1-phase controlled rectifier
In the circuit shown below $v_a=220\sqrt 2 \sin (\omega\,t)$ and $v_b=220\sqrt 2 \sin (\omega\,t-\pi)$. For a firing angle of 45 degree, determine the average voltage across the load, $v_o$.from IPython.display import Image
Image(filename =r'controlled_rectifier_1ph_7_fig_1.png', width=350)
# run this cell to view the circuit file.
%pycat controlled_rectifier_1ph_7_orig.in
We now replace the strings such as \$L with the values of our choice by running the python script given below. It takes an existing circuit file controlled_rectifier_1ph_7_orig.in and produces a new circuit file controlled_rectifier_1ph_7.in, after replacing \$L (etc) with values of our choice.
import gseim_calc as calc
import numpy as np
s_L = "5e-3"
s_alpha = "45"
s_Idc = "5"
l = [
('$L', s_L),
('$alpha', s_alpha),
('$Idc', s_Idc),
]
calc.replace_strings_1("controlled_rectifier_1ph_7_orig.in", "controlled_rectifier_1ph_7.in", l)
print('controlled_rectifier_1ph_7.in is ready for execution')
controlled_rectifier_1ph_7.in is ready for execution
import os
import dos_unix
# uncomment for windows:
#dos_unix.d2u("controlled_rectifier_1ph_7.in")
os.system('run_gseim controlled_rectifier_1ph_7.in')
get_lib_elements: filename gseim_aux/xbe.aux get_lib_elements: filename gseim_aux/ebe.aux Circuit: filename = controlled_rectifier_1ph_7.in Circuit: n_xbeu_vr = 2 Circuit: n_ebeu_nd = 6 main: i_solve = 0 ssw_allocate_1 (2): n_statevar=2 main: calling solve_trns mat_ssw_1_ex: n_statevar: 2 mat_ssw_1_e0: cct.n_ebeu: 7 Transient simulation starts... i=0 i=1000 i=2000 solve_ssw_ex: ssw_iter_newton=0, rhs_ssw_norm=3.5355e+00 Transient simulation starts... i=0 i=1000 i=2000 solve_ssw_ex: ssw_iter_newton=1, rhs_ssw_norm=0.0000e+00 solve_ssw_ex: calling solve_ssw_1_ex for one more trns step Transient simulation starts... i=0 i=1000 i=2000 solve_ssw_1_ex over (after trns step for output) solve_ssw_ex ends, slv.ssw_iter_newton=1 GSEIM: Program completed.
0
The circuit file (controlled_rectifier_1ph_7.in) is created in the same directory as that used for launching Jupyter notebook. The last step (i.e., running GSEIM on controlled_rectifier_1ph_7.in) creates a data file called controlled_rectifier_1ph_7.dat in the same directory. We can now use the python code below to compute/plot the various quantities of interest.
import numpy as np
import matplotlib.pyplot as plt
import gseim_calc as calc
from setsize import set_size
f_hz = 50.0
T = 1.0/f_hz
slv = calc.slv("controlled_rectifier_1ph_7_orig.in")
i_slv = 0
i_out = 0
filename = slv.l_filename_all[i_slv][i_out]
print('filename:', filename)
u = np.loadtxt(filename)
t = u[:, 0]
col_v_s1 = slv.get_index(i_slv,i_out,"v_s1")
col_v_s2 = slv.get_index(i_slv,i_out,"v_s2")
col_v_o = slv.get_index(i_slv,i_out,"v_o")
col_g1 = slv.get_index(i_slv,i_out,"g1")
col_g2 = slv.get_index(i_slv,i_out,"g2")
col_IT1 = slv.get_index(i_slv,i_out,"IT1")
col_IT2 = slv.get_index(i_slv,i_out,"IT2")
l_v_o = calc.avg_rms_2(t, u[:,col_v_o], 0.0, 2.0*T, 1.0e-5*T)
t_v_o = np.array(l_v_o[0])
print('average value of Vo:', "%11.4E"%l_v_o[1][0])
color1='blue'
color2='green'
color3='red'
color4='dodgerblue'
color5='tomato'
fig, ax = plt.subplots(6, sharex=False)
plt.subplots_adjust(wspace=0, hspace=0.0)
set_size(5.5, 11, ax[0])
for i in range(6):
ax[i].set_xlim(left=0.0, right=2.0*T*1e3)
ax[i].grid(color='#CCCCCC', linestyle='solid', linewidth=0.5)
ax[0].set_ylabel(r'$v_{src}$', fontsize=12)
ax[1].set_ylabel(r'$g_1$' , fontsize=12)
ax[2].set_ylabel(r'$g_2$' , fontsize=12)
ax[3].set_ylabel(r'$v_o$' , fontsize=12)
ax[4].set_ylabel(r'$I_{T1}$' , fontsize=12)
ax[5].set_ylabel(r'$I_{T2}$' , fontsize=12)
ax[1].set_yticks([0.0, 1.0])
ax[2].set_yticks([0.0, 1.0])
for k in range(5):
ax[k].tick_params(labelbottom=False)
ax[0].plot(t*1e3, u[:,col_v_s1], color=color1, linewidth=1.0, label="$v_{s1}$")
ax[0].plot(t*1e3, u[:,col_v_s2], color=color5, linewidth=1.0, label="$v_{s2}$")
ax[1].plot(t*1e3, u[:,col_g1 ], color=color2, linewidth=1.0, label="$g_1$")
ax[2].plot(t*1e3, u[:,col_g2 ], color=color2, linewidth=1.0, label="$g_2$")
ax[3].plot(t*1e3, u[:,col_v_o ], color=color3, linewidth=1.0, label="$v_o$")
ax[4].plot(t*1e3, u[:,col_IT1 ], color=color4, linewidth=1.0, label="$I_{T1}$")
ax[5].plot(t*1e3, u[:,col_IT2 ], color=color4, linewidth=1.0, label="$I_{T2}$")
ax[3].plot(t_v_o*1e3, l_v_o[1], color=color3, linewidth=1.0, label="$v_o^{avg}$", linestyle='--', dashes=(5,3))
ax[5].set_xlabel('time (msec)', fontsize=12)
ax[0].legend(loc = 'lower right',frameon = True, fontsize = 10, title = None,
markerfirst = True, markerscale = 1.0, labelspacing = 0.5, columnspacing = 2.0,
prop = {'size' : 12},)
ax[3].legend(loc = 'lower right',frameon = True, fontsize = 10, title = None,
markerfirst = True, markerscale = 1.0, labelspacing = 0.5, columnspacing = 2.0,
prop = {'size' : 12},)
#plt.tight_layout()
plt.show()
filename: controlled_rectifier_1ph_7.dat average value of Vo: 1.3733E+02
This notebook was contributed by Prof. Nakul Narayanan K, Govt. Engineering College, Thrissur. He may be contacted at nakul@gectcr.ac.in.