3-phase VSI
A three-phase full bridge inverter is connected to a balanced resistive load. Each inverter switch consists of an IGBT with an anti-parallel diode. The inverter is operating in 120 degree conduction mode. The circuit parameters are $V_{dc} = 600\,$V, $R = 10\,\Omega$. Which of the following statements is true regarding the conduction loss in the devices?- Diode and IGBT will have nearly same conduction loss.
- Diode conduction loss will be about half of the IGBT loss.
- Diode will have no conduction loss.
- Diode conduction loss will be nearly $\frac{2}{3}$ times the IGBT loss.
In [1]:
from IPython.display import Image
Image(filename =r'VSI_3ph_15_fig_1.png', width=350)
Out[1]:
In [2]:
# run this cell to view the circuit file.
%pycat VSI_3ph_15_orig.in
We now replace the strings such as \$Vdc, \$R, with the values of our choice by running the python script given below. It takes an existing circuit file VSI_3ph_15_orig.in and produces a new circuit file VSI_3ph_15.in, after replacing \$Vdc, \$R, etc. with values of our choice.
In [3]:
import gseim_calc as calc
s_Vdc = "600"
s_f_clock = "50"
s_R = "10"
phi = 120.0
D1 = phi/360.0
s_D1 = ("%11.4E"%(D1)).strip()
f_clock = float(s_f_clock)
T = 1/f_clock
s_2T = ("%11.4E"%(2.0*T)).strip()
l = [
('$Vdc', s_Vdc),
('$R', s_R),
('$D1', s_D1),
('$2T', s_2T),
('$f_clock', s_f_clock),
]
calc.replace_strings_1("VSI_3ph_15_orig.in", "VSI_3ph_15.in", l)
print('VSI_3ph_15.in is ready for execution')
VSI_3ph_15.in is ready for execution
Execute the following cell to run GSEIM on VSI_3ph_15.in.
In [4]:
import os
import dos_unix
# uncomment for windows:
#dos_unix.d2u("VSI_3ph_15.in")
os.system('run_gseim VSI_3ph_15.in')
get_lib_elements: filename gseim_aux/xbe.aux get_lib_elements: filename gseim_aux/ebe.aux Circuit: filename = VSI_3ph_15.in main: i_solve = 0 main: calling solve_trns Transient simulation starts... i=0 i=1000 i=2000 GSEIM: Program completed.
Out[4]:
0
The circuit file (VSI_3ph_15.in) is created in the same directory as that used for launching Jupyter notebook. The last step (i.e., running GSEIM on VSI_3ph_15.in) creates data files called VSI_3ph_15_1.dat, etc. in the same directory. We can now use the python code below to compute/plot the various quantities of interest.
In [5]:
import numpy as np
import matplotlib.pyplot as plt
import gseim_calc as calc
from setsize import set_size
f_hz = 50.0
T = 1.0/f_hz
slv = calc.slv("VSI_3ph_15.in")
i_slv = 0
i_out = 2
filename = slv.l_filename_all[i_slv][i_out]
print('filename:', filename)
u1 = np.loadtxt(filename)
t1 = u1[:, 0]
col_IRa = slv.get_index(i_slv,i_out,"IRa")
col_IS1 = slv.get_index(i_slv,i_out,"IS1")
col_ID1 = slv.get_index(i_slv,i_out,"ID1")
i_out = 0
filename = slv.l_filename_all[i_slv][i_out]
print('filename:', filename)
u2 = np.loadtxt(filename)
t2 = u2[:, 0]
col_g1 = slv.get_index(i_slv,i_out,"g1")
col_g2 = slv.get_index(i_slv,i_out,"g2")
col_g3 = slv.get_index(i_slv,i_out,"g3")
col_g4 = slv.get_index(i_slv,i_out,"g4")
col_g5 = slv.get_index(i_slv,i_out,"g5")
col_g6 = slv.get_index(i_slv,i_out,"g6")
fig, ax = plt.subplots(3, sharex=False, gridspec_kw={'height_ratios': [1, 2, 1]})
plt.subplots_adjust(wspace=0, hspace=0.0)
set_size(6.5, 6, ax[0])
for i in range(3):
ax[i].set_xlim(left=0.0, right=2.0*T*1e3)
ax[i].grid(color='#CCCCCC', linestyle='solid', linewidth=0.5)
ax[0].set_ylabel(r'$i_a$' , fontsize=12)
ax[1].set_ylabel(r'$g_x$' , fontsize=12)
ax[2].set_ylabel(r'$i_{S1}$', fontsize=12)
for i in range(3):
ax[i].tick_params(labelbottom=False)
color1 = "tomato"
color2 = "dodgerblue"
color3 = "olive"
color4 = "blue"
color5 = "grey"
color6 = "green"
color7 = "crimson"
color8 = "red"
ax[0].plot(t1*1e3, u1[:,col_IRa], color=color6, linewidth=1.0, label="$V_{an}$")
dy = 1.5
ax[1].plot(t2*1e3, (u2[:,col_g1] ), color=color1, linewidth=1.0, label="$g_1$")
ax[1].plot(t2*1e3, (u2[:,col_g2] - dy), color=color2, linewidth=1.0, label="$g_2$")
ax[1].plot(t2*1e3, (u2[:,col_g3] - 2*dy), color=color3, linewidth=1.0, label="$g_3$")
ax[1].plot(t2*1e3, (u2[:,col_g4] - 3*dy), color=color4, linewidth=1.0, label="$g_4$")
ax[1].plot(t2*1e3, (u2[:,col_g5] - 4*dy), color=color5, linewidth=1.0, label="$g_5$")
ax[1].plot(t2*1e3, (u2[:,col_g6] - 5*dy), color=color6, linewidth=1.0, label="$g_6$")
ax[1].tick_params(left = False)
ax[1].set_yticks([])
ax[2].plot(t1*1e3, u1[:,col_IS1], color=color4, linewidth=1.0, label="$i_{S1}$")
ax[2].plot(t1*1e3, u1[:,col_ID1], color=color8, linewidth=1.0, label="$i_{D1}$")
ax[2].set_xlabel('time (msec)', fontsize=12)
for k in [1,2]:
ax[k].legend(loc = 'lower right',frameon = True, fontsize = 10, title = None,
markerfirst = True, markerscale = 1.0, labelspacing = 0.5, columnspacing = 2.0,
prop = {'size' : 12})
#plt.tight_layout()
plt.show()
filename: VSI_3ph_15_3.dat filename: VSI_3ph_15_1.dat
This notebook was contributed by Prof. Nakul Narayanan K, Govt. Engineering College, Thrissur. He may be contacted at nakul@gectcr.ac.in.
In [ ]: