Diode Temperature Sensor Experiment: Procedure/Observation

(I) Current source

- 1. Design the current source circuit shown in Fig. 1 for $I_{DUT} = 1 \text{ mA}$.
- 2. Use a resistor $R_L = 1$ k as the DUT and verify that $I_{DUT} \approx 1$ mA.
- 3. Use $R_L = 470 \Omega$, and verify that the DUT current remains the same.
- 4. Replace R_L with the diode to be used for sensing temperature, i.e., a diode-connected transistor 2N2222. Measure I_{DUT} and V_L .
- (II) Difference amplifier
 - 1. Wire up the difference amplifier circuit shown in Fig. 2 (c). Use $R_1 = R_3 = 10$ k, $R_2 = 47$ k. In order to make $R_4 = R_2$, use the pot arrangement shown in the figure.
 - Apply a large common-mode sinusoidal voltage (e.g., amplitude 6 V, frequency 1 kHz). Adjust the pot such that the output voltage is zero (as small as possible). Leave the pot setting unchanged for the rest of the experiment.
 - 3. Find the gain of the difference amplifier by making $V_2 = 0$ V and applying $V_1 = \hat{V}_1 \sin \omega t$ (say, $\hat{V}_1 = 100 \text{ mV}$, f = 1 kHz).
- (III) Complete sensor circuit
 - 1. Wire up the voltage divider circuit shown in Fig. 2 (b). Record the minimum and maximum achievable values of V_{ref} by adjusting the pot. Verify that they are consistent with your calculations.
 - 2. Wire up the complete sensor circuit (Fig. 2 (a)). Adjust V_{ref} to make the output voltage V_o equal to the LM-35 output voltage at room temperature, i.e., without any heating. Measure the diode voltage V_D as well. All voltages should be measured with a multi-meter with a resolution of 1 mV.

Do not change V_{ref} hereafter.

- 3. Apply $V_R = 0.5$ V to the heating element. Wait for five minutes for the temperature to settle. Measure V_D , V_o , V_{LM35} . The diode temperature in °C is given by $V_{LM35}/10$ where V_{LM35} is in mV.
- 4. Repeat for V_R equal to 1 V, 1.5 V, \cdots , 5 V.
- 5. Plot $V_o(T)$ and $V_D(T)$, and estimate $\frac{dV_D}{dT}$ and $\frac{dV_o}{dT}$.

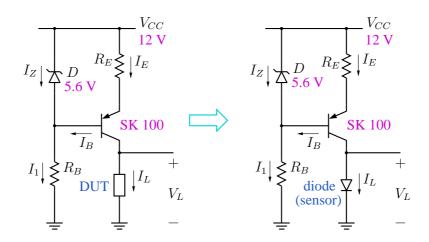


Figure 1: Implementation of a constant current source. DUT stands for "device under test" which is a diode-connected transistor in our experiment.

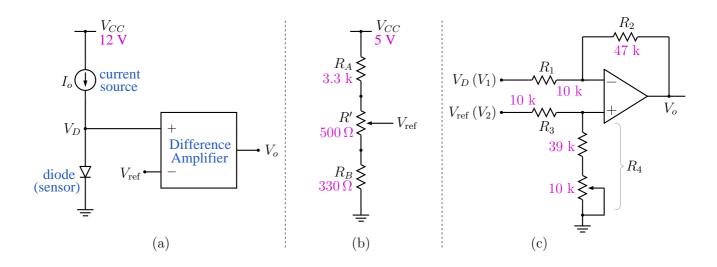


Figure 2: (a) Overall sensor circuit, (b) potential divider to obtain V_{ref} , (c) difference amplifier.