Corrections for

Simulation of Power Electronic Circuits

Authors: M.B. Patil, V. Ramanarayanan, and V.T. Ranganathan Narosa, New Delhi, 2009

- 1. Page 4.16, Problem 1(a): The correct analytic solution is $\hat{x}(t) = (2-3\,t^2)\,e^{-t/2}$.
- 2. Page 5.7: The correct equation (5.17) is as follows.

$$f(t,x) = f(t_n, x_n) + f_t(t_n, x_n)(t - t_n) + f_x(t_n, x_n)(x - x_n)$$

$$+ \frac{1}{2!} \left[f_{tt}(t_n, x_n)(t - t_n)^2 + 2 f_{tx}(t_n, x_n)(t - t_n)(x - x_n) + f_{xx}(t_n, x_n)(x - x_n)^2 \right]$$

- + Higher-order terms.
- 3. Page 5.14: The correct system of equations is

$$x'_1 = x_1 x_2 - a,$$

 $x'_2 = x_1 - bt,$

- 4. Page 5.18: The actual error at $t = 0.18 \cdots$ should be replaced with The actual error at $t = 0.14 \cdots$
- 5. Page 5.20: Eq. 5.53 should read

$$x_{n+1} = x_n + h \sum_{i=0}^{p-1} \beta_i f_{n-i}$$
.

6. Page 5.22: Eq. 5.56 should read

$$x(t_{n+1}) = x(t_n) + h \left[\frac{5}{12} f_{n+1} + \frac{8}{12} f_n - \frac{1}{12} f_{n-1} \right].$$

7. Page 5.24: Eq. 5.65 should read

$$\frac{dx}{du}(u) = \frac{1}{h^2} \left[x_{n+1} \frac{2u+h}{2} - x_n 2u + x_{n-1} \frac{2u-h}{2} \right] + \frac{d}{du} \left[\frac{1}{3!} x^{(3)}(\xi)(u-u_1)(u-u_2)(u-u_3) \right].$$

- 8. Page 5.34, Section 5.3, second paragraph, first line: Eq. 5.8 \longrightarrow Eq. 5.6
- 9. Page 5.41, caption for Fig. 5.10: $\dot{x} = x^3 6x^2 + 5x + 8$ should be replaced with $\dot{x} = t^3 6t^2 + 5t + 8$

- 10. Page 5.45: Note that the signs of α_0 and α_1 in Eq. 5.115 are not consistent with Eq. 5.114. α_0 and α_1 in Eq. 5.115 should be replaced with $-\alpha_0$ and $-\alpha_1$, respectively. The exactness constraints also change, but the final formula does not get affected.
- 11. Page 5.48: Eq. 5.125 should read $x_i = (c_1 + c_2 i) z_1^i$.
- 12. Page 5.48: Eq. 5.126 should read

$$z^{k-1} \sum_{i=-1}^{k} \alpha_i z^{1-i} = 0$$

13. Page 5.50: Eq. 5.133 should read

$$z^2 - \left(1 + \frac{3h\lambda}{2}\right)z + \frac{h\lambda}{2} = 0$$

- 14. Page 5.61:
 - $\cdots h$ is required to be smaller than $2/|\lambda_1|$ or 0.091 s. should be replaced with
 - $\cdots h$ is required to be smaller than $2/|\lambda_2|$ or 0.0091 s.
- 15. Page 5.68: The correct RKF-4/5 Butcher arrays are given by

16. Page 5.82:

$$\cdots$$
 if $V_2 > 0$ $V, R_D = R_{\rm on} \cdots$
should be replaced with \cdots if $V_2 < 0$ $V, R_D = R_{\rm on} \cdots$

17. Page 5.85, Fig. 5.44: The correct figure is given below. (The x-axis label was not displayed correctly in the original figure.)

2

18. Page 5.90:

 \cdots since the RC time constant is small (approximately R_sC , R_s being the resistance presented by the closed switch).

should be replaced with

 \cdots since the RC time constant is small (R_sC, R_s) being the resistance presented by the closed switch).

19. Page 5.92:

Up to a certain value (about 10^{-6}), \cdots should be replaced with

Up to a certain value of ϵ (about 10^{-6}), \cdots