3-phase controlled rectifier
The three-phase thyristor-controlled rectifier shown below is connected to a balanced three-phase AC source. Determine the minimum value of the firing angle for which the current through the resistor $R$ becomes discontinuous. Also, determine the average voltage across R for this firing angle.from IPython.display import Image
Image(filename =r'controlled_rectifier_3ph_1_fig_1.png', width=450)
# run this cell to view the circuit file.
%pycat controlled_rectifier_3ph_1_orig.in
We now replace the strings such as \$alpha with the values of our choice by running the python script given below. It takes an existing circuit file controlled_rectifier_3ph_1_orig.in and produces a new circuit file controlled_rectifier_3ph_1.in, after replacing \$alpha (etc) with values of our choice.
import gseim_calc as calc
import numpy as np
s_R = "10"
s_alpha = "80" # to be changed by user
VL = 400.0
A_sin = VL*np.sqrt(2/3)
s_A_sin = ("%11.4E"%(A_sin)).strip()
l = [
('$R', s_R),
('$alpha', s_alpha),
('$A_sin', s_A_sin),
]
calc.replace_strings_1("controlled_rectifier_3ph_1_orig.in", "controlled_rectifier_3ph_1.in", l)
print('controlled_rectifier_3ph_1.in is ready for execution')
controlled_rectifier_3ph_1.in is ready for execution
import os
import dos_unix
# uncomment for windows:
#dos_unix.d2u("controlled_rectifier_3ph_1.in")
os.system('run_gseim controlled_rectifier_3ph_1.in')
Circuit: filename = controlled_rectifier_3ph_1.in main: i_solve = 0 main: calling solve_trns Transient simulation starts... i=0 i=1000 i=2000 i=3000 GSEIM: Program completed.
0
The circuit file (controlled_rectifier_3ph_1.in) is created in the same directory as that used for launching Jupyter notebook. The last step (i.e., running GSEIM on controlled_rectifier_3ph_1.in) creates data files called controlled_rectifier_3ph_1_1.dat, etc. in the same directory. We can now use the python code below to compute/plot the various quantities of interest.
import numpy as np
import matplotlib.pyplot as plt
import gseim_calc as calc
from setsize import set_size
f_hz = 50.0
T = 1.0/f_hz
slv = calc.slv("controlled_rectifier_3ph_1.in")
i_slv = 0
i_out = 1
filename = slv.l_filename_all[i_slv][i_out]
print('filename:', filename)
u1 = np.loadtxt(filename)
t1 = u1[:, 0]
v_o = slv.get_array_double(i_slv,i_out,"v_o",u1)
Vab = slv.get_array_double(i_slv,i_out,"Vab",u1)
Vbc = slv.get_array_double(i_slv,i_out,"Vbc",u1)
Vca = slv.get_array_double(i_slv,i_out,"Vca",u1)
i_out = 2
filename = slv.l_filename_all[i_slv][i_out]
print('filename:', filename)
u2 = np.loadtxt(filename)
t2 = u2[:, 0]
g1 = slv.get_array_double(i_slv,i_out,"g1",u2)
g2 = slv.get_array_double(i_slv,i_out,"g2",u2)
g3 = slv.get_array_double(i_slv,i_out,"g3",u2)
g4 = slv.get_array_double(i_slv,i_out,"g4",u2)
g5 = slv.get_array_double(i_slv,i_out,"g5",u2)
g6 = slv.get_array_double(i_slv,i_out,"g6",u2)
l_v_o = calc.avg_rms_2(t1, v_o, 0, 2.0*T, 1.0e-5*T)
t_v_o = np.array(l_v_o[0])
print('average value of v_o:', "%11.4E"%l_v_o[1][0])
fig, ax = plt.subplots(2, sharex=False)
plt.subplots_adjust(wspace=0, hspace=0.0)
set_size(6.5, 7, ax[0])
for i in range(2):
ax[i].set_xlim(left=0.0, right=2.0*T*1e3)
ax[i].grid(color='#CCCCCC', linestyle='solid', linewidth=0.5)
ax[0].set_ylabel(r'voltage', fontsize=12)
ax[1].set_ylabel(r'$g_x$' , fontsize=12)
ax[0].tick_params(labelbottom=False)
color1 = "tomato"
color2 = "dodgerblue"
color3 = "olive"
color4 = "blue"
color5 = "grey"
color6 = "green"
color7 = "darkcyan"
ax[0].plot(t1*1e3, Vab, color=color1, linewidth=1.0, label="$V_{ab}$")
ax[0].plot(t1*1e3, Vbc, color=color2, linewidth=1.0, label="$V_{bc}$")
ax[0].plot(t1*1e3, Vca, color=color3, linewidth=1.0, label="$V_{ca}$")
ax[0].plot(t1*1e3, v_o, color=color4, linewidth=1.0, label="$v_o$")
ax[0].plot(t_v_o*1e3, l_v_o[1], color=color4, linewidth=1.0, label="$v_o^{avg}$", linestyle='--', dashes=(5,3))
ax[1].plot(t2*1e3, (g1 ), color=color1, linewidth=1.0, label="$g_1$")
ax[1].plot(t2*1e3, (g2 - 1.2), color=color2, linewidth=1.0, label="$g_2$")
ax[1].plot(t2*1e3, (g3 - 2.4), color=color3, linewidth=1.0, label="$g_3$")
ax[1].plot(t2*1e3, (g4 - 3.6), color=color5, linewidth=1.0, label="$g_4$")
ax[1].plot(t2*1e3, (g5 - 4.8), color=color6, linewidth=1.0, label="$g_5$")
ax[1].plot(t2*1e3, (g6 - 6.0), color=color7, linewidth=1.0, label="$g_6$")
ax[1].set_xlabel('time (msec)', fontsize=12)
ax[1].tick_params(left = False)
ax[1].set_yticks([])
for i in range(2):
ax[i].legend(loc = 'lower right',frameon = True, fontsize = 10, title = None,
markerfirst = True, markerscale = 1.0, labelspacing = 0.5, columnspacing = 2.0,
prop = {'size' : 12})
#plt.tight_layout()
plt.show()
filename: controlled_rectifier_3ph_1_2.dat filename: controlled_rectifier_3ph_1_3.dat average value of v_o: 1.2638E+02
import numpy as np
import matplotlib.pyplot as plt
import gseim_calc as calc
from setsize import set_size
f_hz = 50.0
T = 1.0/f_hz
slv = calc.slv("controlled_rectifier_3ph_1.in")
i_slv = 0
i_out = 0
filename = slv.l_filename_all[i_slv][i_out]
print('filename:', filename)
u1 = np.loadtxt(filename)
t1 = u1[:, 0]
IR = slv.get_array_double(i_slv,i_out,"IR",u1)
IT1 = slv.get_array_double(i_slv,i_out,"IT1",u1)
IT2 = slv.get_array_double(i_slv,i_out,"IT2",u1)
IT3 = slv.get_array_double(i_slv,i_out,"IT3",u1)
IT4 = slv.get_array_double(i_slv,i_out,"IT4",u1)
IT5 = slv.get_array_double(i_slv,i_out,"IT5",u1)
IT6 = slv.get_array_double(i_slv,i_out,"IT6",u1)
l_IR = calc.avg_rms_2(t1, IR, 0, 2.0*T, 1.0e-5*T)
t_IR = np.array(l_IR[0])
print('average value of IR:', "%11.4E"%l_IR[1][0])
fig, ax = plt.subplots(7, sharex=False)
plt.subplots_adjust(wspace=0, hspace=0.0)
set_size(6.5, 8, ax[0])
for i in range(7):
ax[i].set_xlim(left=0.0, right=2.0*T*1e3)
ax[i].grid(color='#CCCCCC', linestyle='solid', linewidth=0.5)
ax[0].set_ylabel(r'$I_R$' , fontsize=12)
ax[1].set_ylabel(r'$I_{T1}$', fontsize=12)
ax[2].set_ylabel(r'$I_{T2}$', fontsize=12)
ax[3].set_ylabel(r'$I_{T3}$', fontsize=12)
ax[4].set_ylabel(r'$I_{T4}$', fontsize=12)
ax[5].set_ylabel(r'$I_{T5}$', fontsize=12)
ax[6].set_ylabel(r'$I_{T6}$', fontsize=12)
for k in range(6):
ax[k].tick_params(labelbottom=False)
color1 = "red"
color2 = "blue"
ax[0].plot(t1*1e3, IR, color=color1, linewidth=1.0, label="$I_R$")
ax[0].plot(t_IR*1e3, l_IR[1], color=color1, linewidth=1.0, label="$I_R^{avg}$", linestyle='--', dashes=(5,3))
ax[1].plot(t1*1e3, (IT1), color=color2, linewidth=1.0, label="$I_{T1}$")
ax[2].plot(t1*1e3, (IT2), color=color2, linewidth=1.0, label="$I_{T2}$")
ax[3].plot(t1*1e3, (IT3), color=color2, linewidth=1.0, label="$I_{T3}$")
ax[4].plot(t1*1e3, (IT4), color=color2, linewidth=1.0, label="$I_{T4}$")
ax[5].plot(t1*1e3, (IT5), color=color2, linewidth=1.0, label="$I_{T5}$")
ax[6].plot(t1*1e3, (IT6), color=color2, linewidth=1.0, label="$I_{T6}$")
ax[6].set_xlabel('time (msec)', fontsize=12)
ax[0].legend(loc = 'lower right',frameon = True, fontsize = 10, title = None,
markerfirst = True, markerscale = 1.0, labelspacing = 0.5, columnspacing = 2.0,
prop = {'size' : 12})
#plt.tight_layout()
plt.show()
filename: controlled_rectifier_3ph_1_1.dat average value of IR: 1.2638E+01
This notebook was contributed by Prof. Nakul Narayanan K, Govt. Engineering College, Thrissur. He may be contacted at nakul@gectcr.ac.in.