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Carrier statistics in equilibrium
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* The term “carrier” refers to mobile entities, viz., electrons in the conduction band (or
simply “electrons”) and vacancies in the valence band (or simply “holes”).

* We are interested in the carrier densities, i.e., electron density (n) and hole density (p),
because they are responsible for carrying a current. (The nuclei and core electrons of the
silicon atoms do not contribute to conduction.)

* We will first consider a semiconductor in equilibrium, i.e., without an external
perturbation such as an applied voltage, a magnetic field, or optical illumination.
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Electron density (n) in equilibrium
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* The electron density depends on two factors:

- How many states are available in the conduction band for the

electrons to occupy?

- What is the probability that a given state (at energy E) is

occupied?

* The “density of states” function gc (E) gives the number of states
available per unit energy per unit volume.

gc (E) =
(m∗n )3/2

√
2 (E − Ec )

π2~3
, E > Ec , where

m∗n ≡ electron effective mass = 1.08m0 for silicon at T = 300 K,

m0 = free electron mass = 9.1× 10−31 Kg,

~= h/2π, with h (Planck constant) = 6.63× 10−34 J-s.

M. B. Patil, IIT Bombay



Electron density (n) in equilibrium

Ev

Ec

Eg

E

gc(E)

gv(E)

conduction band

valence band

* The electron density depends on two factors:

- How many states are available in the conduction band for the

electrons to occupy?

- What is the probability that a given state (at energy E) is

occupied?

* The “density of states” function gc (E) gives the number of states
available per unit energy per unit volume.

gc (E) =
(m∗n )3/2

√
2 (E − Ec )

π2~3
, E > Ec , where

m∗n ≡ electron effective mass = 1.08m0 for silicon at T = 300 K,

m0 = free electron mass = 9.1× 10−31 Kg,

~= h/2π, with h (Planck constant) = 6.63× 10−34 J-s.

M. B. Patil, IIT Bombay



Electron density (n) in equilibrium

Ev

Ec

Eg

E

gc(E)

gv(E)

conduction band

valence band

* The electron density depends on two factors:

- How many states are available in the conduction band for the

electrons to occupy?

- What is the probability that a given state (at energy E) is

occupied?

* The “density of states” function gc (E) gives the number of states
available per unit energy per unit volume.

gc (E) =
(m∗n )3/2

√
2 (E − Ec )

π2~3
, E > Ec , where

m∗n ≡ electron effective mass = 1.08m0 for silicon at T = 300 K,

m0 = free electron mass = 9.1× 10−31 Kg,

~= h/2π, with h (Planck constant) = 6.63× 10−34 J-s.

M. B. Patil, IIT Bombay



Electron density (n) in equilibrium

Ev

Ec

Eg

E

gc(E)

gv(E)

conduction band

valence band

* The electron density depends on two factors:

- How many states are available in the conduction band for the

electrons to occupy?

- What is the probability that a given state (at energy E) is

occupied?

* The “density of states” function gc (E) gives the number of states
available per unit energy per unit volume.

gc (E) =
(m∗n )3/2

√
2 (E − Ec )

π2~3
, E > Ec , where

m∗n ≡ electron effective mass = 1.08m0 for silicon at T = 300 K,

m0 = free electron mass = 9.1× 10−31 Kg,

~= h/2π, with h (Planck constant) = 6.63× 10−34 J-s.

M. B. Patil, IIT Bombay



Electron density (n) in equilibrium

Ev

Ec

Eg

E

gc(E)

gv(E)

conduction band

valence band

* The electron density depends on two factors:

- How many states are available in the conduction band for the

electrons to occupy?

- What is the probability that a given state (at energy E) is

occupied?

* The “density of states” function gc (E) gives the number of states
available per unit energy per unit volume.

gc (E) =
(m∗n )3/2

√
2 (E − Ec )

π2~3
, E > Ec , where

m∗n ≡ electron effective mass = 1.08m0 for silicon at T = 300 K,

m0 = free electron mass = 9.1× 10−31 Kg,

~= h/2π, with h (Planck constant) = 6.63× 10−34 J-s.

M. B. Patil, IIT Bombay



Electron density (n) in equilibrium

Ev

Ec

Eg

E

gc(E)

gv(E)

conduction band

valence band

* The electron density depends on two factors:

- How many states are available in the conduction band for the

electrons to occupy?

- What is the probability that a given state (at energy E) is

occupied?

* The “density of states” function gc (E) gives the number of states
available per unit energy per unit volume.

gc (E) =
(m∗n )3/2

√
2 (E − Ec )

π2~3
, E > Ec , where

m∗n ≡ electron effective mass = 1.08m0 for silicon at T = 300 K,

m0 = free electron mass = 9.1× 10−31 Kg,

~= h/2π, with h (Planck constant) = 6.63× 10−34 J-s.

M. B. Patil, IIT Bombay



Electron density (n) in equilibrium
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Calculate the number of states N′ between Ec and Ec + 50 meV for silicon at
T = 300 K.

N′ =

∫ Ec+∆E

Ec

(m∗n )3/2
√

2 (E − Ec )

π2~3
dE

=

√
2 (m∗n )3/2

π2~3

(∆E)3/2

3/2

=
16
√

2π

3

(
m∗n∆E

h2

)3/2

= 23.7×
[

1.08× 9.1× 10−31 × 50× 10−3 × 1.6× 10−19

(6.63× 10−34)2

]3/2

= 23.7× 2.39× 1024/m3 = 5.7× 1019/cm3.

N′ would be the number of electrons per unit volume (in the conduction band)
if the states in the range Ec < E < Ec + ∆E were all occupied (and the rest of
the states unoccupied). The real picture is different.
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* The number of electrons in the interval E to (E + dE) is not gc (E)dE but gc (E)f (E)dE .

* f (E) is the probability that the state at E is occupied.

* The probability depends on the “Fermi level” EF which typically lies in the forbidden gap.
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* A change in the Fermi level causes the probability function to shift, and therefore the
carrier concentrations (n and p) change substantially with EF .
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* f (E) is given by the Fermi function: f (E) =
1

1 + e(E−EF )/kT
where

k = 1.38× 10−23 J/K (or 8.62× 10−5 eV/K) is the Boltzmann constant.

* At E =EF , f (E) = 1/2.

* If E − EF � kT , e(E−EF )/kT � 1, and f (E)→ 0.

If E − EF � −kT , e(E−EF )/kT � 1, and f (E)→ 1.

* For E − EF > 3 kT , e(E−EF )/kT > 20, which is much larger than 1. We then have

f (E) ≈ fMB(E) = e−(E−EF )/kT , the Maxwell-Boltzmann function.
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Electron density (n) in equilibrium
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* Low T : e(E−EF )/kT varies rapidly with E .

High T : e(E−EF )/kT varies slowly with E .

→ f (E) becomes broader as T increases.

* Because of the significant variation of f (E) with temperature, we can expect the electron
density to have a significant temperature dependence.
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is called the “effective” density of states for the conduction band.
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and ηv =
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kT

= Nv
2√
π
F1/2(ηv ), where Nv = 2

[
m∗pkT

2π~2

]3/2

is the effective density of states for the valence band.
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* nFermi = Nc
2√
π
F1/2(ηc ), ηc = −

(
Ec − EF

kT

)
* nMB = Nce−(Ec−EF )/kT

* pFermi = Nv
2√
π
F1/2(ηv ), ηv = −

(
EF − Ev

kT

)
* pMB = Nv e−(EF−Ev )/kT

* For EF < (Ec − 3 kT ), nMB ≈ nFermi

* For EF > (Ev + 3 kT ), pMB ≈ pFermi
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Carrier statistics in equilibrium: Example

For silicon at T = 300 K and in equilibrium (with Nc = 2.8× 1019 cm−3,
Nv = 1.04× 1019 cm−3, Eg = 1.12 eV),

(a) Find EF for which n and p are equal. This Fermi level is called Ei , the
“intrinsic” Fermi level.

(b) Obtain expressions for n and p in terms of (Ei − EF ) (instead of (Ec − EF )
and (EF − Ev )). Assume non-degenerate conditions.

(c) Plot gc (E) f (E) and gv (E) [1− f (E)] versus E for
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The condition n = p is satisfied when EF is about (Ev + Ec )/2.

→ We can use MB statistics, i.e.,

Nc e−(Ec−EF )/kT = Nv e−(EF−Ev )/kT

→ −Ec + EF + EF − Ev = kT log
Nv

Nc
.

→ EF =
1

2
(Ec + Ev ) +

kT

2
log

Nv

Nc
.

Nv/Nc = (m∗p/m
∗
n )3/2 → EF ≡ Ei =

1

2
(Ec + Ev ) +

3

4
kT log

m∗p

m∗n
.

* The second term in the above equation is about −7.3 meV,
i.e., the intrinsic Fermi level Ei is located 7.3 meV below the
centre of the band gap.

* If Nc and Nv were equal, Ei would be exactly at the centre of
the band gap.
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When EF =Ei , we have n = p≡ ni , the “intrinsic carrier
concentration.”

The actual electron concentration (for a given Fermi level EF ) can
be written in terms of ni as follows.

n = Nc e−(Ec−EF )/kT , ni = Nc e−(Ec−Ei )/kT .

→ n

ni
= e(EF−Ei )/kT → n = ni e

(EF−Ei )/kT .

Similarly, for the hole concentration p, we obtain

p = ni e
(Ei−EF )/kT .

* for EF > Ei , n > p.

* For EF < Ei , n < p.
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n = Nc e−(Ec−EF )/kT , p = Nv e−(EF−Ev )/kT .

When EF =Ei , n = p = ni , i.e.,

n = ni = Nc e−(Ec−Ei )/kT , p = ni = Nv e−(Ei−Ev )/kT

→ n p = n2
i = NcNv e−(Ec−Ev )/kT = NcNv e−Eg/kT

→ ni =
√
NcNv e−Eg/2kT

= 2 (m∗nm
∗
p )3/4

(
kT

2π~2

)3/2

e−Eg/2kT

≡ K T 3/2 e−Eg/2kT

T (◦C) ni (cm−3)

25 8.1× 109

35 1.7× 1010

45 3.5× 1010

55 6.9× 1010

65 1.3× 1011

75 2.3× 1011

For silicon, near room temperature, ni nearly doubles
with every 10 ◦C rise in temperature.
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How to obtain EF
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* So far, we have assumed a certain EF (with respect to Ec

and Ev ) and obtained n and p.

* In practice, we only have information such as Nc , Nv , Eg , T ,
and doping densities (Na and Nd ).

* We now want to consider the reverse problem of finding EF

(and n, p), given the above data.
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Charge considerations in equilibrium: intrinsic semiconductor

T= 0K

Eg

Ec

Ev
valence band

conduction band

T= 300K

* At 0 K, the positive charge due to the atomic cores balances the negative charge
due to valence electrons.

* As temperature increases, some of the valence electrons become free, i.e., they enter
the conduction band, leaving behind positively charged holes in the valence band.

* The number of electrons in the conduction band is equal to the number of holes in
the valence band.

* Also, their densities must be equal since the electrostatic potential is constant (no
electric field) → n = p.

M. B. Patil, IIT Bombay



Charge considerations in equilibrium: intrinsic semiconductor

T= 0K

Eg

Ec

Ev
valence band

conduction band

T= 300K

* At 0 K, the positive charge due to the atomic cores balances the negative charge
due to valence electrons.

* As temperature increases, some of the valence electrons become free, i.e., they enter
the conduction band, leaving behind positively charged holes in the valence band.

* The number of electrons in the conduction band is equal to the number of holes in
the valence band.

* Also, their densities must be equal since the electrostatic potential is constant (no
electric field) → n = p.

M. B. Patil, IIT Bombay



Charge considerations in equilibrium: intrinsic semiconductor

T= 0K

Eg

Ec

Ev
valence band

conduction band

T= 300K

* At 0 K, the positive charge due to the atomic cores balances the negative charge
due to valence electrons.

* As temperature increases, some of the valence electrons become free, i.e., they enter
the conduction band, leaving behind positively charged holes in the valence band.

* The number of electrons in the conduction band is equal to the number of holes in
the valence band.

* Also, their densities must be equal since the electrostatic potential is constant (no
electric field) → n = p.

M. B. Patil, IIT Bombay



Charge considerations in equilibrium: intrinsic semiconductor

T= 0K

Eg

Ec

Ev
valence band

conduction band

T= 300K

* At 0 K, the positive charge due to the atomic cores balances the negative charge
due to valence electrons.

* As temperature increases, some of the valence electrons become free, i.e., they enter
the conduction band, leaving behind positively charged holes in the valence band.

* The number of electrons in the conduction band is equal to the number of holes in
the valence band.

* Also, their densities must be equal since the electrostatic potential is constant (no
electric field) → n = p.

M. B. Patil, IIT Bombay



Charge considerations in equilibrium: intrinsic semiconductor

T= 0K

Eg

Ec

Ev
valence band

conduction band

T= 300K

* At 0 K, the positive charge due to the atomic cores balances the negative charge
due to valence electrons.

* As temperature increases, some of the valence electrons become free, i.e., they enter
the conduction band, leaving behind positively charged holes in the valence band.

* The number of electrons in the conduction band is equal to the number of holes in
the valence band.

* Also, their densities must be equal since the electrostatic potential is constant (no
electric field) → n = p.

M. B. Patil, IIT Bombay



Charge considerations in equilibrium: doped semiconductor

A

DEa

Ed

Eg

Ec

Ev
valence band

conduction band

* When there are donor or acceptor atoms in the lattice, we have the following charged species.

- electrons in the conduction band (density n)

- holes in the valence band (density p)

- ionised donor atoms (density N+
d )

- ionised acceptor atoms (density N−a )

* If the doping densities (Na or Nd or both) are uniform in space, charge neutrality in equilibrium requires

−qn + qp + qN+
d − qN−a = 0 → n + N−a = p + N+

d .
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Charge considerations in equilibrium
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* Let the donor density be Nd . Some of the donor atoms donate their electrons and acquire a net positive
charge; the others remain neutral. → Nd = N+

d + N0
d .

* Similarly, Na = N−a + N0
a .

* The ratios N+
d /Nd and N−a /Na are given by

N+
d

Nd
=

1

1 + 2 e(EF−Ed )/kT
,

N−a
Na

=
1

1 + 4 e(Ea−EF )/kT
.

* N+
d /Nd → 1 if EF is sufficiently below Ed .

* N−a /Na → 1 if EF is sufficiently above Ea.
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Calculation of n and p in equilibrium

Ea

Ed

Eg

Ec

Ev
valence band

conduction band

* n + N−a = p + N+
d .

* Nc e−(Ec−EF )/kT +
Na

1 + 4 e(Ea−EF )/kT
= Nv e

−(EF−Ev )/kT +
Nd

1 + 2 e(EF−Ed )/kT
.

* We can take Ev as a reference → Ev = 0,Ec =Eg .

* This is a nonlinear equation in EF and must be solved iteratively.

* Note that Eg depends on the temperature. For silicon,

Eg (T ) =Eg (0)− αT 2/(β + T ),

with Eg (0) = 1.17 eV, α= 4.73× 10−4 eV/K, and β= 636 K.

* Let us look at the results obtained for a few representative values of Nd and Na, with
Ec − Ed = 45 meV, Ea − Ev = 45 meV.
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* Let us look at the results obtained for a few representative values of Nd and Na, with
Ec − Ed = 45 meV, Ea − Ev = 45 meV.
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* With Nd = 1015 cm−3 and Na = 0,

- At room temperature (300 K),

n≈Nd , and p � n.

- Since N+
d + p = n, we have

N+
d ≈Nd , i.e., complete

ionisation of the donor atoms.

* With Na = 1015 cm−3 and Nd = 0,

- At room temperature (300 K),

p≈Na, and n� p.

- Since N−a + n = p, we have

N−a ≈Na, i.e., complete

ionisation of the acceptor atoms.

* In fact, the condition of complete
ionisation is valid over a wide range of
temperatures, called the “extrinsic”
temperature region.
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* Note that one of the carrier densities
is much larger than the other (in the
extrinsic region). The more abundant
carrier is called the “majority carrier,”
and the other carrier is called the
“minority carrier.”

* For Nd = 1015 cm−3 and Na = 0,
electrons are the majority carriers.

For Na = 1015 cm−3 and Nd = 0,
holes are the majority carriers.

* A semiconductor with electrons as
majority carriers is called an n-type
semiconductor.

A semiconductor with holes as
majority carriers is called a p-type
semiconductor.
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* At low temperatures, a significant
fraction of impurity atoms remains
neutral, causing a reduction in n or p.

* The carriers remain “frozen” at the
impurity sites, i.e., electrons remain
bound to donors, and holes (vacancies)
remain bound to acceptors.

* This effect is called the carrier
“freeze-out” effect, and it can be a
limiting factor in low-temperature
operation of semiconductor devices.

M. B. Patil, IIT Bombay



n and p in equilibrium

p

Nd = 1015/cm3

Na =0

Nd =0

Na = 1015/cm3

EF

n

EF

p

ni ni
n

Ev

Ed

Ec
Ec

EvEa

E
ne

rg
y

(e
V

)
D

en
si

ty
(×

10
15
/c

m
3 )

1

0

T (K)

2

1

0

T (K)
00 100 200 300 400 500 600 100 200 300 400 500 600

* At low temperatures, a significant
fraction of impurity atoms remains
neutral, causing a reduction in n or p.

* The carriers remain “frozen” at the
impurity sites, i.e., electrons remain
bound to donors, and holes (vacancies)
remain bound to acceptors.

* This effect is called the carrier
“freeze-out” effect, and it can be a
limiting factor in low-temperature
operation of semiconductor devices.

M. B. Patil, IIT Bombay



n and p in equilibrium

p

Nd = 1015/cm3

Na =0

Nd =0

Na = 1015/cm3

EF

n

EF

p

ni ni
n

Ev

Ed

Ec
Ec

EvEa

E
ne

rg
y

(e
V

)
D

en
si

ty
(×

10
15
/c

m
3 )

1

0

T (K)

2

1

0

T (K)
00 100 200 300 400 500 600 100 200 300 400 500 600

* At low temperatures, a significant
fraction of impurity atoms remains
neutral, causing a reduction in n or p.

* The carriers remain “frozen” at the
impurity sites, i.e., electrons remain
bound to donors, and holes (vacancies)
remain bound to acceptors.

* This effect is called the carrier
“freeze-out” effect, and it can be a
limiting factor in low-temperature
operation of semiconductor devices.

M. B. Patil, IIT Bombay



n and p in equilibrium

p

Nd = 1015/cm3

Na =0

Nd =0

Na = 1015/cm3

EF

n

EF

p

ni ni
n

Ev

Ed

Ec
Ec

EvEa

E
ne

rg
y

(e
V

)
D

en
si

ty
(×

10
15
/c

m
3 )

1

0

T (K)

2

1

0

T (K)
00 100 200 300 400 500 600 100 200 300 400 500 600

* At high temperatures, the intrinsic
carrier concentration ni becomes large
and starts dominating.

* As a result, n and p become
comparable (and larger than Nd or
Na).

* This region is called the “intrinsic
region,” and it must be avoided for a
semiconductor device to work as
intended.
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n and p in equilibrium: compensated semiconductor
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* If both types of dopants are present,
the dopant with the larger density
dominates.

* If Nd � Na, the semiconductor is
n-type, and n =Nd − Na (in the
extrinsic temperature range).

* If Na � Nd , the semiconductor is
p-type, and p =Na − Nd (in the
extrinsic temperature range).

* A semiconductor with both types of
dopants is called a “compensated”
semiconductor.
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Computation of n and p at room temperature in equilibrium

* We have seen that N+
d ≈Nd and N−a ≈Na at room temperature. This makes the

computation of n and p much easier.

* Charge neutrality → n + N−a = p + N+
d → n + Na ≈ p + Nd .

* Also, assuming non-degenerate conditions, we have

n p = Nc e−(Ec−EF )/kT × Nv e−(EF−Ev )/kT

= NcNv e−(Ec−Ev )/kT

= NcNv e−Eg/kT

= n2
i (T ).

* The above two equations can be solved to obtain n and p.
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Computation of n and p at room temperature in equilibrium: example

In a silicon sample with Nd = 5× 1016 cm−3, find the equilibrium electron and hole

concentrations at T = 300 K (ni = 1010 cm−3 at 300 K).

Solution: n + N−a = p + N+
d → n ≈ p + Nd

Using np = n2
i , i.e., p =

n2
i

n
, we get

n =
n2
i

n
+ Nd → n2 − nNd − n2

i = 0→ n =
Nd ±

√
N2

d + 4n2
i

2
.

+ sign gives a physically meaningful result, viz.,

n ≈ Nd = 5× 1016 cm−3, p =
n2
i

n
=

1020

5× 1016
= 2× 103 cm−3.

Since n� p, this is an n-type sample.

Calculation of EF : n = Nce−(Ec−EF )/kT

→ Ec − EF = kT log
Nc

n
= (0.0259 eV) log

2.8× 1019

5× 1016
= 0.1636 eV.

(Solving the charge neutrality equation exactly gives n = 4.9× 1016 cm−3,

Ec − EF = 0.1641 eV.)

Eg

Ev

EF

Ed

Ec
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→ Ec − EF = kT log
Nc

n
= (0.0259 eV) log

2.8× 1019

5× 1016
= 0.1636 eV.

(Solving the charge neutrality equation exactly gives n = 4.9× 1016 cm−3,

Ec − EF = 0.1641 eV.)
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Variation of EF with doping density (silicon, 300K)
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* n-type semiconductor: EF gets closer to Ec as Nd is increased.

* p-type semiconductor: EF gets closer to Ev as Na is increased.

* n ≈ Nd = Nce−(Ec−EF )/kT → Ec − EF = kT log
Nc

n
≈ kT (log Nc − log Nd ).

→ (Ec − EF ) varies linearly with log Nd .

* p ≈ Na = Nv e−(EF−Ev )/kT → EF − Ev = kT log
Nv

p
≈ kT (log Nv − log Na).

→ (EF − Ev ) varies linearly with log Na.
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