1-phase VSI
The circuit schematic and the corresponding gate signals for a single-phase inverter are shown below. The parameter values are $V_{dc}=400\,$V, $R=5\,\Omega$, $L=1\,$mH. Find the angle $\phi$ for which the RMS of the fundamental voltage $V_{BD}$ across the load is $100\,$V.In [1]:
from IPython.display import Image
Image(filename =r'VSI_1ph_15_fig_1.png', width=700)
Out[1]:
In [2]:
# run this cell to view the circuit file.
%pycat VSI_1ph_15_orig.in
We now replace the strings such as \$Vdc, \$L, with the values of our choice by running the python script given below. It takes an existing circuit file VSI_1ph_15_orig.in and produces a new circuit file VSI_1ph_15.in, after replacing \$Vdc, \$L, etc. with values of our choice.
In [3]:
import gseim_calc as calc
s_Vdc = '400'
s_R = '5'
s_L = '1e-3'
phi = 110.0 # to be changed by user
s_f_hz = "50.0"
f_hz = float(s_f_hz)
T = 1/f_hz
t0_2 = T*phi/360
s_t0_2 = ("%11.4E"%(t0_2)).strip()
l = [
('$Vdc', s_Vdc),
('$R', s_R),
('$L', s_L),
('$f_hz', s_f_hz),
('$t0_2', s_t0_2)
]
calc.replace_strings_1("VSI_1ph_15_orig.in", "VSI_1ph_15.in", l)
print('VSI_1ph_15.in is ready for execution')
VSI_1ph_15.in is ready for execution
Execute the following cell to run GSEIM on VSI_1ph_15.in.
In [4]:
import os
import dos_unix
# uncomment for windows:
#dos_unix.d2u("VSI_1ph_15.in")
os.system('run_gseim VSI_1ph_15.in')
Circuit: filename = VSI_1ph_15.in main: i_solve = 0 main: calling solve_ssw mat_ssw_1_ex: n_statevar: 1 Transient simulation starts... i=0 i=1000 solve_ssw_ex: ssw_iter_newton=0, ssw_period_1_compute=4.0000e-02, rhs_ssw_norm=7.8046e+01 Transient simulation starts... i=0 i=1000 solve_ssw_ex: ssw_iter_newton=1, ssw_period_1_compute=4.0000e-02, rhs_ssw_norm=0.0000e+00 solve_ssw_ex: calling solve_ssw_1_ex for one more trns step Transient simulation starts... i=0 i=1000 solve_ssw_ex over (after trns step for output) solve_ssw_ex ends, slv.ssw_iter_newton=1 GSEIM: Program completed.
Out[4]:
0
The circuit file (VSI_1ph_15.in) is created in the same directory as that used for launching Jupyter notebook. The last step (i.e., running GSEIM on VSI_1ph_15.in) creates a data file called VSI_1ph_15.datin the same directory. We can now use the python code below to compute/plot the various quantities of interest.
In [5]:
import numpy as np
import matplotlib.pyplot as plt
import gseim_calc as calc
from setsize import set_size
slv = calc.slv("VSI_1ph_15.in")
i_slv = 0
i_out = 0
filename = slv.l_filename_all[i_slv][i_out]
print('filename:', filename)
u = np.loadtxt(filename)
t1 = u[:, 0]
t = 1e3*t1 # convert time to msec
v_out = slv.get_array_double(i_slv,i_out,"v_out",u)
IR = slv.get_array_double(i_slv,i_out,"IR" ,u)
ISrc = slv.get_array_double(i_slv,i_out,"ISrc" ,u)
P_R = slv.get_array_double(i_slv,i_out,"P_R" ,u)
g1 = slv.get_array_double(i_slv,i_out,"g1" ,u)
g2 = slv.get_array_double(i_slv,i_out,"g2" ,u)
g3 = slv.get_array_double(i_slv,i_out,"g3" ,u)
g4 = slv.get_array_double(i_slv,i_out,"g4" ,u)
# since we have stored two cycles, we need to divide the last time point
# by 2 to get the period:
T = t[-1]/2
l_IR = calc.avg_rms_3a(t, IR , 0.0, 2.0*T, 1.0e-4*T)
l_P_R = calc.avg_rms_3a(t, P_R , 0.0, 2.0*T, 1.0e-4*T)
l_ISrc = calc.avg_rms_3a(t, ISrc , 0.0, 2.0*T, 1.0e-4*T)
l_v_out = calc.avg_rms_3a(t, v_out, 0.0, 2.0*T, 1.0e-4*T)
l_IR_1 = calc.min_max_1(t, IR, 0.0, 2.0*T)
print('average source current:', "%11.4E"%l_ISrc[0])
print('rms source current:', "%11.4E"%l_ISrc[1])
print('rms load current:', "%11.4E"%l_IR[1])
print('rms load voltage:', "%11.4E"%l_v_out[1])
print('peak load current:', "%11.4E"%l_IR_1[1])
print('power delivered to load:', "%11.4E"%l_P_R[0])
color1='green'
color2='crimson'
color3='goldenrod'
color4='blue'
fig, ax = plt.subplots(2, sharex=False)
plt.subplots_adjust(wspace=0, hspace=0.0)
set_size(5, 5, ax[0])
for k in range(2):
ax[k].grid(color='#CCCCCC', linestyle='solid', linewidth=0.5)
ax[k].set_xlim(left=0.0, right=2.0*T)
ax[0].plot(t, IR , color=color1, linewidth=1.0, label="$i_L$")
ax[1].plot(t, v_out, color=color2, linewidth=1.0, label="$V_o$")
ax[1].set_xlabel('time (msec)', fontsize=11)
ax[0].set_ylabel(r'$i_L$', fontsize=11)
ax[1].set_ylabel(r'$V_o$', fontsize=11)
plt.tight_layout()
plt.show()
filename: VSI_1ph_15.dat average source current: 2.9391E+01 rms source current: 4.7763E+01 rms load current: 4.8466E+01 rms load voltage: 2.4941E+02 peak load current: 7.9997E+01 power delivered to load: 1.1745E+04
In [6]:
import numpy as np
import matplotlib.pyplot as plt
import gseim_calc as calc
from setsize import set_size
slv = calc.slv("VSI_1ph_15.in")
i_slv = 0
i_out = 0
filename = slv.l_filename_all[i_slv][i_out]
print('filename:', filename)
u = np.loadtxt(filename)
t1 = u[:, 0]
t = 1e3*t1 # convert time to msec
v_out = slv.get_array_double(i_slv,i_out,"v_out",u)
IR = slv.get_array_double(i_slv,i_out,"IR" ,u)
ISrc = slv.get_array_double(i_slv,i_out,"ISrc" ,u)
P_R = slv.get_array_double(i_slv,i_out,"P_R" ,u)
g1 = slv.get_array_double(i_slv,i_out,"g1" ,u)
g2 = slv.get_array_double(i_slv,i_out,"g2" ,u)
g3 = slv.get_array_double(i_slv,i_out,"g3" ,u)
g4 = slv.get_array_double(i_slv,i_out,"g4" ,u)
# since we have stored two cycles, we need to divide the last time point
# by 2 to get the period:
T = t[-1]/2
color1='green'
color2='crimson'
color3='goldenrod'
color4='blue'
color5='cornflowerblue'
fig, ax = plt.subplots(5, sharex=True)
plt.subplots_adjust(wspace=0, hspace=0.0)
set_size(5, 6, ax[0])
for i in range(4):
ax[i].grid(color='#CCCCCC', linestyle='solid', linewidth=0.5)
ax[i].set_xlim(left=0.0, right=2.0*T)
ax[i].set_ylim(bottom=-0.3, top=1.3)
ax[i].set_yticks([0.0, 1.0])
ax[0].plot(t, g1, color=color1, linewidth=1.0)
ax[0].set_ylabel('g1', fontsize=11)
ax[1].plot(t, g2, color=color2, linewidth=1.0)
ax[1].set_ylabel('g2', fontsize=11)
ax[2].plot(t, g3, color=color3, linewidth=1.0)
ax[2].set_ylabel('g3', fontsize=11)
ax[3].plot(t, g4, color=color4, linewidth=1.0)
ax[3].set_ylabel('g4', fontsize=11)
ax[4].grid(color='#CCCCCC', linestyle='solid', linewidth=0.5)
ax[4].set_xlim(left=0.0, right=2.0*T)
ax[4].plot(t, v_out, color=color5, linewidth=1.0)
ax[4].set_ylabel("$V_{out}$", fontsize=11)
ax[4].set_xlabel('time (msec)', fontsize=11)
plt.show()
filename: VSI_1ph_15.dat
In [7]:
import numpy as np
import matplotlib.pyplot as plt
import gseim_calc as calc
from setsize import set_size
slv = calc.slv("VSI_1ph_15.in")
i_slv = 0
i_out = 0
filename = slv.l_filename_all[i_slv][i_out]
print('filename:', filename)
u = np.loadtxt(filename)
t = u[:, 0]
v_out = slv.get_array_double(i_slv,i_out,"v_out",u)
IR = slv.get_array_double(i_slv,i_out,"IR" ,u)
ISrc = slv.get_array_double(i_slv,i_out,"ISrc" ,u)
P_R = slv.get_array_double(i_slv,i_out,"P_R" ,u)
g1 = slv.get_array_double(i_slv,i_out,"g1" ,u)
g2 = slv.get_array_double(i_slv,i_out,"g2" ,u)
g3 = slv.get_array_double(i_slv,i_out,"g3" ,u)
g4 = slv.get_array_double(i_slv,i_out,"g4" ,u)
T = t[-1]/2
# compute Fourier coeffs:
t_start = 0.0
t_end = T
n_fourier_IR = 20
coeff_IR, thd_IR = calc.fourier_coeff_1C(t, IR,
t_start, t_end, 1.0e-4*T, n_fourier_IR)
print('fourier coefficients (load current):')
for i, c in enumerate(coeff_IR):
print(" %3d %11.4E"% (i, c))
print("THD (load current): ", "%5.2f"%(thd_IR*100.0), "%")
print("load current fundamental: RMS value: ", "%11.4E"%(coeff_IR[1]/np.sqrt(2.0)))
print("load current 3rd harmonic: RMS value: ", "%11.4E"%(coeff_IR[3]/np.sqrt(2.0)))
print("load current 5th harmonic: RMS value: ", "%11.4E"%(coeff_IR[5]/np.sqrt(2.0)))
n_fourier_v_out = 20
coeff_v_out, thd_v_out = calc.fourier_coeff_1C(t, v_out,
t_start, t_end, 1.0e-4*T, n_fourier_v_out)
print('fourier coefficients (load voltage):')
for i, c in enumerate(coeff_v_out):
print(" %3d %11.4E"% (i, c))
print("THD (load voltage): ", "%5.2f"%(thd_v_out*100.0), "%")
print("load voltage fundamental: RMS value: ", "%11.4E"%(coeff_v_out[1]/np.sqrt(2.0)))
print("load voltage 3rd harmonic: RMS value: ", "%11.4E"%(coeff_v_out[3]/np.sqrt(2.0)))
print("load voltage 5th harmonic: RMS value: ", "%11.4E"%(coeff_v_out[5]/np.sqrt(2.0)))
x_IR = np.linspace(0, n_fourier_IR, n_fourier_IR+1)
x_v_out = np.linspace(0, n_fourier_v_out, n_fourier_v_out+1)
y_IR = np.array(coeff_IR)
y_v_out = np.array(coeff_v_out)
fig, ax = plt.subplots(2, sharex=False)
bars1 = ax[0].bar(x_IR, y_IR, width=0.3, color='red', label="$i_{load}$")
bars2 = ax[1].bar(x_v_out, y_v_out, width=0.3, color='blue', label="$V_{out}$")
ax[0].set_xlabel('N', fontsize=11)
ax[0].set_ylabel('$i_{load}$', fontsize=11)
ax[0].set_xlim(left=0, right=n_fourier_IR)
ax[0].xaxis.set_ticks(np.arange(0, n_fourier_IR, 2))
ax[0].legend(loc = 'upper right',frameon = True, fontsize = 10, title = None,
markerfirst = True, markerscale = 1.0, labelspacing = 0.5, columnspacing = 2.0,
prop = {'size' : 12},)
ax[1].set_xlabel('N', fontsize=11)
ax[1].set_ylabel('$v_{out}$', fontsize=11)
ax[1].set_xlim(left=0, right=n_fourier_v_out)
ax[1].xaxis.set_ticks(np.arange(0, n_fourier_v_out, 2))
ax[1].legend(loc = 'upper right',frameon = True, fontsize = 10, title = None,
markerfirst = True, markerscale = 1.0, labelspacing = 0.5, columnspacing = 2.0,
prop = {'size' : 12},)
plt.tight_layout()
plt.show()
filename: VSI_1ph_15.dat
fourier coefficients (load current):
0 5.1005E-04
1 5.8283E+01
2 1.0099E-03
3 3.2119E+01
4 9.8091E-04
5 1.6798E+00
6 9.3728E-04
7 1.1884E+01
8 8.8421E-04
9 6.8074E+00
10 8.2655E-04
11 3.1225E+00
12 7.6803E-04
13 5.8250E+00
14 7.1111E-04
15 1.2254E+00
16 6.5721E-04
17 3.1974E+00
18 6.0698E-04
19 2.6770E+00
20 5.6062E-04
THD (load current): 61.89 %
load current fundamental: RMS value: 4.1213E+01
load current 3rd harmonic: RMS value: 2.2712E+01
load current 5th harmonic: RMS value: 1.1878E+00
fourier coefficients (load voltage):
0 2.5000E-02
1 2.9206E+02
2 5.0000E-02
3 1.6397E+02
4 5.0002E-02
5 8.9232E+00
6 5.0004E-02
7 6.5878E+01
8 5.0008E-02
9 4.0007E+01
10 5.0012E-02
11 1.9494E+01
12 5.0018E-02
13 3.8950E+01
14 5.0024E-02
15 8.8081E+00
16 5.0031E-02
17 2.4427E+01
18 5.0040E-02
19 2.1886E+01
20 5.0049E-02
THD (load voltage): 67.71 %
load voltage fundamental: RMS value: 2.0652E+02
load voltage 3rd harmonic: RMS value: 1.1594E+02
load voltage 5th harmonic: RMS value: 6.3097E+00
This notebook was contributed by Prof. Nakul Narayanan K, Govt. Engineering College, Thrissur. He may be contacted at nakul@gectcr.ac.in.
In [ ]: