
M.B. Patil, IIT Bombay 1

Op Amp Circuits

Inverting and Non-inverting Amplifiers, Integrator, Differentiator

Introduction

An Operational Amplifier (Op Amp) is a versatile building block used in a variety of ap-

plications in electronics. Op amps make circuit design simple and robust. An op amp chip

has a complex internal circuit (see Fig. 1), but from the user’s perspective, it can be treated

by a simple equivalent circuit, making the design process very simple and straightforward, as

compared to using discrete transistors.
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Figure 1: Internal circuit of Op Amp 741

Power supply

Fig. 2 shows the most commonly used configuration for providing power supply to an op

amp. The +VCC and −VCC terminals of the op amp are connected to +V0 and −V0 where V0

is typically 10 to 15V. For example, the +VCC terminal may be connected to +15V, and the

−VCC terminal to −15V. The voltages +15V and −15V here are with respect to the ground of

the power supply which we will use in the lab. Note that the Op Amp 741 (see Fig. 1) does not

have a ground terminal of its own.
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In op amp circuit diagrams, the ±VCC connections are often not shown explicitly, but we

must always remember that an op amp circuit will not work if the power supply is not provided.

While testing the circuit, it is a good idea to first check whether the ±VCC terminals of the op

amp are indeed getting ±V0.
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Figure 2: Connecting power supply to an op amp

Linear and saturation regions

An op amp exhibits a very large gain (of the order of 105) AV =
Vo

Vi

, where Vi =V+ − V−.

The maxmimum and minimum values of Vo are limited to ±Vsat (the saturation voltage), where

Vsat is about 1V smaller than VCC . As an example, consider Vsat =10V (see Fig. 3 (a)). When
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Vi >
10V

105
=0.1mV, Vo =10V. Similarly, when Vi < −

10V

105
=−0.1mV, Vo =−10V. These two

regions are referred to as “saturation.” For an input voltage between these two limits, i.e.,

−0.1mV < Vi < 0.1mV, Vo changes linearly with Vi, and this region is referred to as the

“linear” region. The exact values of these limits will of course change with Vsat and the gain AV

of the op amp, but it is clear that the linear region is very narrow indeed. When the Vo versus
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Vi relationship is plotted on comparable scales, the linear region appears as a vertical line (see

Fig. 3 (b)). In other words, when the op amp operates in the linear region, we can say that

V+ − V− ≈ 0V, i.e., V+ ≈V−.

Input resistance

From Fig. 1, we see that the current entering the inverting or the non-inverting terminal of

the op amp is a base current of a BJT (or the gate current of an FET for op amps with FET

input devices), which is generally small – much smaller than the other currents in the external

circuit. To an excellent approximation, therefore, we can say that the input currents of the op

amp can be neglected or that the op amp has an infinite input resistance.

To summarise, we can make the following assumptions for an op amp operating in the linear

region.

(a) V+ ≈V− or V+ and V− are virtually the same.

(b) i+= i−=0, where i+ and i− are the currents entering the non-inverting and inverting input

terminals of the op amp, respectively.

In the following, we will consider op amp circuits in which the op amp operates in the linear

region.

Inverting amplifier

Fig. 4 shows the inverting amplifier circuit.

Vi

Vo
R1
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RL

i1
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Figure 4: Inverting amplifier circuit

Since V+ =0V, V− ≈V+ =0V, and i1 =
Vi − 0

R1

=
Vi

R1

. Since the current entering the inverting

terminal can be neglected, i1 must flow through R2, and therefore

Vo = V− − i1R2 = 0−
Vi

R1

R2 ⇒
Vo

Vi

= −
R2

R1

. (1)

Since Vo and Vi are out of phase (because of the negative sign in Eq. 1), the circuit is called

an inverting amplifier. The amplifier has a gain (magnitude) of R2/R1 which can be changed
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simply by choosing appropriate values of R1 and R2, which is much simpler than designing

a common-emitter or common-source amplifier, for example. Note also that Eq. 1 does not

depend on whether or not a load resistance RL is connected or its value, and that surely makes

the amplifier design simpler.

We should keep in mind the following practical considerations (which may also apply to

other op amp circuits).

(a) Saturation: Since the op amp output is limited to ±Vsat, the output voltage waveform gets

clipped if the expected output voltage (i.e., gain times the input voltage) exceeds these

limits, as shown in Fig. 5.
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Figure 5: Effect of op amp saturation in inverting amplifier (representative example).

(b) Realistic Ri and Ro: In the above analysis, we have assumed the op amp to be ideal, with

an infinite input resistance Ri and zero output resistance Ro. In practice, Ri could be of

the order of a few MΩ, and Ro could be a few ohms. For Eq. 1 to hold, we require that R1

and R2 should be small compared to Ri and large compared to Ro. Keeping these limits

in minds, R1 and R2 are typically chosen to be in the 1 kΩ to 50 kΩ range.

(c) Frequency response: Eq. 1 says nothing at all about the frequency response of the amplifier,

implying that the amplifier will follow Eq. 1 for an input signal with very low frequencies

(including DC) to very high frequencies. In reality, the frequency response of an op amp

is limited and is given by

A(jω) =
A0

V

1 + jω/ωc

. (2)

For Op Amp 741, A0
V
≈ 105, and fc =10Hz (ωc=2πfc). With Eq. 2, we get the following

expression for the gain of the inverting amplifier.

Vo(s)

Vi(s)
= −

R2

R1

1

1 + s/ω′

c

, ω′

c
=

A0
V
ωc

1 +R2/R1

. (3)
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The gain now depends on the signal frequency, as shown in Fig. 6. Note that Eq. 1 holds

only at low frequencies. At higher frequencies, the gain starts dropping. Higher the gain,

lower is the cut-off frequency of the amplifier.
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Figure 6: Gain of inverting amplifier versus frequency (representative example).

(d) Slew rate: In a real op amp, the maximum rate at which the output voltage can rise (or

fall) is limited by the “slew rate.” For Op Amp 741, the slew rate is 0.5V/µsec. The slew

rate limitation can casue distortion in the output voltage waveform. For example, with a

sinusoidal input voltage to the inverting amplifier, we expect a sinusoidal output voltage.

However, if the expected
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is larger than the slew rate, the output voltage waveform

becomes triangular (see Fig. 7).
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Figure 7: Slew rate limitation in the inverting amplifier (representative example).

If we want to plot gain versus frequency for the inverting amplifier, we must keep in mind

the slew rate limitation and keep the magnitude of the input sinusoid sufficiently small in
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the frequency range of interest. In other words, we need to check that the output waveform

is sinusoidal at the highest frequency of interest.

Non-inverting amplifier

Fig. 8 shows the non-inverting amplifier circuit.
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Figure 8: Non-inverting amplifier circuit

Since V+ =Vi, we have V− ≈V+ = Vi. The current i1 is therefore i1 =
0− Vi

R1

= −
Vi

R1

. Since

the input current of the op amp is negligibly small, the current through R2 is also equal to i1.

The output voltage is given by

Vo = V− − i1R2 = Vi −

(

−Vi

R1

)

R2 ⇒
Vo

Vi

= 1 +
R2

R1

. (4)

The output voltage Vo is in phase with the input voltage Vi, and the circuit is therefore known

as the non-inverting amplifier, its gain being 1 +R2/R1.

Integrator

Fig. 9 shows the integrator circuit.
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C
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R Vo
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Figure 9: Integrator circuit

As in the inverting amplifier, we have a virtual ground at V− since V− ≈V+ =0V. The current

i, which also flows through the capacitor, is
Vi − 0

R
=

Vi

R
. Since i=

dVC

dt
, we have

dVC

dt
=

i

C
=

Vi

RC
⇒ VC =

1

RC

∫

Vidt . (5)



M.B. Patil, IIT Bombay 7

Finally, the output voltage can be related to the input voltage as

Vo = V− − VC = 0− VC = −
1

RC

∫

Vidt . (6)

Integrator: Practical implementation

Fig. 10 shows the integrator circuit with a more realistic op amp model, including the bias

currents [i.e., the base currents of transistors Q1 and Q2 (see Fig. 1) in Op Amp 741].
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Figure 10: (a)An integrator with a realistic op amp model, (b) improved integrator circuit.

As mentioned earlier, the bias currents are generally small and can be neglected, as we have

done for the inverting and non-inverting amplifier circuits. In the integrator, however, the bias

currents are a cause for concern for the following reason.

Consider Vi =0 in the circuit of Fig. 10 (a). Let the capacitor voltage be initially zero. In

this situation, we would expect the output voltage to remain 0V. However, the bias current I−
B

flows through the capacitor, and it charges the capacitor. Even though I−
B

is a small current,

it results in a continuous increase in the capacitor voltages, eventually driving the op amp into

saturation.

To prevent this undesirable situation, we can provide a DC path to the bias current in the

form of the resistor R′ shown in Fig. 10 (b). In steady state, the bias current causes a voltage

drop I−
B
R′ across the resistor. The output voltage is now Vo =V− − VR′ =−I−

B
R′ which can be

made negligibly small by choosing an appropriate value of R′. Note that R′ should not be made

so small that it interferes with the functioning of the circuit as an integrator. In other words,

R′ must be large as compared to 1/jωC (in magnitude) at the frequency of interest.
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Differentiator

Fig. 11 (a) shows the differentiator circuit.
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Figure 11: Differentiator circuit: (a) basic operation, (b) practical configuration

As in the inverting amplifier, we have V− ≈V+ =0V. The voltage across the capacitor is

VC =Vi − 0=Vi, and the capacitor current i1 is C
dVC

dt
. Since the current i− can be neglected,

we have

i2 = i1 = C
dVC

dt
= C

dVi

dt
. (7)

The output voltage Vo is

Vo = V− − i2R = 0−RC
dVi

dt
= −RC

dVi

dt
, (8)

and the circuit works as a differentiator.

There is a practical difficulty in using a differentiator in the above form. The AC gain

of the circuit is A=−R/(1/jωC)=−jωRC, which keep increasing with increasing frequency

and makes the circuit oscillate. The high-frequency gain can be reduced by adding a small

capacitance C ′ in the feedback path (see Fig. 11 (b)). The gain now becomes A=−
jωRC

1 + jωRC ′

and is limited at high frequencies1, thus stabilising the circuit operation.
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