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* A p-n junction is useful as a stand-alone device (the diode).

* It is also an integral part of devices such as transistors, IGBTs, thyristors, etc.

* In integrated circuits, pn junctions are used to provide isolation between devices.

* We will focus on semiconductor p-n junctions first and look at metal-semiconductor
junctions later.
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p-n junction fabrication

Start with n+ substrate, with n epitaxial layer grown on top.

n+ substrate

n epi-layer
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p-n junction fabrication

Add metal contacts (a few steps).

oxide

n+ substrate
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Idealised p-n junction diode structure
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* For our analysis, we will consider a simplified structure with p-type doping on one side
and n-type on the other.

* We will assume the doping densities to change abruptly at the junction → “abrupt” pn
junction.
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pn junction in equilibrium Na Nd

xj
p n

n regionp region
neutral neutral

xjxp xn

Ec

EF

Ev

qVbi

depletion region

Vbi

ψ

0

E

−Em

* There is a “depletion region” in which the potential ψ varies.

* Away from the depletion region, ψ is constant, and the
electric field is zero.

* There is a “built-in” voltage drop between the p and n sides,
denoted by Vbi.

* Note that ψ=− 1

q

dEc

dx
, and E =− dψ

dx
.

* Let us check if this picture is consistent with Poisson’s
equation.

M. B. Patil, IIT Bombay



pn junction in equilibrium Na Nd

xj
p n

n regionp region
neutral neutral

xjxp xn

Ec

EF

Ev

qVbi

depletion region

Vbi

ψ

0

E

−Em

* There is a “depletion region” in which the potential ψ varies.

* Away from the depletion region, ψ is constant, and the
electric field is zero.

* There is a “built-in” voltage drop between the p and n sides,
denoted by Vbi.

* Note that ψ=− 1

q

dEc

dx
, and E =− dψ

dx
.

* Let us check if this picture is consistent with Poisson’s
equation.

M. B. Patil, IIT Bombay



pn junction in equilibrium Na Nd

xj
p n

n regionp region
neutral neutral

xjxp xn

Ec

EF

Ev

qVbi

depletion region

Vbi

ψ

0

E

−Em

* There is a “depletion region” in which the potential ψ varies.

* Away from the depletion region, ψ is constant, and the
electric field is zero.

* There is a “built-in” voltage drop between the p and n sides,
denoted by Vbi.

* Note that ψ=− 1

q

dEc

dx
, and E =− dψ

dx
.

* Let us check if this picture is consistent with Poisson’s
equation.

M. B. Patil, IIT Bombay



pn junction in equilibrium Na Nd

xj
p n

n regionp region
neutral neutral

xjxp xn

Ec

EF

Ev

qVbi

depletion region

Vbi

ψ

0

E

−Em

* There is a “depletion region” in which the potential ψ varies.

* Away from the depletion region, ψ is constant, and the
electric field is zero.

* There is a “built-in” voltage drop between the p and n sides,
denoted by Vbi.

* Note that ψ=− 1

q

dEc

dx
, and E =− dψ

dx
.

* Let us check if this picture is consistent with Poisson’s
equation.

M. B. Patil, IIT Bombay



pn junction in equilibrium Na Nd

xj
p n

n regionp region
neutral neutral

xjxp xn

Ec

EF

Ev

qVbi

depletion region

Vbi

ψ

0

E

−Em

* There is a “depletion region” in which the potential ψ varies.

* Away from the depletion region, ψ is constant, and the
electric field is zero.

* There is a “built-in” voltage drop between the p and n sides,
denoted by Vbi.

* Note that ψ=− 1

q

dEc

dx
, and E =− dψ

dx
.

* Let us check if this picture is consistent with Poisson’s
equation.

M. B. Patil, IIT Bombay



pn junction in equilibrium Na Nd

xj
p n

n regionp region
neutral neutral

xjxp xn

Ec

EF

Ev

qVbi

depletion region

Vbi

ψ

0

E

−Em

* There is a “depletion region” in which the potential ψ varies.

* Away from the depletion region, ψ is constant, and the
electric field is zero.

* There is a “built-in” voltage drop between the p and n sides,
denoted by Vbi.

* Note that ψ=− 1

q

dEc

dx
, and E =− dψ

dx
.

* Let us check if this picture is consistent with Poisson’s
equation.

M. B. Patil, IIT Bombay



pn junction in equilibrium Na Nd

xj
p n

n regionp region
neutral neutral

xjxp xn

Ec

EF

Ev

qVbi

depletion region

Vbi

ψ

0

E

−Em

* There is a “depletion region” in which the potential ψ varies.

* Away from the depletion region, ψ is constant, and the
electric field is zero.

* There is a “built-in” voltage drop between the p and n sides,
denoted by Vbi.

* Note that ψ=− 1

q

dEc

dx
, and E =− dψ

dx
.

* Let us check if this picture is consistent with Poisson’s
equation.

M. B. Patil, IIT Bombay



pn junction in equilibrium Na Nd

xj
p n

n regionp region
neutral neutral

xjxp xn

Ec

EF

Ev

qVbi

depletion region

Vbi

ψ

0

E

−Em

* There is a “depletion region” in which the potential ψ varies.

* Away from the depletion region, ψ is constant, and the
electric field is zero.

* There is a “built-in” voltage drop between the p and n sides,
denoted by Vbi.

* Note that ψ=− 1

q

dEc

dx
, and E =− dψ

dx
.

* Let us check if this picture is consistent with Poisson’s
equation.

M. B. Patil, IIT Bombay



pn junction in equilibrium Na Nd

xj
p n

n regionp region
neutral neutral

xjxp xn

Ec

EF

Ev

qVbi

depletion region

Vbi

ψ

0

E

−Em

* There is a “depletion region” in which the potential ψ varies.

* Away from the depletion region, ψ is constant, and the
electric field is zero.

* There is a “built-in” voltage drop between the p and n sides,
denoted by Vbi.

* Note that ψ=− 1

q

dEc

dx
, and E =− dψ

dx
.

* Let us check if this picture is consistent with Poisson’s
equation.

M. B. Patil, IIT Bombay



pn junction in equilibrium

n regionp region
neutral neutral

xjxp xn

Ec

EF

Ev

qVbi

depletion region

xnxp xj

102

106

1010

1014

1018

p

n (in cm−3)

p
(in 1017 cm−3)

Na

acceptor density

0

2

Nd

donor density

(in 1017 cm−3)

x (µm)

n

0

2

19.7 20 20.3

Charge density:

p(x) = Nv exp−
(
EF − Ev (x)

kT

)
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Ec (x)− EF
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.

In the neutral p-region (x < xp), p = N−
a ≈ Na.

In the neutral n-region (x > xn), n = N+
d ≈ Nd .

Na = Nv exp−
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,
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* Charge density:

ρ(x) = q
[
N+
d (x) + p(x)− N−

a (x)− n(x)
]

≈ q [(Nd (x)− n(x))− (Na(x)− p(x))].

* ρ= 0 in the neutral regions.

* Within the depletion region, both n and p are small, i.e., this region is
depleted of carriers → “depletion region”.

* To proceed further analytically, we make the “depletion approximation,”
i.e., we assume that the transistions between the neutral regions and the
depletion region are abrupt.

* Since the depletion region has non-zero charge density, it is also called
“space charge region.”
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ρ
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Vbi

xp xj xn

E =− dψ

dx

* Built-in voltage Vbi:

p(x) = Nv exp

[
− EF − Ev (x)

kT

]
, n(x) = Nc exp

[
− Ec (x)− EF

kT

]
.

→ p(xn)

p(xp)
= exp

[
− Ev (xp)− Ev (xn)

kT

]
.

→ p(xn)n(xn)

p(xp)n(xn)
=

n2
i

NaNd
= exp

(
− qVbi

kT

)
.

The built-in voltage Vbi is therefore given by

Vbi =
kT

q
log

(
NaNd

n2
i

)
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Example:

For a silicon pn junction with Na = 5× 1017 cm−3, Nd = 1017 cm−3,
compute Vbi at T = 300 K. (ni = 1.5× 1010 cm−3 at 300 K.)

Solution:

Vbi =
kT

q
log

NaNd

n2
i

= (0.0259 V) log
(5× 1017)(1017)

(1.5× 1010)2

= 0.86 V
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Electric field E(x):

* E =
dψ

dx
= 0 in the neutral regions.

* In the depletion region,

∫ xn

xp

dE =

∫ xn

xp

ρ

ε
dx .

Since E(xp) = E(xn) = 0, we must have

∫ xn

xp

ρ

ε
dx = 0,

which means the area under the ρ versus x curve must be zero.

i.e., NaWp = NdWn →
Wp

Wn
=

Nd

Na
.

→ The depletion width is larger on the lightly doped side.
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* Since ρ is piecewise constant, E must be piecewise linear.

* The maximum value (magnitude) of E occurs at x = xj .∫ xj

xp
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1

ε

∫ xj

xp

ρdx → −Em − 0 =
1

ε
(−qNaWp)

→ Em =
qNaWp

ε
=

qNdWn

ε
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Potential ψ(x):

* xp < x < xj :
dE
dx

= − qN−
a

ε
≈ − qNa

ε
→ E(x) = − qNa

ε
x + k1.

Since E = 0 at x = xp , we get E(x) = − qNa

ε
(x − xp).

→ ψ(x) = −
∫
Edx =

qNa

ε

[
x2

2
− xpx

]
+ k2.

Taking ψ(xp) = 0, we can find k2.

→ ψ(x) =
qNa

2ε
(x − xp)2.

If xj is taken as 0, i.e., x ← (x − xj ), we get

ψ(x) =
qNa

2ε
(x + Wp)2.
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* pn junction in equilibrium: The band diagram is consistent with Poisson’s equation.
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The built-in voltage Vbi is given by the area under the E(x) curve.
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For an abrupt, uniformly doped silicon pn junction, Na = 5× 1017 cm−3.

Compute Vbi, W , Wn, Wp , and Em for Nd = 1016, 1017, 5× 1017, 1018,

and 5× 1018 cm−3 (T = 300 K).

Solution:

Vbi = VT log
NaNd

n2
i

= 0.0259 V× log
(5× 1017)(1× 1016)

(1.5× 1010)2

= 0.8 V.
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√
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qNd

ρ
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−qNa

Na Nd

xj
np

Wp Wn

0

E

−Em

W

x

ψ

Vbi

xp xj xn

dE
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=
ρ

ǫ
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Effect of Nd , with Na = 5× 1017 cm−3 held fixed.

(Vbi in Volts, W , Wn, Wp in µm, Em in kV/cm.)

Nd (cm−3) Vbi W Wn Wp Em
1.0× 1016 0.80 0.324 0.318 0.006 49

1.0× 1017 0.86 0.115 0.096 0.019 148

5.0× 1017 0.90 0.068 0.034 0.034 263

1.0× 1018 0.92 0.060 0.020 0.040 307

5.0× 1018 0.96 0.052 0.004 0.047 366

* Vbi = VT log
NaNd

n2
i

, W =

√
2ε

q

(
Na + Nd

NaNd

)
Vbi,

Wn =
Na

Na + Nd
W , Wp =

Nd

Na + Nd
W .

Nd � Na (p+n junction):

Wn ≈W , and W is determined mainly by Nd .

Na � Nd (n+p junction):

Wp ≈W , and W is determined mainly by Na.
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Nd (cm−3) Vbi W Wn Wp Em
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5.0× 1017 0.90 0.068 0.034 0.034 263

1.0× 1018 0.92 0.060 0.020 0.040 307

5.0× 1018 0.96 0.052 0.004 0.047 366

* For high doping densities such as 1018 cm−3, degenerate

statistics should be used for higher accuracy, i.e.,

n = Nc
2√
π
F1/2(ηc ), with ηc =

EF − Ec

kT
, and

p = Nv
2√
π
F1/2(ηv ), with ηv =

Ev − EF

kT
.
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pn junction in equilibrium: current densities

n regionp region
neutral neutral

xj

Na Nd

xj
p n

xjxp xn

Ec

EF

Ev

qVbi

depletion region

102

106

1010

1014

1018

x (µm)

p

n (in cm−3)

19.7 20 20.3

* The diffusion currents can be expected to be substantial since
there is a large change in n or p between the p-side and the
n-side.

* In equilibrium, the drift and diffusion currents are equal and
opposite for eletrons as well as holes, i.e.,

Jdiff
n = −Jdrift

n , Jdiff
p = −Jdrift

p .

* Qualitatively, we can see that the diffusion and drift currents
will be in opposite directions:

Electrons:

Fdiff
n : , E : , Fdrift

n : .

Holes:

Fdiff
p : , E : , Fdrift

p : .
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Summary

xn

−Na

xp xj

ρ/q (approx)

(in kV/cm)

(in 105 A/cm2)

(in 1017 cm−3)

(in 104 A/cm2)

(in 1017 cm−3)
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106

1010

1014

1018

p

n (in cm−3)

x (µm)

−1

2

0

ρ/q (exact)
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E

(in kV/cm)

0

−100

E

Jdiffn

Jdriftn

x (µm)

Jdiffp

Jdriftp

0

6

−6

x (µm)

Ec

EF

Ev

qVbi

xj
xn

depletion
region

neutral
n region

np

xp
depletion
region

neutral
p region

0

1

xj xj

0

−100

5

0

−5

2

0

Nd

19.7 20 20.3 20 20.1219.84 20

* There are three regions: p neutral region, n neutral region, and depletion region.
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* The electric field is zero in the neutral regions and maximum (in magnitude) at the junction.
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* There is a potential difference – the built-in voltage Vbi – between the neutral p and neutral n sides.
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* Jn and Jp are individually zero because the drift and diffusion components cancel out.
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Jdriftn

x (µm)

Jdiffp

Jdriftp

0

6

−6

x (µm)

Ec

EF

Ev

qVbi

xj
xn

depletion
region

neutral
n region

np

xp
depletion
region

neutral
p region

0

1

xj xj

0

−100

5

0

−5

2

0

Nd

19.7 20 20.3 20 20.1219.84 20

* Jn and Jp are individually zero because the drift and diffusion components cancel out.
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