Phase-locked loops

The input to a synchronous reference frame PLL (see figure) is

$V_a = 325\,\sin\,(\omega \,t)\,$V,

$V_b = 320\,\sin\,(\omega \,t - 2\,\pi/3)\,$V,

$V_c = 325\,\sin\,(\omega \,t + 2\,\pi/3)\,$V,

with $f=50\,$Hz. The filter transfer function is given by

$G(s) = K_p\,\displaystyle\frac{1+s\,\tau}{s\,\tau}$.

The $abc$ to $dq$ transformation is given below.

$ \begin{equation} \left[ \begin{array}{c} u_d\cr u_q\cr u_0\cr \end{array} \right] = \displaystyle\frac{2}{3} \left[ \begin{array}{cccc} \cos(\omega t) & \cos(\omega t - 2\pi /3) & \cos(\omega t + 2\pi /3) \cr -\sin(\omega t) & -\sin(\omega t - 2\pi /3) & -\sin(\omega t + 2\pi /3) \cr 1/2 & 1/2 & 1/2 \end{array} \right] \left[ \begin{array}{c} u_a\cr u_b\cr u_c\cr \end{array} \right] \end{equation} $

Plot $\omega$, $V_d$, and $V_q$ versus time (in the steady state) for three values of bandwidth: $100\,$Hz, $50\,$Hz, and $10\,$Hz. What did you observe in the magnitude of the oscillations?

In [1]:
from IPython.display import Image
Image(filename =r'pll_1_fig_1.png', width=450)
Out[1]:
No description has been provided for this image
In [2]:
# run this cell to view the circuit file.
%pycat pll_3_orig.in
In [3]:
import numpy as np
import gseim_calc as calc
import os
import dos_unix
import matplotlib.pyplot as plt 
from matplotlib.ticker import (MultipleLocator, AutoMinorLocator)
from setsize import set_size
import math

l_bw = [100.0, 50.0, 10.0]

l_vd = []
l_vq = []
l_omg = []

slv = calc.slv("pll_3_orig.in")

i_slv = 0
i_out = 0
filename = slv.l_filename_all[i_slv][i_out]
print('filename:', filename)

Vg = 325.0
zeta = 0.707

for k, bw in enumerate(l_bw):
    wb = 2*math.pi*bw # Bandwidth (in rad/s)
    Kp = (2*zeta*wb)/Vg
    tau = (2*zeta)/wb
    print("bandwidth:  %11.4e"% bw)
    print("Kp:  %11.4e"%Kp)
    print("tau: %11.4e"%tau)

    s_Kp = "%11.4E"%Kp
    s_tau = "%11.4E"%tau
    l = [
      ('$Kp', s_Kp),
      ('$tau', s_tau),
    ]
    calc.replace_strings_1("pll_3_orig.in", "pll_3.in", l)
    # uncomment for windows:
    #dos_unix.d2u("pll_3.in")
    os.system('run_gseim pll_3.in')
    u = np.loadtxt(filename)

    t = u[:, 0]
    t_end = t[-1]

    # va, vb, vc do not change; we need to read them only once
    if k == 0:
        va  = slv.get_array_double(i_slv, i_out, 'va', u)
        vb  = slv.get_array_double(i_slv, i_out, 'vb', u)
        vc  = slv.get_array_double(i_slv, i_out, 'vc', u)

    vd  = slv.get_array_double(i_slv, i_out, 'vd', u)
    vq  = slv.get_array_double(i_slv, i_out, 'vq', u)
    omg = slv.get_array_double(i_slv, i_out, 'w',  u)

    l_vd.append(vd)
    l_vq.append(vq)
    l_omg.append(omg)

color1='red'
color2='goldenrod'
color3='blue'
color4='green'
color5='crimson'
color6='cornflowerblue'

fig, ax = plt.subplots(4, sharex=False)
plt.subplots_adjust(wspace=0, hspace=0.0)

set_size(5.5, 7, ax[0])

for i in range(4):
    ax[i].set_xlim(left=0.0, right=t_end*1e3)
    ax[i].grid(color='#CCCCCC', linestyle='solid', linewidth=0.5)
    
ax[0].plot(t*1e3, va, color=color1, linewidth=1.0, label="$V_a$")
ax[0].plot(t*1e3, vb, color=color2, linewidth=1.0, label="$V_b$")
ax[0].plot(t*1e3, vc, color=color3, linewidth=1.0, label="$V_c$")

ax[0].set_ylabel('voltage', fontsize=12)

ax[1].plot(t*1e3, l_omg[0], color=color4, linewidth=1.0, label="BW: "+"%3.0f"%l_bw[0])
ax[1].plot(t*1e3, l_omg[1], color=color5, linewidth=1.0, label="BW: "+"%3.0f"%l_bw[1])
ax[1].plot(t*1e3, l_omg[2], color=color6, linewidth=1.0, label="BW: "+"%3.0f"%l_bw[2])

ax[1].set_ylabel("$\\omega$", fontsize=12)

ax[2].plot(t*1e3, l_vd[0], color=color4, linewidth=1.0, label="BW: "+"%3.0f"%l_bw[0])
ax[2].plot(t*1e3, l_vd[1], color=color5, linewidth=1.0, label="BW: "+"%3.0f"%l_bw[1])
ax[2].plot(t*1e3, l_vd[2], color=color6, linewidth=1.0, label="BW: "+"%3.0f"%l_bw[2])

ax[2].set_ylabel("$V_d$", fontsize=12)

ax[3].plot(t*1e3, l_vq[0], color=color4, linewidth=1.0, label="BW: "+"%3.0f"%l_bw[0])
ax[3].plot(t*1e3, l_vq[1], color=color5, linewidth=1.0, label="BW: "+"%3.0f"%l_bw[1])
ax[3].plot(t*1e3, l_vq[2], color=color6, linewidth=1.0, label="BW: "+"%3.0f"%l_bw[2])

ax[3].set_ylabel("$V_q$", fontsize=12)

ax[3].set_xlabel('time (msec)', fontsize=12)

for i in range(4):
    ax[i].legend(loc = 'lower right',frameon = True, fontsize = 10, title = None,
      markerfirst = True, markerscale = 1.0, labelspacing = 0.5, columnspacing = 2.0,
      prop = {'size' : 12},)

plt.tight_layout()
plt.show()
filename: pll_3.dat
bandwidth:   1.0000e+02
Kp:   2.7337e+00
tau:  2.2505e-03
Circuit: filename = pll_3.in
main: i_solve = 0
solve_ssf: ssf_iter_newton=0, rhs_ssf_norm=1.86475, ssf_period_1_compute=0.02
solve_ssf: ssf_iter_newton=1, rhs_ssf_norm=0.044041, ssf_period_1_compute=0.02
solve_ssf: ssf_iter_newton=2, rhs_ssf_norm=4.22232e-06, ssf_period_1_compute=0.02
solve_ssf: ssf_iter_newton=3, rhs_ssf_norm=2.1441e-10, ssf_period_1_compute=0.02
solve_ssf: ssf_iter_newton=4, rhs_ssf_norm=4.34918e-14, ssf_period_1_compute=0.02
solve_ssf: convergence reached.
solve_ssf: calling ssf_solve_trns for one more trns step
GSEIM: Program completed.
bandwidth:   5.0000e+01
Kp:   1.3668e+00
tau:  4.5009e-03
Circuit: filename = pll_3.in
main: i_solve = 0
solve_ssf: ssf_iter_newton=0, rhs_ssf_norm=5.70936, ssf_period_1_compute=0.02
solve_ssf: ssf_iter_newton=1, rhs_ssf_norm=0.921612, ssf_period_1_compute=0.02
solve_ssf: ssf_iter_newton=2, rhs_ssf_norm=0.00035094, ssf_period_1_compute=0.02
solve_ssf: ssf_iter_newton=3, rhs_ssf_norm=7.91054e-08, ssf_period_1_compute=0.02
solve_ssf: ssf_iter_newton=4, rhs_ssf_norm=6.00572e-11, ssf_period_1_compute=0.02
solve_ssf: convergence reached.
solve_ssf: calling ssf_solve_trns for one more trns step
GSEIM: Program completed.
bandwidth:   1.0000e+01
Kp:   2.7337e-01
tau:  2.2505e-02
Circuit: filename = pll_3.in
main: i_solve = 0
solve_ssf: ssf_iter_newton=0, rhs_ssf_norm=31.1973, ssf_period_1_compute=0.02
solve_ssf: ssf_iter_newton=1, rhs_ssf_norm=1.29224, ssf_period_1_compute=0.02
solve_ssf: ssf_iter_newton=2, rhs_ssf_norm=0.00117394, ssf_period_1_compute=0.02
solve_ssf: ssf_iter_newton=3, rhs_ssf_norm=2.57822e-07, ssf_period_1_compute=0.02
solve_ssf: ssf_iter_newton=4, rhs_ssf_norm=5.14543e-11, ssf_period_1_compute=0.02
solve_ssf: convergence reached.
solve_ssf: calling ssf_solve_trns for one more trns step
GSEIM: Program completed.
No description has been provided for this image

This notebook was contributed by Prof. Nakul Narayanan K, Govt. Engineering College, Thrissur. He may be contacted at nakul@gectcr.ac.in.