\frac{V_{a}}{V_{T}}\right)=2.41 \times 10^{7} \mathrm{~cm}^{-3}
$$

9. Page 84 :
$L_{p}=\sqrt{12.0 \times\left(1 \times 10^{-9}\right)}=1.14 \mu \mathrm{~m}$.
should be replaced with
$L_{p}=\sqrt{12.9 \times\left(1 \times 10^{-9}\right)}=1.14 \mu \mathrm{~m}$.
10. Page 93:

$$
\begin{aligned}
& L_{p}=\sqrt{D_{p} \tau_{p}}=\sqrt{12.9 \times 5 \times 10^{-6}} \mathrm{~cm}=80.3 \mu \mathrm{~m} \\
& L_{n}=\sqrt{D_{p} \tau_{p}}=\sqrt{38.7 \times 2 \times 10^{-6}} \mathrm{~cm}=88 \mu \mathrm{~m}
\end{aligned}
$$

should be replaced with

$$
\begin{aligned}
& L_{p}=\sqrt{D_{p} \tau_{p}}=\sqrt{12.9 \times 5 \times 10^{-6}} \mathrm{~cm}=80.3 \mu \mathrm{~m} \\
& L_{n}=\sqrt{D_{n} \tau_{n}}=\sqrt{38.7 \times 2 \times 10^{-6}} \mathrm{~cm}=88 \mu \mathrm{~m}
\end{aligned}
$$

11. Page 106:

The electric field must be continuous ...
should be replaced with
The electric displacement $D=\epsilon \mathcal{E}$ must be continuous ...
12. Page 111:

As we have seen, turn-off of a $p n$ junction ...
should be replaced with
As we will see, turn-off of a $p n$ junction ...
13. Page 112, Fig. 3.40: The correct figure is given below.

(a)

(b)
14. Page 126, Eq. 4.15 should be

$$
i(t)=I_{s}\left[\exp \left(\frac{V_{a}(t)}{V_{T}}\right)-1\right] \approx I_{s} \exp \left(\frac{V_{a}(t)}{V_{T}}\right)
$$

15. Page 138:
... enters the forward bias regime (sometimes between ...
should be replaced with
... enters the forward bias regime (at some time between ...
16. Page 205:
(b) With $E \leftrightarrow C$, we have

$$
\begin{gathered}
\frac{D_{n E}}{D_{p B}} \frac{W}{L_{n E}} \frac{N_{d B}}{N_{a E}} \rightarrow \frac{D_{n C}}{D_{p B}} \frac{W}{L_{n C}} \frac{N_{d B}}{N_{a C}}=\frac{1500}{500} \frac{2 \times 10^{-4}}{6.22 \times 10^{-3}} \frac{5 \times 10^{16}}{10^{15}}=4.823, \\
\gamma=\frac{1}{1+4.823}=0.1717, \\
\alpha_{T}=\frac{1}{1+\frac{1}{2}(2 / 62.2)^{2}}=0.99948, \quad \alpha=0.1716, \quad \beta=0.2,
\end{gathered}
$$

should be replaced with
(b) With $E \leftrightarrow C$, we have

$$
\begin{gathered}
\frac{D_{n E}}{D_{p B}} \frac{W}{L_{n E}} \frac{N_{d B}}{N_{a E}} \rightarrow \frac{D_{n C}}{D_{p B}} \frac{W}{L_{n C}} \frac{N_{d B}}{N_{a C}}=\frac{1500}{500} \frac{2 \times 10^{-4}}{6.22 \times 10^{-3}} \frac{5 \times 10^{16}}{10^{15}}=4.823, \\
\gamma=\frac{1}{1+4.823}=0.1717, \\
\alpha_{T}=\frac{1}{1+\frac{1}{2}(2 / 35.9)^{2}}=0.9985, \quad \alpha=0.1714, \quad \beta=0.2,
\end{gathered}
$$

17. Page 210, line 3 :
\ldots as long as $V_{C B}<0 \mathrm{~V}$ (i.e., a reverse bias across the C - B junction), since the C - B diode current is negligibly small in that case.
should be replaced with
\ldots as long as $V_{C B}>0 \mathrm{~V}$ (i.e., a reverse bias across the C - B junction), since the C - B diode current is negligibly small in that case.
18. Page 280:
where $h=a-W=\sqrt{\frac{2 \epsilon}{q N_{d}}\left(V_{\mathrm{bi}}-V_{G}\right)}$.
should be replaced with
where $h=a-W=a-\sqrt{\frac{2 \epsilon}{q N_{d}}\left(V_{\mathrm{bi}}-V_{G}\right)}$.
19. Page 280: Eq. 9.3 should be

$$
R_{\mathrm{ch}}=\frac{1}{\sigma} \frac{L}{A}=\frac{1}{q N_{d} \mu_{n}} \frac{L}{2 h Z}
$$

20. Page 289:

The caption of Fig. 9.10 should include:
The gate voltage is $V_{G}=-1 \mathrm{~V}$.
21. Page 308, Fig. 10.7: the correct figure is given below.

22. Page 310, Fig. 10.9 (b): the correct figure is given below.

23. Page 312, Fig. 10.10: the correct figure is given below.

24. Page 311: Eq. 10.11 should be

$$
\frac{d \mathcal{E}_{y}}{d y}=\frac{\rho}{\epsilon} \rightarrow \int_{0^{+}}^{Y_{\mathrm{dep}}} d \mathcal{E}_{y}=\frac{1}{\epsilon_{\mathrm{Si}}} \int_{0^{+}}^{Y_{\mathrm{dep}}} \rho d y \rightarrow \mathcal{E}_{y}\left(0^{+}\right)=\frac{q N_{a} Y_{\mathrm{dep}}}{\epsilon_{\mathrm{Si}}}
$$

25. Page 317, Fig. 10.14: the correct figure is given below.

26. Page 326: Eq. 10.30 should be

$$
\begin{aligned}
& \oint_{A A^{\prime} B^{\prime} B} \mathbf{D} \cdot d \mathbf{A}=-\oint_{A A^{\prime} B^{\prime} B} \epsilon \mathcal{E}_{x}(x, y) d A, \\
& \oint_{D D^{\prime} C^{\prime} C} \mathbf{D} \cdot d \mathbf{A}=+\oint_{D D^{\prime} C^{\prime} C} \epsilon \mathcal{E}_{x}(x, y) d A .
\end{aligned}
$$

27. Page 327: Eq. 10.31 should be

$$
\Delta x \Delta z \int_{0}^{\infty} q\left(p-n-N_{a}^{-}\right) d y=-\Delta x \Delta z \epsilon_{\mathrm{ox}} \mathcal{E}_{\mathrm{ox}}^{y}(x)
$$

28. Page 329: Eq. 10.39 should be

$$
\begin{aligned}
I_{D} & =\iint q n\left(x_{1}, y, z\right) \mu_{n} \frac{d V_{c}}{d x} d y d z \\
& =\mu_{n} W \frac{d V_{c}}{d x} \int q n\left(x_{1}, y\right) d y=-\mu_{n} W \frac{d V_{c}}{d x} Q_{I}\left(x_{1}\right) .
\end{aligned}
$$

29. Page 334: Eq. 10.45 should have $\frac{\lambda I_{D}}{1+\lambda V_{D S}}$ instead of $\frac{\lambda I_{D}}{1+\lambda I_{D}}$.
