1-phase diode rectifier
In the circuit given below, the magnitude of the DC current source is $10\,$A, $f= 50\,Hz$, and $V_m=100\,$V. Determine the following.- the average voltage across the dc current source
- the average current through the diode
In [1]:
from IPython.display import Image
Image(filename =r'rectifier_1ph_1_fig_1.png', width=400)
Out[1]:
In [2]:
# run this cell to view the circuit file.
%pycat rectifier_1ph_1_orig.in
Execute the following cell to run GSEIM on rectifier_1ph_1.in.
In [3]:
import os
import dos_unix
# uncomment for windows:
#dos_unix.d2u("rectifier_1ph_1_orig.in")
os.system('run_gseim rectifier_1ph_1_orig.in')
get_lib_elements: filename gseim_aux/xbe.aux get_lib_elements: filename gseim_aux/ebe.aux Circuit: filename = rectifier_1ph_1_orig.in Circuit: n_xbeu_vr = 0 Circuit: n_ebeu_nd = 4 main: i_solve = 0 main: calling solve_trns Transient simulation starts... i=0 i=1000 GSEIM: Program completed.
Out[3]:
0
The last step (i.e., running GSEIM on rectifier_1ph_1.in) creates a data file called rectifier_1ph_1.dat in the directory from which Jupyter was launched. We can now use the python code below to compute/plot the various quantities of interest.
In [4]:
import numpy as np
import matplotlib.pyplot as plt
import gseim_calc as calc
from setsize import set_size
f_hz = 50.0
T = 1.0/f_hz
slv = calc.slv("rectifier_1ph_1_orig.in")
i_slv = 0
i_out = 0
filename = slv.l_filename_all[i_slv][i_out]
print('filename:', filename)
u = np.loadtxt(filename)
t = u[:, 0]
col_v_b = slv.get_index(i_slv,i_out,"v_b")
col_ID1 = slv.get_index(i_slv,i_out,"ID1")
col_ID2 = slv.get_index(i_slv,i_out,"ID2")
l_v_b = calc.avg_rms_2(t, u[:,col_v_b], 0.0, 2.0*T, 1.0e-5*T)
l_ID1 = calc.avg_rms_2(t, u[:,col_ID1], 0.0, 2.0*T, 1.0e-5*T)
l_ID2 = calc.avg_rms_2(t, u[:,col_ID2], 0.0, 2.0*T, 1.0e-5*T)
t_v_b = np.array(l_v_b[0])
t_ID1 = np.array(l_ID1[0])
t_ID2 = np.array(l_ID2[0])
print('average value of v_b:', "%11.4E"%l_v_b[1][0])
print('average value of ID1:', "%11.4E"%l_ID1[1][0])
color1='blue'
color2='olive'
color3='red'
fig, ax = plt.subplots(3, sharex=False)
plt.subplots_adjust(wspace=0, hspace=0.0)
set_size(5.5, 6, ax[0])
for i in range(3):
ax[i].set_xlim(left=0.0, right=2.0*T*1e3)
ax[i].grid(color='#CCCCCC', linestyle='solid', linewidth=0.5)
ax[0].set_ylabel(r'$V_b$', fontsize=12)
ax[1].set_ylabel(r'$I_{D1}$', fontsize=12)
ax[2].set_ylabel(r'$I_{D2}$', fontsize=12)
ax[0].tick_params(labelbottom=False)
ax[1].tick_params(labelbottom=False)
ax[0].plot(t*1e3, u[:,col_v_b], color=color1, linewidth=1.0, label="$V_b$")
ax[0].plot(t_v_b*1e3, l_v_b[1], color=color1, linewidth=1.0, label="$V_b^{avg}$", linestyle='--', dashes=(5,3))
ax[1].plot(t*1e3, u[:,col_ID1], color=color2, linewidth=1.0, label="$I_{D1}$")
ax[1].plot(t_ID1*1e3, l_ID1[1], color=color2, linewidth=1.0, label="$I_{D1}^{avg}$", linestyle='--', dashes=(5,3))
ax[2].plot(t*1e3, u[:,col_ID2], color=color3, linewidth=1.0, label="$I_{D2}$")
ax[2].plot(t_ID2*1e3, l_ID2[1], color=color3, linewidth=1.0, label="$I_{D2}^{avg}$", linestyle='--', dashes=(5,3))
ax[2].set_xlabel('time (msec)', fontsize=12)
for k in range(3):
ax[k].legend(loc = 'lower right',frameon = True, fontsize = 10, title = None,
markerfirst = True, markerscale = 1.0, labelspacing = 0.5, columnspacing = 2.0,
prop = {'size' : 12},)
#plt.tight_layout()
plt.show()
filename: rectifier_1ph_1.dat average value of v_b: 6.3627E+01 average value of ID1: 4.9975E+00
This notebook was contributed by Prof. Nakul Narayanan K, Govt. Engineering College, Thrissur. He may be contacted at nakul@gectcr.ac.in.