Phasors
An $RL$ circuit with $R = 10\,\Omega$, $L = 0.01\,$H is connected to a voltage source $V_s(t) = 100\,\cos\,(1000\,t)$. Determine- the angle between the source voltage and current phasors,
- active and reactive powers drawn from the source,
- the capacitance required to be connected in parallel with the $RL$ load to make the reactive power drawn from the source zero.
In [1]:
from IPython.display import Image
Image(filename =r'phasor_3_fig_1.png', width=320)
Out[1]:
In [2]:
# RL circuit
# run this cell to view the circuit file.
%pycat phasor_3_1_orig.in
Execute the following cell to run GSEIM on phasor_3_1_orig.in.
In [3]:
import os
import dos_unix
# uncomment for windows:
#dos_unix.d2u("phasor_3_1_orig.in")
os.system('run_gseim phasor_3_1_orig.in')
Circuit: filename = phasor_3_1_orig.in main: i_solve = 0 GSEIM: Program completed.
Out[3]:
0
In [4]:
import numpy as np
import gseim_calc as calc
rad_to_deg = 180.0/np.pi
slv = calc.slv("phasor_3_1_orig.in")
i_slv = 0
i_out = 0
filename = slv.l_filename_all[i_slv][i_out]
print('filename:', filename)
u = np.loadtxt(filename)
IR = slv.get_scalar_complex_1(i_slv, i_out, "IR_ac", u)
Vs = slv.get_scalar_complex_1(i_slv, i_out, "Vs_ac", u)
s_format = "%7.2f"
print('phasors in rectangular form:')
calc.print_complex_rect('IR', IR, s_format)
calc.print_complex_rect('Vs', Vs, s_format)
print('phasors in polar form:')
calc.print_complex_polar('IR', IR, s_format)
calc.print_complex_polar('Vs', Vs, s_format)
phi_IR = np.angle(IR)*rad_to_deg
phi_Vs = np.angle(Vs)*rad_to_deg
print('phi_IR: %6.1f'%phi_IR, 'deg')
print('phi_Vs: %6.1f'%phi_Vs, 'deg')
print('phi_IR-phi_Vs: %6.1f'%(phi_IR-phi_Vs), 'deg')
pf = np.cos(np.angle(Vs)-np.angle(IR))
print('p.f.: %6.3f'%pf)
i_slv = 0
i_out = 1
filename = slv.l_filename_all[i_slv][i_out]
print('filename:', filename)
u = np.loadtxt(filename)
SVs = slv.get_scalar_complex_1(i_slv, i_out, "S_Vs", u)
s_format = "%7.2f"
print('power drawn from the source in rectangular form:')
calc.print_complex_rect('SVs', SVs, s_format)
print('power drawn from the source in polar form:')
calc.print_complex_polar('SVs', SVs, s_format)
filename: phasor_3_1_1.dat phasors in rectangular form: IR: ( 5.00, -5.00) Vs: ( 100.00, 0.00) phasors in polar form: IR: magnitude: 7.07, angle: -45.00 deg Vs: magnitude: 100.00, angle: 0.00 deg phi_IR: -45.0 deg phi_Vs: 0.0 deg phi_IR-phi_Vs: -45.0 deg p.f.: 0.707 filename: phasor_3_1_2.dat power drawn from the source in rectangular form: SVs: ( 250.01, 250.00) power drawn from the source in polar form: SVs: magnitude: 353.56, angle: 45.00 deg
In [5]:
# circuit with C in parallel with RL
# run this cell to view the circuit file.
%pycat phasor_3_2_orig.in
We now replace the string \$C with the value of our choice by running the python script given below. It takes an existing circuit file phasor_3_2_orig.in and produces a new circuit file phasor_3_2.in, after replacing \$C with the value of our choice.
In [6]:
import gseim_calc as calc
s_C = '25.78e-6' # to be changed by user
l = [
('$C', s_C),
]
calc.replace_strings_1("phasor_3_2_orig.in", "phasor_3_2.in", l)
print('phasor_3_2.in is ready for execution')
phasor_3_2.in is ready for execution
Execute the following cell to run GSEIM on phasor_3_2.in.
In [7]:
import os
import dos_unix
# uncomment for windows:
#dos_unix.d2u("phasor_3_2.in")
os.system('run_gseim phasor_3_2.in')
Circuit: filename = phasor_3_2.in main: i_solve = 0 GSEIM: Program completed.
Out[7]:
0
The last step (i.e., running GSEIM on phasor_3_2.in) creates data files phasor_3_2_1.dat and phasor_3_2_2.dat in the same directory. We can now use the python code below to compute and display the quantities of interest.
In [8]:
import numpy as np
import gseim_calc as calc
import matplotlib.pyplot as plt
from matplotlib.ticker import (MultipleLocator, AutoMinorLocator)
from setsize import set_size
rad_to_deg = 180.0/np.pi
slv = calc.slv("phasor_3_2.in")
i_slv = 0
i_out = 0
filename = slv.l_filename_all[i_slv][i_out]
print('filename:', filename)
u = np.loadtxt(filename)
IR = slv.get_scalar_complex_1(i_slv, i_out, "IR_ac", u)
IC = slv.get_scalar_complex_1(i_slv, i_out, "IC_ac", u)
Is = slv.get_scalar_complex_1(i_slv, i_out, "Is_ac", u)
Vs = slv.get_scalar_complex_1(i_slv, i_out, "Vs_ac", u)
phi_Is = np.angle(Is)*rad_to_deg
phi_Vs = np.angle(Vs)*rad_to_deg
print('phi_Is: %6.1f'%phi_Is, 'deg')
print('phi_Vs: %6.1f'%phi_Vs, 'deg')
print('phi_Is-phi_Vs: %6.1f'%(phi_Is-phi_Vs), 'deg')
pf = np.cos(np.angle(Vs)-np.angle(Is))
print('p.f.: %6.3f'%pf)
s_format = "%7.2f"
print('phasors in rectangular form:')
calc.print_complex_rect('IR', IR, s_format)
calc.print_complex_rect('IC', IC, s_format)
calc.print_complex_rect('Is', Is, s_format)
calc.print_complex_rect('Vs', Vs, s_format)
print('phasors in polar form:')
calc.print_complex_polar('IR', IR, s_format)
calc.print_complex_polar('IC', IC, s_format)
calc.print_complex_polar('Is', Is, s_format)
calc.print_complex_polar('Vs', Vs, s_format)
Vs1 = Vs/20.0
l_colors = ["blue", "red", "green", "grey", "dodgerblue", "tomato"]
l1 = []
l1_labels = []
color_IR = calc.phasor_append_1a(l1, l1_labels, IR, "$I_R$", l_colors)
color_IC = calc.phasor_append_1a(l1, l1_labels, IC, "$I_C$", l_colors)
color_Is = calc.phasor_append_1a(l1, l1_labels, Is, "$I_s$", l_colors)
color_Vs1 = calc.phasor_append_1a(l1, l1_labels, Vs1, "$V_s/20$", l_colors)
theta_deg = 20.0
length_arrow = calc.phasor_3(l1, 0.02)
l1_arrow = calc.phasor_2(l1, theta_deg, length_arrow, 0.2)
l2 = []
l2_colors = []
calc.phasor_append_2(l2, l2_colors, IR, (IR + IC), color_IC)
l2_arrow = calc.phasor_2(l2, theta_deg, length_arrow, 0.2)
fig, ax = plt.subplots()
ax.set_aspect('equal', adjustable='box')
ax.grid()
for i, l_dummy in enumerate(l1_arrow):
for k, t in enumerate(l_dummy):
if (k == 0):
ax.plot(t[0],t[1], color=l_colors[i], label=l1_labels[i])
else:
ax.plot(t[0],t[1], color=l_colors[i])
for i, l_dummy in enumerate(l2_arrow):
for k, t in enumerate(l_dummy):
ax.plot(t[0],t[1], color=l2_colors[i], linestyle='--', dashes=(4, 2))
calc.revise_axis_limits_1(ax, 3.0)
ax.legend(loc='center left', fontsize=11, bbox_to_anchor=(1.05, 0.5))
plt.xlabel('Re (I)', fontsize=11)
plt.ylabel('Im (I)', fontsize=11)
plt.show()
filename: phasor_3_2_1.dat phi_Is: -25.8 deg phi_Vs: 0.0 deg phi_Is-phi_Vs: -25.8 deg p.f.: 0.900 phasors in rectangular form: IR: ( 5.00, -5.00) IC: ( 0.00, 2.58) Is: ( 5.00, -2.42) Vs: ( 100.00, 0.00) phasors in polar form: IR: magnitude: 7.07, angle: -45.00 deg IC: magnitude: 2.58, angle: 90.00 deg Is: magnitude: 5.56, angle: -25.85 deg Vs: magnitude: 100.00, angle: 0.00 deg
In [9]:
import numpy as np
import gseim_calc as calc
import matplotlib.pyplot as plt
from matplotlib.ticker import (MultipleLocator, AutoMinorLocator)
from setsize import set_size
rad_to_deg = 180.0/np.pi
slv = calc.slv("phasor_3_2.in")
i_slv = 0
i_out = 1
filename = slv.l_filename_all[i_slv][i_out]
print('filename:', filename)
u = np.loadtxt(filename)
SR = slv.get_scalar_complex_1(i_slv, i_out, "S_R", u)
SC = slv.get_scalar_complex_1(i_slv, i_out, "S_C", u)
SVs = slv.get_scalar_complex_1(i_slv, i_out, "S_Vs", u)
SL = slv.get_scalar_complex_1(i_slv, i_out, "S_L", u)
s_format = "%7.2f"
print('phasors in rectangular form:')
calc.print_complex_rect('SR', SR, s_format)
calc.print_complex_rect('SL', SL, s_format)
calc.print_complex_rect('SC', SC, s_format)
calc.print_complex_rect('SVs', SVs, s_format)
print('phasors in polar form:')
calc.print_complex_polar('SR', SR, s_format)
calc.print_complex_polar('SL', SL, s_format)
calc.print_complex_polar('SC', SC, s_format)
calc.print_complex_polar('SVs', SVs, s_format)
l_colors = ["blue", "red", "green", "grey", "dodgerblue", "tomato"]
l1 = []
l1_labels = []
color_SR = calc.phasor_append_1a(l1, l1_labels, SR, "$S_R$", l_colors)
color_SC = calc.phasor_append_1a(l1, l1_labels, SC, "$S_C$", l_colors)
color_SVs = calc.phasor_append_1a(l1, l1_labels, SVs, "$S_{Vs}$", l_colors)
color_SL = calc.phasor_append_1a(l1, l1_labels, SL, "$S_L$", l_colors)
theta_deg = 20.0
length_arrow = calc.phasor_3(l1, 0.02)
l1_arrow = calc.phasor_2(l1, theta_deg, length_arrow, 0.2)
l2 = []
l2_colors = []
calc.phasor_append_2(l2, l2_colors, SL, (SL + SR), color_SR)
calc.phasor_append_2(l2, l2_colors, (SL + SR), (SL + SR + SC), color_SC)
l2_arrow = calc.phasor_2(l2, theta_deg, length_arrow, 0.2)
fig, ax = plt.subplots()
ax.set_aspect('equal', adjustable='box')
ax.grid()
for i, l_dummy in enumerate(l1_arrow):
for k, t in enumerate(l_dummy):
if (k == 0):
ax.plot(t[0],t[1], color=l_colors[i], label=l1_labels[i])
else:
ax.plot(t[0],t[1], color=l_colors[i])
for i, l_dummy in enumerate(l2_arrow):
for k, t in enumerate(l_dummy):
ax.plot(t[0],t[1], color=l2_colors[i], linestyle='--', dashes=(4, 2))
calc.revise_axis_limits_1(ax, 3.0)
ax.legend(loc='center left', fontsize=11, bbox_to_anchor=(1.05, 0.5))
plt.xlabel('Re (S)', fontsize=11)
plt.ylabel('Im (S)', fontsize=11)
plt.show()
filename: phasor_3_2_2.dat phasors in rectangular form: SR: ( 250.01, 0.00) SL: ( 0.00, 250.00) SC: ( 0.00, -128.90) SVs: ( 250.01, 121.10) phasors in polar form: SR: magnitude: 250.01, angle: 0.00 deg SL: magnitude: 250.00, angle: 90.00 deg SC: magnitude: 128.90, angle: -90.00 deg SVs: magnitude: 277.80, angle: 25.85 deg
This notebook was contributed by Prof. Nakul Narayanan K, Govt. Engineering College, Thrissur. He may be contacted at nakul@gectcr.ac.in.
In [ ]: