1-phase VSI (PWM)
The figure below shows a full-bridge bi-polar PWM voltage source inverter connected to an ac voltage source $V_{S1} $ through inductor $L=10\,$mH. The ac voltage is sinusoidal, with amplitude $325\,$V and frequency $50\,$Hz. The inverter is pumping $5\,$kW of power to the ac voltage source at unity power factor. The DC link voltage $V_{dc}$ of the inverter is $400\,$V, and the switching frequency is $2\,$kHz. Determine- Modulation wave of the inverter (amplitude and phase with respect to $V_{S1}$)
- RMS value of the fundamental component of $V_{BD}$
- RMS value of the fundamental component of $i_L$
- lowest-order harmonics in $i_{dc}$
from IPython.display import Image
Image(filename =r'VSI_1ph_9_fig_1.png', width=550)
# run this cell to view the circuit file.
%pycat VSI_1ph_9_orig.in
We now replace the strings such as \$Vdc, \$L, with the values of our choice by running the python script given below. It takes an existing circuit file VSI_1ph_9_orig.in and produces a new circuit file VSI_1ph_9.in, after replacing \$Vdc, \$L, etc. with values of our choice.
import gseim_calc as calc
s_Vdc = "400"
s_L = "10e-3"
s_S1 = "325"
s_f_carrier = "2e3"
s_sin = "0.6" # to be changed by user
s_phi_sin = "25" # to be changed by user
s_dt_min = "0.1e-6"
s_dt_nrml = "10e-6"
f_S1 = 50.0
s_f_S1 = ("%11.4E"%(f_S1)).strip()
T = 1/f_S1
s_2T = ("%11.4E"%(2.0*T)).strip()
l = [
('$Vdc', s_Vdc),
('$L', s_L),
('$f_S1', s_f_S1),
('$A_S1', s_S1),
('$f_carrier', s_f_carrier),
('$A_sin', s_sin),
('$phi_sin', s_phi_sin),
('$2T', s_2T),
('$dt_min', s_dt_min),
('$dt_nrml', s_dt_nrml)
]
calc.replace_strings_1("VSI_1ph_9_orig.in", "VSI_1ph_9.in", l)
print('VSI_1ph_9.in is ready for execution')
VSI_1ph_9.in is ready for execution
import os
import dos_unix
# uncomment for windows:
#dos_unix.d2u("VSI_1ph_9.in")
os.system('run_gseim VSI_1ph_9.in')
get_lib_elements: filename gseim_aux/xbe.aux get_lib_elements: filename gseim_aux/ebe.aux Circuit: filename = VSI_1ph_9.in main: i_solve = 0 main: calling solve_trns Transient simulation starts... i=0 i=1000 i=2000 i=3000 i=4000 GSEIM: Program completed.
0
The circuit file (VSI_1ph_9.in) is created in the same directory as that used for launching Jupyter notebook. The last step (i.e., running GSEIM on VSI_1ph_9.in) creates two data files called VSI_1ph_9.dat and VSI_1ph_9_1.dat in the same directory. We can now use the python code below to compute/plot the various quantities of interest.
import numpy as np
import matplotlib.pyplot as plt
import gseim_calc as calc
from setsize import set_size
slv = calc.slv("VSI_1ph_9.in")
i_slv = 0
i_out = 0
filename = slv.l_filename_all[i_slv][i_out]
print('filename:', filename)
u = np.loadtxt(filename)
t = u[:, 0]
col_v_out = slv.get_index(i_slv,i_out,"v_out")
col_IL = slv.get_index(i_slv,i_out,"IL" )
col_Idc = slv.get_index(i_slv,i_out,"Idc" )
col_P_dc = slv.get_index(i_slv,i_out,"P_dc" )
col_P_S1 = slv.get_index(i_slv,i_out,"P_S1" )
i_out = 1
filename = slv.l_filename_all[i_slv][i_out]
print('filename:', filename)
u1 = np.loadtxt(filename)
t1 = u1[:, 0]
col_s = slv.get_index(i_slv,i_out,"s" )
col_t = slv.get_index(i_slv,i_out,"t" )
col_g1 = slv.get_index(i_slv,i_out,"g1")
col_g2 = slv.get_index(i_slv,i_out,"g2")
# since we have stored two cycles, we need to divide the last time point
# by 2 to get the period:
T = t[-1]/2
l_IL = calc.avg_rms_2(t, u[:,col_IL ], T, 2.0*T, 1.0e-4*T)
l_v_out = calc.avg_rms_2(t, u[:,col_v_out], T, 2.0*T, 1.0e-4*T)
l_Idc = calc.avg_rms_2(t, u[:,col_Idc ], T, 2.0*T, 1.0e-4*T)
l_P_dc = calc.avg_rms_2(t, u[:,col_P_dc ], T, 2.0*T, 1.0e-4*T)
l_P_S1 = calc.avg_rms_2(t, u[:,col_P_S1 ], T, 2.0*T, 1.0e-4*T)
print('rms load voltage:', "%11.4E"%l_v_out[2][0])
print('average power delivered by dc source:', "%11.4E"%l_P_dc[1][0])
print('average power delivered by VS1:', "%11.4E"%l_P_S1[1][0])
color1='green'
color2='crimson'
color3='goldenrod'
color4='blue'
color5='cornflowerblue'
fig, ax = plt.subplots(4, sharex=False)
plt.subplots_adjust(wspace=0, hspace=0.0)
set_size(7, 7, ax[0])
for i in range(4):
ax[i].set_xlim(left=0, right=T*1e3)
ax[0].set_ylim(bottom=-1.4, top=1.4)
ax[1].set_ylim(bottom=-500, top=500)
ax[0].grid(color='#CCCCCC', linestyle='solid', linewidth=0.5)
ax[1].grid(color='#CCCCCC', linestyle='solid', linewidth=0.5)
ax[2].grid(color='#CCCCCC', linestyle='solid', linewidth=0.5)
ax[3].grid(color='#CCCCCC', linestyle='solid', linewidth=0.5)
ax[0].plot((t1-T)*1e3, u1[:,col_t], color=color5, linewidth=1.0, label="$t$")
ax[0].plot((t1-T)*1e3, u1[:,col_s], color=color4, linewidth=1.0, label="$s$")
ax[1].plot((t-T)*1e3, u[:,col_v_out], color=color1, linewidth=1.0, label="$V_{out}$")
ax[2].plot((t-T)*1e3, u[:,col_Idc ], color=color3, linewidth=1.0, label="$i_{dc}$")
ax[3].plot((t-T)*1e3, u[:,col_IL ], color=color2, linewidth=1.0, label="$i_L$")
ax[1].set_ylabel(r'$V_{out}$', fontsize=14)
ax[2].set_ylabel(r'$i_{dc}$', fontsize=14)
ax[3].set_ylabel(r'$i_L$', fontsize=14)
ax[3].set_xlabel('time (msec)', fontsize=14)
ax[0].legend(loc = 'lower right',frameon = True, fontsize = 10, title = None,
markerfirst = True, markerscale = 1.0, labelspacing = 0.5, columnspacing = 2.0,
prop = {'size' : 12},)
ax[0].tick_params(labelbottom=False)
ax[1].tick_params(labelbottom=False)
ax[2].tick_params(labelbottom=False)
#plt.tight_layout()
plt.show()
filename: VSI_1ph_9.dat filename: VSI_1ph_9_1.dat rms load voltage: 4.0000E+02 average power delivered by dc source: 5.2301E+03 average power delivered by VS1: -5.2197E+03
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import (MultipleLocator, AutoMinorLocator)
import gseim_calc as calc
from setsize import set_size
slv = calc.slv("VSI_1ph_9.in")
i_slv = 0
i_out = 0
filename = slv.l_filename_all[i_slv][i_out]
print('filename:', filename)
u = np.loadtxt(filename)
t = u[:, 0]
col_v_out = slv.get_index(i_slv,i_out,"v_out")
col_IL = slv.get_index(i_slv,i_out,"IL" )
col_Idc = slv.get_index(i_slv,i_out,"Idc" )
col_P_dc = slv.get_index(i_slv,i_out,"P_dc" )
col_P_S1 = slv.get_index(i_slv,i_out,"P_S1" )
# since we have stored two cycles, we need to divide the last time point
# by 2 to get the period:
T = t[-1]/2
# compute Fourier coeffs:
t_start = T
t_end = 2.0*T
n_fourier = 50
coeff_IL, thd_IL = calc.fourier_coeff_1C(t, u[:,col_IL],
t_start, t_end, 1.0e-8, n_fourier)
coeff_v_out, thd_v_out = calc.fourier_coeff_1C(t, u[:,col_v_out],
t_start, t_end, 1.0e-8, n_fourier)
coeff_Idc, thd_Idc = calc.fourier_coeff_1C(t, u[:,col_Idc],
t_start, t_end, 1.0e-8, n_fourier)
print("THD (IS1): ", "%5.2f"%(thd_IL*100.0), "%")
print("I_S1 fundamental: RMS value: ", "%11.4E"%(coeff_IL[1]/np.sqrt(2.0)))
print("THD (Vout): ", "%5.2f"%(thd_v_out*100.0), "%")
print("Vout fundamental: RMS value: ", "%11.4E"%(coeff_v_out[1]/np.sqrt(2.0)))
print("Idc fundamental: RMS value: ", "%11.4E"%(coeff_Idc[1]/np.sqrt(2.0)))
x = np.linspace(0, n_fourier, n_fourier+1)
y_IL = np.array(coeff_IL)
y_v_out = np.array(coeff_v_out)
y_Idc = np.array(coeff_Idc)
fig, ax = plt.subplots(3, sharex=False)
plt.subplots_adjust(wspace=0, hspace=0.0)
grid_color='#CCCCCC'
set_size(7, 6, ax[0])
delta = 10.0
x_major_ticks = np.arange(0.0, (float(n_fourier+1)), delta)
x_minor_ticks = np.arange(0.0, (float(n_fourier+1)), 1.0)
for i in range(3):
ax[i].set_xlim(left=-1.0, right=float(n_fourier))
ax[i].set_xticks(x_major_ticks)
ax[i].set_xticks(x_minor_ticks, minor=True)
ax[i].grid(visible=True, which='major', axis='x', color=grid_color, linestyle='-', zorder=0)
ax[0].set_ylabel('$i_L$',fontsize=14)
ax[1].set_ylabel('$v_{out}$', fontsize=14)
ax[2].set_ylabel('$i_{dc}$', fontsize=14)
ax[2].set_xlabel('N', fontsize=14)
bars1 = ax[0].bar(x, y_IL, width=0.3, color='red', label="$i_L$", zorder=3)
bars2 = ax[1].bar(x, y_v_out, width=0.3, color='blue', label="$V_{out}$", zorder=3)
bars3 = ax[2].bar(x, y_Idc, width=0.3, color='green', label="$i_{dc}$", zorder=3)
plt.tight_layout()
plt.show()
filename: VSI_1ph_9.dat THD (IS1): 7.23 % I_S1 fundamental: RMS value: 3.3186E+01 THD (Vout): 213.44 % Vout fundamental: RMS value: 1.6970E+02 Idc fundamental: RMS value: 1.4493E+01
This notebook was contributed by Prof. Nakul Narayanan K, Govt. Engineering College, Thrissur. He may be contacted at nakul@gectcr.ac.in.