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* The processes of generation and recombination of electron-hole pairs (EHPs) take place
continuously.

* The rates of generation and recombination depend on several factors:

- band structure of the semiconductor

- presence of light of an appropriate wavelength

- defects and impurity atoms in the semiconductor

- electron and hole densities

- temperature

* Some of these processes, with very small rates, may be completely ineffective, while
others may be dominant.
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* Direct recombination

- An electron from the conduction band combines directly with a hole in the valence

band, thus destroying an EHP.

- The energy lost by the electron may be transferred to a photon (light) in “radiatve”

recombination or to a phonon (lattice vibration) in “non-radiative” recombination.

* Direct generation

- An electron from the valence band goes directly to the conduction band, thus

generating an EHP.

- The energy required for the transition may be supplied by a photon

(photo-generation) or a phonon (thermal generation).

* Since particles from both condution and valence bands are simultaneously involved, the
above processes are called “band-to-band” G-R.
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* In indirect G-R, the transitions from the conduction band to the valence band (and vice
versa) take place through a “G-R centre,” with an energy level ET located in the
forbidden gap.

* The G-R centre could be due to a defect in the crystal or an impurity atom.

* Recombination or generation takes place in two steps.

(For some centres, it is more likely that an electron trapped from the conduction band
will be released back to the conduction band; such a centre is called an electron trap.)

* Indirect G-R processes are particularly efficient when ET lies close to the middle of the
band gap.
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G-R with three particles
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* In auger recombination, an electron from the conduction band recombines with a hole in
the valence band, and its energy is transferred to another electron in the conduction
band.

* In the reverse process of impact ionisation, a high-energy electron loses its energy (> Eg )
but remains in the conduction band, and the energy is used by a valence band electron to
make a transition to the conduction band, thus generating an EHP.
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Non-radiative G-R in silicon
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* In silicon, the dominant non-radiative G-R process is that involving a G-R centre.

* The net rate of recombination per unit volume is given by the Shockley–Read–Hall (SRH)

formula, R − G =
n p − n2

i

τp(n + n1) + τn(p + p1)
.

* τn is called the electron lifetime.

τp is called the hole lifetime.

* The parameters n1 and p1 depend on ET and are given by

n1 = ni e
(ET−Ei )/kT , p1 = ni e

(Ei−ET )/kT .

* Since the most effective G-R centres have ET ≈Ei , n1 and p1 are generally much smaller
than the majority carrier density in a doped semiconductor.
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SRH formula: special case
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R − G =
n p − n2

i

τp(n + n1) + τn(p + p1)
.

Let us consider a semiconductor in which electrons are the majority carriers,
with the equilibrium values of n and p given by n0 = 1016 cm−3, p0 = 104 cm−3.

Suppose that additional carriers are created in the semiconductor (e.g.,
by shining light on the sample), giving rise to “excess concentrations”
∆p = ∆n = 1012 cm−3.

The total concentrations are n = n0 + ∆n and p = p0 + ∆p,

Applying the SRH formula, we get

R − G =
(n0 + ∆n)(p0 + ∆p)− n2

i

τp(n + n1) + τn(p + p1)

=
p0∆n + n0∆p + ∆n∆p

τp(n + n1) + τn(p + p1)
∵ n0p0 = n2

i

≈ p0∆n + n0∆p

τp(n0 + ∆n)
∵ n1 � n0, p + p1 � n0

≈ n0∆p

τpn0
=

∆p

τp
.
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Similarly, R − G ≈ ∆n

τn
if n0 � p0, ∆n = ∆p � p0.

In conclusion,

* If the excess carrier densities ∆n and ∆p are small compared to the
majority carrier density, the net recombination rate is governed by the
minority carrier lifetime.

* We will find this result useful in our discussion of diodes and bipolar
junction transistors.
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Continuity equations

x+∆xx
∆x

B

A′

B′

C′C

D D′

A

AreaA

Fn(x) Fn(x+∆x)

Two processes can change the number of electrons and holes in the box:

- carrier transport governed by Fn and Fp

- generation and recombination of EHPs

The continuity equations serve to relate these phenomena.
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Continuity equations

x+∆xx
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Fn(x) Fn(x+∆x)

Assume that there are no variations of n, p, ψ in the y and z directions.
→ Fn and Fp in the y and z directions are zero.

The number of electrons in the box can change because of the following factors.

* Flux Fn (if positive) brings electrons into the box at the rate Fn × A.

* Flux Fn(x + ∆x) removes electrons from the box at the rate
Fn(x + ∆x)× A.

* EHPs disappear from the box due to recombination at the rate
(R − G)(x) (A∆x) (assuming ∆x to be small).

We can now relate the above factors to
∂n

∂t
:

(A∆x)
∂n

∂t
= Fn(x)A−Fn(x + ∆x)A− (R − G)A∆x

→ ∂n

∂t
= − Fn(x + ∆x)−Fn(x)

∆x
− (R − G).
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∂n

∂t
= − Fn(x + ∆x)−Fn(x)

∆x
− (R − G).

In the limit ∆x → 0, we get

∂n

∂t
= − ∂Fn

∂x
− (R − G).

Similarly, for holes,

∂p

∂t
= − ∂Fp

∂x
− (R − G).

These equations are called the “continuity equations” for electrons and holes.

We can rewrite the continuity equations in terms of the current densities

Jn =−qFn, Jp = +qFn:

∂n

∂t
=

1

q

∂Jn

∂x
− (R − G),

∂p

∂t
= − 1

q

∂Jp

∂x
− (R − G).
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How does a semiconductor device simulator work?

A semiconductor device simulator solves the following coupled differential
equations in a self-consistent manner:

Poisson’s equation:
∂E
∂x

=
ρ

ε
→ ∂2ψ

∂x2
= − ρ

ε
,

Continuity equation (n):
∂n

∂t
=

1

q

∂Jn

∂x
− (R − G),

Continuity equation (p):
∂p

∂t
= − 1

q

∂Jp

∂x
− (R − G),

with appropriate expressions substituted for ρ, Jn, Jp , (R − G), and with
suitable boundary conditions.

The general problem is very complex and needs to be solved numerically.

However, we can gain significant insight by considering examples which
represent situations in real semiconductor devices.
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Silicon bar example (revisited): consistency check

L= 50µm

Nd= 5× 1017 cm−3

T= 300K (ni= 1010 cm−3)

5 V

L

x

L

Ec

Ev

5 eV

E

JSolution:

(a) E = − dψ

dx
= −1

kV

cm
, i.e., ψ(x) = −Ex + constant, say ψ(x) = −Ex .

(b) n ≈ Nd = 5× 1017 cm−3 for 0 < x < L.

(c) E = 1 kV/cm, J ≈ Jdrift
n = 3.2× 104 A/cm2 (Jdrift

p ≈ 0, assuming p to be negligibly small).

* Poisson’s equation: ψ(x) = −Ex = (constant) x → d2ψ

dx2
= 0,

i.e., ρ = q(N+
d − n + p) must be zero, which is satisfied by our solution.
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= R −G .

Since Jn is constant in our solution, R − G must be zero.
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τp(n + n1) + τn(p + p1)
= 0→ n p = n2

i → p =
n2
i

Nd
= p0 (equilibrium value).
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=
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Example

x

Gopt

n-Si

0

Consider an n-type silicon sample with Nd = 1017 cm−3. Light is
(continuously) incident on its surface, resulting in an optical generation rate
shown in the figure.

(We are assuming here that the light is entirely absorbed in a very thin region
near the semiconductor surface (x = 0) and does not penetrate deeper.)

Assume that, as a result of the incident light, the excess minority carrier
concentration (i.e., p − p0) at x = 0 is maintained at ∆p1 = 1010 cm−3.

Solve the continuity equation for holes and obtain ∆p(x). (T = 300 K)
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Example

perturbed
region

n-Si

x

Gopt

n-Si

0

* Since only one end of the semiconductor is perturbed, we expect a
region with a deviation from equilibrium conditions. We do not know at
this point the extent of this region.

* We expect p(x →∞) = p0, i.e., ∆p(x →∞) ≡ p(x →∞)− p0 = 0.

* At the surface (x = 0), EHPs are continuously generated; therefore, we
expect some excess hole concentration there, i.e., p(0) = p0 + ∆p1.

* We assume steady-state situation in which all quantities have settled to
their steady-state forms, not varying with time.
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Example

perturbed
region

n-Si

x

Gopt

n-Si

0

* Continuity equation for holes:
∂p

∂t
= − ∂Fp

∂x
− (R − G) = 0.

* In steady state, the number of holes generated at x = 0 per second is
equal to the total number of holes lost per second due to recombination.

* Because of diffusion and recombination, the excess hole concentration
decreases from ∆p1 at x = 0 to 0 at x =∞.

* Since ∆p1(= 1010 cm−3)� n0(= 1017 cm−3), we can approximate
(R − G) with ∆p/τp .

* Let us assume that Jdrift
p � Jdiff

p (to be verified later)

→ Fp ≈ Fdiff
p = −Dp

∂p

∂x
= −Dp

∂(p0 + ∆p)

∂x
= −Dp

∂∆p

∂x
.
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perturbed
region

n-Si

x

Gopt

n-Si

0

− ∂Fp

∂x
− (R − G) = 0→ − ∂

∂x

(
−Dp

∂∆p

∂x

)
− ∆p

τp
= 0.

→ ∂2∆p

∂x2
− ∆p

Dpτp
= 0.

The quantity
√

Dpτp has units of

√
cm2

s
× s = cm and is called the “hole

diffusion length” Lp — also, in this case, the “minority carrier diffusion
length” since holes are the minority carriers.

With this definition, we have

∂2∆p

∂x2
=

∆p

L2
p

→ ∆p(x) = Ae−x/Lp + B ex/Lp .

Using the boundary conditions, i.e., ∆p(0) = ∆p1, ∆p(∞) = 0, we get

∆p(x) = ∆p1 e−x/Lp

Note:

* Our solution is valid provided Jdrift
p is small compared to Jdiff

p .

* We could not have solved the continuity equations for electrons as easily
since Jdrift

n cannot be ignored; even a small electric field causes a
significant Jdrift

n because n is large.
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∆p(x) = ∆p1 e−x/Lp

Note:

* Our solution is valid provided Jdrift
p is small compared to Jdiff

p .

* We could not have solved the continuity equations for electrons as easily
since Jdrift

n cannot be ignored; even a small electric field causes a
significant Jdrift

n because n is large.
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* The analytical solution ∆p = ∆p1e−x/Lp matches very well with the numerical solution.

* Jdrift
p is negligibly small, as we had assumed.
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* Lp =
√

Dpτp =
√
µp VT τp =

√
500

cm2

V-s
× 0.0258 V× 10× 10−9 s = 3.6× 10−4 cm = 3.6µm.

We expect the length of the perturbed region to be about 5 Lp or 18µm.
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* The condition ∆p � n (in general, the excess minority carrier concentration being much smaller than the
majority carrier concentration) is called “low-level injection,” i.e., injection of a small number of minority
carriers in a sea of majority carriers.
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* The electron density is essentially constant (= n0), but there is a small change in n with respect to x
which gives rise to a non-zero Jdiff

n . ∆n(x)≈∆p(x) (not shown).

* The electric field is very small, but it is sufficient to cause a significant Jdrift
n because n is large.
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* The total current J = Jn + Jp is zero throughout since we have an open-circuit condition.

* The voltage drop (
∫
Edx in magnitude) is very small.

* To summarise, ∆p � n0, Jp ≈ Jdiff
p , ∆n(x) ≈ ∆p(x) → charge neutrality → small E, and Jtotal = 0.
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* Suppose Gopt is increased such that ∆p1 = 6× 1016 cm−3. ∆p(0) is now comparable to the majority
carrier density, and we have a high-level injection situation.

* Jdrift
p is comparable to Jdiff

p with high-level injection → We would not be able to solve the continuity
equation for holes analytically.
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* Suppose Gopt is increased such that ∆p1 = 6× 1016 cm−3. ∆p(0) is now comparable to the majority
carrier density, and we have a high-level injection situation.

* Jdrift
p is comparable to Jdiff

p with high-level injection → We would not be able to solve the continuity
equation for holes analytically.
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* Charge neutrality is still maintained almost perfectly because

∆n ≈ ∆p → ∆n + n0 ≈ ∆p + N+
d → n ≈ p + N+

d (since p0 is small.)

* Jtotal = Jn + Jp remains equal to zero even with high-level injection.
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Example

h x

t

Gopt

G0

Case 1

Gopt

G0

t
Case 2

p-SiConsider a p-type silicon sample with Na = 5× 1017 cm−3 at T = 300 K.

When it is illuminated uniformly with light of a certain wavelength, there is

uniform generation throughout the sample at the rate of G0 /cm3-s, where G0

depends on the intensity of the incident light.

For the excitations shown as Case 1 and Case 2, how does the excess electron

concentration ∆n = n − n0 vary with time?

Note: The condition of uniform generation holds if the thickness of the sample

h is much smaller than 1/α, where α is the absorption coefficient of silicon at

the wavelength of the incident light.
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Example: Case 1

h x

t

Gopt

G0

p-Si

Continuity equation for the minority carriers (electrons) for t > 0 is,

∂n

∂t
= − ∂Fn

∂x
− (R − G)SRH + Gopt

= −(R − G)SRH + G0 ∵ there is no variation in space

= − ∆n

τn
+ G0, assuming low-level injection

∴
∂(n0 + ∆n)

∂t
= − ∆n

τn
+ G0.

∴
∂∆n

∂t
+

∆n

τn
= G0.

Homogeneous solution: ∆n(h) = Ae−t/τn .

Particular solution: ∆n(p) = G0τn.

→ ∆n(t) = Ae−t/τn + G0τn, t > 0.
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Example: Case 1

h xh x

t

Gopt

G0

p-Sip-Si

G0τn

t

∆n

∆n(t) = Ae−t/τn + G0τn, t > 0.

At t = 0−, Gopt = 0→ ∆n = 0.

∆n(0+) = ∆n(0−) since ∆n cannot change suddenly (that would require an

infinite electron flux or an infinite G-R rate).

Using ∆n(0+) = 0, we get A = −G0τn, and

∆n(t) = G0τn
(
1− e−t/τn

)
In steady state, as t →∞, the rate of optical generation must be equal to

the rate of net thermal recombination.

→ G0 =
∆n

τn
→ ∆n = G0τn, as predicted by the above equation.
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Example: Case 2

h xh x

t

Gopt

G0

p-Sip-Si

t

G0τn

Continuity equation for the minority carriers (electrons) for t > 0 is,

∂n

∂t
= − ∂Fn

∂x
− (R − G)SRH (Note: no Gopt term here)

= −(R − G)SRH ∵ there is no variation in space

= − ∆n

τn
, assuming low-level injection

∴
∂(n0 + ∆n)

∂t
= − ∆n

τn
.

∴
∂∆n

∂t
+

∆n

τn
= 0.

Homogeneous solution: ∆n(h) = A′ e−t/τn .

Particular solution: ∆n(p) = 0.

→ ∆n(t) = A′ e−t/τn , t > 0.

We assume that, at t = 0−, we have a steady-state situation, with

∆n(0−) = G0τn → ∆n(0+) = G0τn → A′ = G0τn.

→ ∆n(t) = G0τne−t/τn .
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Continuity equation for the minority carriers (electrons) for t > 0 is,

∂n

∂t
= − ∂Fn

∂x
− (R − G)SRH (Note: no Gopt term here)

= −(R − G)SRH ∵ there is no variation in space

= − ∆n

τn
, assuming low-level injection

∴
∂(n0 + ∆n)

∂t
= − ∆n

τn
.

∴
∂∆n

∂t
+

∆n

τn
= 0.

Homogeneous solution: ∆n(h) = A′ e−t/τn .

Particular solution: ∆n(p) = 0.

→ ∆n(t) = A′ e−t/τn , t > 0.

We assume that, at t = 0−, we have a steady-state situation, with

∆n(0−) = G0τn → ∆n(0+) = G0τn → A′ = G0τn.

→ ∆n(t) = G0τne−t/τn .
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