1-phase controlled rectifier
A single-phase controlled converter is connected to a constant current load as shown in the figure. The rectifier is operating at a firing angle of $45^{\circ}$. Determine the duration for which each thyristor conducts in a fundamental period of the input voltage.from IPython.display import Image
Image(filename =r'controlled_rectifier_1ph_5_fig_1.png', width=400)
# run this cell to view the circuit file.
%pycat controlled_rectifier_1ph_5_orig.in
We now replace the strings such as \$L with the values of our choice by running the python script given below. It takes an existing circuit file controlled_rectifier_1ph_5_orig.in and produces a new circuit file controlled_rectifier_1ph_5.in, after replacing \$L (etc) with values of our choice.
import gseim_calc as calc
import numpy as np
s_L = "20e-3"
s_alpha = "45"
l = [
('$L', s_L),
('$alpha', s_alpha),
]
calc.replace_strings_1("controlled_rectifier_1ph_5_orig.in", "controlled_rectifier_1ph_5.in", l)
print('controlled_rectifier_1ph_5.in is ready for execution')
controlled_rectifier_1ph_5.in is ready for execution
import os
import dos_unix
# uncomment for windows:
#dos_unix.d2u("controlled_rectifier_1ph_5.in")
os.system('run_gseim controlled_rectifier_1ph_5.in')
get_lib_elements: filename gseim_aux/xbe.aux get_lib_elements: filename gseim_aux/ebe.aux Circuit: filename = controlled_rectifier_1ph_5.in Circuit: n_xbeu_vr = 2 Circuit: n_ebeu_nd = 5 main: i_solve = 0 ssw_allocate_1 (2): n_statevar=1 main: calling solve_trns mat_ssw_1_ex: n_statevar: 1 mat_ssw_1_e0: cct.n_ebeu: 7 Transient simulation starts... i=0 i=1000 i=2000 solve_ssw_ex: ssw_iter_newton=0, rhs_ssw_norm=1.0000e+01 Transient simulation starts... i=0 i=1000 i=2000 solve_ssw_ex: ssw_iter_newton=1, rhs_ssw_norm=0.0000e+00 solve_ssw_ex: calling solve_ssw_1_ex for one more trns step Transient simulation starts... i=0 i=1000 i=2000 solve_ssw_1_ex over (after trns step for output) solve_ssw_ex ends, slv.ssw_iter_newton=1 GSEIM: Program completed.
0
The circuit file (controlled_rectifier_1ph_5.in) is created in the same directory as that used for launching Jupyter notebook. The last step (i.e., running GSEIM on controlled_rectifier_1ph_5.in) creates a data file called controlled_rectifier_1ph_5.dat in the same directory. We can now use the python code below to compute/plot the various quantities of interest.
import numpy as np
import matplotlib.pyplot as plt
import gseim_calc as calc
from setsize import set_size
f_hz = 50.0
T = 1.0/f_hz
slv = calc.slv("controlled_rectifier_1ph_5_orig.in")
i_slv = 0
i_out = 0
filename = slv.l_filename_all[i_slv][i_out]
print('filename:', filename)
u = np.loadtxt(filename)
t = u[:, 0]
col_v_s = slv.get_index(i_slv,i_out,"v_s")
col_g1 = slv.get_index(i_slv,i_out,"g1")
col_g2 = slv.get_index(i_slv,i_out,"g2")
col_IT1 = slv.get_index(i_slv,i_out,"IT1")
col_IT2 = slv.get_index(i_slv,i_out,"IT2")
col_IT3 = slv.get_index(i_slv,i_out,"IT3")
col_IT4 = slv.get_index(i_slv,i_out,"IT4")
col_IL = slv.get_index(i_slv,i_out,"IL")
# compute durations of diode conduction:
ndiv = 5000
delt_IT1, IT1p = calc.interp_linear_1(t, u[:,col_IT1], ndiv)
delt_IT2, IT2p = calc.interp_linear_1(t, u[:,col_IT2], ndiv)
delt_IT3, IT3p = calc.interp_linear_1(t, u[:,col_IT3], ndiv)
delt_IT4, IT4p = calc.interp_linear_1(t, u[:,col_IT4], ndiv)
n_IT1 = 0
n_IT2 = 0
n_IT3 = 0
n_IT4 = 0
i_small = 0.001
for k in range(ndiv):
if (IT1p[k] > i_small): n_IT1 += 1
if (IT2p[k] > i_small): n_IT2 += 1
if (IT3p[k] > i_small): n_IT3 += 1
if (IT4p[k] > i_small): n_IT4 += 1
print('angle of conduction for T1:', "%6.2f"%(float(n_IT1)*delt_IT1*360.0/(2.0*T)), 'deg.')
print('angle of conduction for T2:', "%6.2f"%(float(n_IT2)*delt_IT2*360.0/(2.0*T)), 'deg.')
print('angle of conduction for T3:', "%6.2f"%(float(n_IT3)*delt_IT3*360.0/(2.0*T)), 'deg.')
print('angle of conduction for T4:', "%6.2f"%(float(n_IT4)*delt_IT4*360.0/(2.0*T)), 'deg.')
color1='blue'
color2='green'
color3='red'
color4='dodgerblue'
fig, ax = plt.subplots(6, sharex=False)
plt.subplots_adjust(wspace=0, hspace=0.0)
set_size(5.5, 11, ax[0])
for i in range(6):
ax[i].set_xlim(left=0.0, right=2.0*T*1e3)
ax[i].grid(color='#CCCCCC', linestyle='solid', linewidth=0.5)
ax[0].set_ylabel(r'$v_s$' , fontsize=12)
ax[1].set_ylabel(r'$g_1$' , fontsize=12)
ax[2].set_ylabel(r'$g_2$' , fontsize=12)
ax[3].set_ylabel(r'$I_{T1}$', fontsize=12)
ax[4].set_ylabel(r'$I_{T2}$', fontsize=12)
ax[5].set_ylabel(r'$I_L$' , fontsize=12)
ax[1].set_yticks([0.0, 1.0])
ax[2].set_yticks([0.0, 1.0])
for k in range(5):
ax[k].tick_params(labelbottom=False)
ax[0].plot(t*1e3, u[:,col_v_s], color=color1, linewidth=1.0, label="$v_s$")
ax[1].plot(t*1e3, u[:,col_g1 ], color=color2, linewidth=1.0, label="$g_1$")
ax[2].plot(t*1e3, u[:,col_g2 ], color=color2, linewidth=1.0, label="$g_2$")
ax[3].plot(t*1e3, u[:,col_IT1], color=color4, linewidth=1.0, label="$I_{T1}$")
ax[4].plot(t*1e3, u[:,col_IT2], color=color4, linewidth=1.0, label="$I_{T2}$")
ax[5].plot(t*1e3, u[:,col_IL ], color=color4, linewidth=1.0, label="$I_L$")
ax[5].set_xlabel('time (msec)', fontsize=12)
#plt.tight_layout()
plt.show()
filename: controlled_rectifier_1ph_5.dat angle of conduction for T1: 207.65 deg. angle of conduction for T2: 207.65 deg. angle of conduction for T3: 207.65 deg. angle of conduction for T4: 207.65 deg.
This notebook was contributed by Prof. Nakul Narayanan K, Govt. Engineering College, Thrissur. He may be contacted at nakul@gectcr.ac.in.