Phasors
In the circuit given below, the active power delivered by the source is $5\,$kW, and the apparent power absorbed by the load ($R_2$ and $L$ in parallel) is $(2.5 + j\,2.5)\,$kVAR. The source frequency is $1000\,$rad/s. Find $R_2$, $L$, and $C$.In [1]:
from IPython.display import Image
Image(filename =r'phasor_9_fig_1.png', width=400)
Out[1]:
In [2]:
# run this cell to view the circuit file.
%pycat phasor_9_orig.in
We now replace strings such as \$C with the values of our choice by running the python script given below. It takes an existing circuit file phasor_9_orig.in and produces a new circuit file phasor_9.in, after replacing \$C, etc with the values of our choice.
In [3]:
import gseim_calc as calc
s_R2 = '2' # to be changed by user
s_L = '0.5m' # to be changed by user
s_C = '3m' # to be changed by user
l = [
('$R2', s_R2),
('$L', s_L),
('$C', s_C),
]
calc.replace_strings_1("phasor_9_orig.in", "phasor_9.in", l)
print('phasor_9.in is ready for execution')
phasor_9.in is ready for execution
Execute the following cell to run GSEIM on phasor_9.in.
In [4]:
import os
import dos_unix
# uncomment for windows:
#dos_unix.d2u("phasor_9.in")
os.system('run_gseim phasor_9.in')
Circuit: filename = phasor_9.in main: i_solve = 0 GSEIM: Program completed.
Out[4]:
0
The circuit file (phasor_9.in) is created in the same directory as that used for launching Jupyter notebook. The last step (i.e., running GSEIM on phasor_9.in) creates data files phasor_9_1.dat, phasor_9_2.dat, and phasor_9_3.dat in the same directory. We can now use the python code below to compute and display the quantities of interest.
In [5]:
import numpy as np
import gseim_calc as calc
import matplotlib.pyplot as plt
from matplotlib.ticker import (MultipleLocator, AutoMinorLocator)
from setsize import set_size
rad_to_deg = 180.0/np.pi
slv = calc.slv("phasor_9.in")
i_slv = 0
i_out = 1
filename = slv.l_filename_all[i_slv][i_out]
print('filename:', filename)
u = np.loadtxt(filename)
IR1 = slv.get_scalar_complex_1(i_slv, i_out, "IR1_ac", u)
IR2 = slv.get_scalar_complex_1(i_slv, i_out, "IR2_ac", u)
IL = slv.get_scalar_complex_1(i_slv, i_out, "IL_ac", u)
s_format = "%7.2f"
print('phasors in rectangular form:')
calc.print_complex_rect('IR1', IR1, s_format)
calc.print_complex_rect('IR2', IR2, s_format)
calc.print_complex_rect('IL' , IL, s_format)
print('phasors in polar form:')
calc.print_complex_polar('IR1', IR1, s_format)
calc.print_complex_polar('IR2', IR2, s_format)
calc.print_complex_polar('IL' , IL, s_format)
l_colors = ["blue", "red", "green", "grey", "dodgerblue", "tomato"]
l1 = []
l1_labels = []
color_IR1 = calc.phasor_append_1a(l1, l1_labels, IR1, "$I_{R1}$", l_colors)
color_IR2 = calc.phasor_append_1a(l1, l1_labels, IR2, "$I_{R2}$", l_colors)
color_IL = calc.phasor_append_1a(l1, l1_labels, IL, "$I_L$", l_colors)
theta_deg = 20.0
length_arrow = calc.phasor_3(l1, 0.02)
l1_arrow = calc.phasor_2(l1, theta_deg, length_arrow, 0.2)
l2 = []
l2_colors = []
calc.phasor_append_2(l2, l2_colors, IL, (IR2 + IL), color_IR2)
l2_arrow = calc.phasor_2(l2, theta_deg, length_arrow, 0.2)
fig, ax = plt.subplots()
ax.set_aspect('equal', adjustable='box')
ax.grid()
for i, l_dummy in enumerate(l1_arrow):
for k, t in enumerate(l_dummy):
if (k == 0):
ax.plot(t[0],t[1], color=l_colors[i], label=l1_labels[i])
else:
ax.plot(t[0],t[1], color=l_colors[i])
for i, l_dummy in enumerate(l2_arrow):
for k, t in enumerate(l_dummy):
ax.plot(t[0],t[1], color=l2_colors[i], linestyle='--', dashes=(4, 2))
calc.revise_axis_limits_1(ax, 3.0)
ax.legend(loc='center left', fontsize=11, bbox_to_anchor=(1.05, 0.5))
plt.xlabel('Re (I)', fontsize=11)
plt.ylabel('Im (I)', fontsize=11)
plt.show()
filename: phasor_9_2.dat phasors in rectangular form: IR1: ( 154.29, -34.28) IR2: ( 17.14, 34.29) IL: ( 137.15, -68.57) phasors in polar form: IR1: magnitude: 158.05, angle: -12.53 deg IR2: magnitude: 38.33, angle: 63.44 deg IL: magnitude: 153.33, angle: -26.56 deg
In [6]:
import numpy as np
import gseim_calc as calc
import matplotlib.pyplot as plt
from matplotlib.ticker import (MultipleLocator, AutoMinorLocator)
from setsize import set_size
rad_to_deg = 180.0/np.pi
slv = calc.slv("phasor_9.in")
i_slv = 0
i_out = 0
filename = slv.l_filename_all[i_slv][i_out]
print('filename:', filename)
u = np.loadtxt(filename)
VR1 = slv.get_scalar_complex_1(i_slv, i_out, "VR1_ac", u)
VC = slv.get_scalar_complex_1(i_slv, i_out, "VC_ac", u)
VL = slv.get_scalar_complex_1(i_slv, i_out, "VL_ac", u)
Vs = slv.get_scalar_complex_1(i_slv, i_out, "Vs_ac", u)
s_format = "%7.2f"
print('phasors in rectangular form:')
calc.print_complex_rect('VR1', VR1, s_format)
calc.print_complex_rect('VC' , VC, s_format)
calc.print_complex_rect('VL' , VL, s_format)
calc.print_complex_rect('Vs' , Vs, s_format)
print('phasors in polar form:')
calc.print_complex_polar('VR1', VR1, s_format)
calc.print_complex_polar('VC' , VC, s_format)
calc.print_complex_polar('VL' , VL, s_format)
calc.print_complex_polar('Vs' , Vs, s_format)
l_colors = ["blue", "red", "green", "grey", "dodgerblue", "tomato"]
l1 = []
l1_labels = []
color_VR1 = calc.phasor_append_1a(l1, l1_labels, VR1, "$V_{R1}$", l_colors)
color_VC = calc.phasor_append_1a(l1, l1_labels, VC, "$V_C$", l_colors)
color_VL = calc.phasor_append_1a(l1, l1_labels, VL, "$V_L$", l_colors)
color_Vs = calc.phasor_append_1a(l1, l1_labels, Vs, "$V_s$", l_colors)
theta_deg = 20.0
length_arrow = calc.phasor_3(l1, 0.02)
l1_arrow = calc.phasor_2(l1, theta_deg, length_arrow, 0.2)
l2 = []
l2_colors = []
calc.phasor_append_2(l2, l2_colors, VL, (VC + VL), color_VC)
calc.phasor_append_2(l2, l2_colors, (VC + VL), (VC + VL + VR1), color_VR1)
l2_arrow = calc.phasor_2(l2, theta_deg, length_arrow, 0.2)
fig, ax = plt.subplots()
ax.set_aspect('equal', adjustable='box')
ax.grid()
for i, l_dummy in enumerate(l1_arrow):
for k, t in enumerate(l_dummy):
if (k == 0):
ax.plot(t[0],t[1], color=l_colors[i], label=l1_labels[i])
else:
ax.plot(t[0],t[1], color=l_colors[i])
for i, l_dummy in enumerate(l2_arrow):
for k, t in enumerate(l_dummy):
ax.plot(t[0],t[1], color=l2_colors[i], linestyle='--', dashes=(4, 2))
calc.revise_axis_limits_1(ax, 3.0)
ax.legend(loc='center left', fontsize=11, bbox_to_anchor=(1.05, 0.5))
plt.xlabel('Re (V)', fontsize=11)
plt.ylabel('Im (V)', fontsize=11)
plt.show()
filename: phasor_9_1.dat phasors in rectangular form: VR1: ( 77.14, -17.14) VC: ( -11.43, -51.43) VL: ( 34.28, 68.57) Vs: ( 100.00, 0.00) phasors in polar form: VR1: magnitude: 79.03, angle: -12.53 deg VC: magnitude: 52.69, angle: -102.53 deg VL: magnitude: 76.66, angle: 63.44 deg Vs: magnitude: 100.00, angle: 0.00 deg
In [7]:
import numpy as np
import gseim_calc as calc
import matplotlib.pyplot as plt
from matplotlib.ticker import (MultipleLocator, AutoMinorLocator)
from setsize import set_size
rad_to_deg = 180.0/np.pi
slv = calc.slv("phasor_9.in")
i_slv = 0
i_out = 2
filename = slv.l_filename_all[i_slv][i_out]
print('filename:', filename)
u = np.loadtxt(filename)
SR1 = slv.get_scalar_complex_1(i_slv, i_out, "S_R1", u)
SR2 = slv.get_scalar_complex_1(i_slv, i_out, "S_R2", u)
SL = slv.get_scalar_complex_1(i_slv, i_out, "S_L", u)
SC = slv.get_scalar_complex_1(i_slv, i_out, "S_C", u)
SVs = slv.get_scalar_complex_1(i_slv, i_out, "S_Vs", u)
s_format = "%7.2f"
print('phasors in rectangular form:')
calc.print_complex_rect('SR1', SR1, s_format)
calc.print_complex_rect('SR2', SR2, s_format)
calc.print_complex_rect('SL', SL, s_format)
calc.print_complex_rect('SC', SC, s_format)
calc.print_complex_rect('SVs', SVs, s_format)
print('phasors in polar form:')
calc.print_complex_polar('SR1', SR1, s_format)
calc.print_complex_polar('SR2', SR2, s_format)
calc.print_complex_polar('SL', SL, s_format)
calc.print_complex_polar('SC', SC, s_format)
calc.print_complex_polar('SVs', SVs, s_format)
l_colors = ["blue", "red", "green", "grey", "dodgerblue", "tomato"]
l1 = []
l1_labels = []
color_SR1 = calc.phasor_append_1a(l1, l1_labels, SR1, "$S_{R1}$", l_colors)
color_SR2 = calc.phasor_append_1a(l1, l1_labels, SR2, "$S_{R2}$", l_colors)
color_SL = calc.phasor_append_1a(l1, l1_labels, SL, "$S_L$", l_colors)
color_SC = calc.phasor_append_1a(l1, l1_labels, SC, "$S_C$", l_colors)
color_SVs = calc.phasor_append_1a(l1, l1_labels, SVs, "$S_{Vs}$", l_colors)
theta_deg = 20.0
length_arrow = calc.phasor_3(l1, 0.02)
l1_arrow = calc.phasor_2(l1, theta_deg, length_arrow, 0.2)
l2 = []
l2_colors = []
calc.phasor_append_2(l2, l2_colors, SL, (SL + SR2), color_SR2)
calc.phasor_append_2(l2, l2_colors, (SL + SR2), (SL + SR2 + SC), color_SC)
calc.phasor_append_2(l2, l2_colors, (SL + SR2 + SC), (SL + SR2 + SC + SR1), color_SR1)
l2_arrow = calc.phasor_2(l2, theta_deg, length_arrow, 0.2)
fig, ax = plt.subplots()
ax.set_aspect('equal', adjustable='box')
ax.grid()
for i, l_dummy in enumerate(l1_arrow):
for k, t in enumerate(l_dummy):
if (k == 0):
ax.plot(t[0],t[1], color=l_colors[i], label=l1_labels[i])
else:
ax.plot(t[0],t[1], color=l_colors[i])
for i, l_dummy in enumerate(l2_arrow):
for k, t in enumerate(l_dummy):
ax.plot(t[0],t[1], color=l2_colors[i], linestyle='--', dashes=(4, 2))
calc.revise_axis_limits_1(ax, 3.0)
ax.legend(loc='center left', fontsize=11, bbox_to_anchor=(1.05, 0.5))
plt.xlabel('Re (S)', fontsize=11)
plt.ylabel('Im (S)', fontsize=11)
plt.show()
filename: phasor_9_3.dat phasors in rectangular form: SR1: (6245.13, 0.00) SR2: (1469.36, 0.00) SL: ( 0.00, 5877.61) SC: ( 0.00, -4163.55) SVs: (7714.49, 1714.06) phasors in polar form: SR1: magnitude: 6245.13, angle: 0.00 deg SR2: magnitude: 1469.36, angle: 0.00 deg SL: magnitude: 5877.61, angle: 90.00 deg SC: magnitude: 4163.55, angle: -90.00 deg SVs: magnitude: 7902.61, angle: 12.53 deg
This notebook was contributed by Prof. Nakul Narayanan K, Govt. Engineering College, Thrissur. He may be contacted at nakul@gectcr.ac.in.
In [ ]: