1-phase rectifier
For the rectifier circuit given below, determine- the average current through the DC source
- the average power dissipated in the $20\,\Omega$ resistor
- duration for which each diode conducts (in one cycle)
In [1]:
from IPython.display import Image
Image(filename =r'rectifier_1ph_9_fig_1.png', width=450)
Out[1]:
In [2]:
# run this cell to view the circuit file.
%pycat rectifier_1ph_9_orig.in
We now replace the strings such as \$R with the values of our choice by running the python script given below. It takes an existing circuit file rectifier_1ph_9_orig.in and produces a new circuit file rectifier_1ph_9.in, after replacing \$R (etc) with values of our choice.
In [3]:
import gseim_calc as calc
import numpy as np
import sys
s_R = "20"
s_Vdc = "220"
l = [
('$R', s_R),
('$Vdc', s_Vdc),
]
calc.replace_strings_1("rectifier_1ph_9_orig.in", "rectifier_1ph_9.in", l)
print('rectifier_1ph_9.in is ready for execution')
rectifier_1ph_9.in is ready for execution
Execute the following cell to run GSEIM on rectifier_1ph_9.in.
In [4]:
import os
import dos_unix
# uncomment for windows:
#dos_unix.d2u("rectifier_1ph_9.in")
os.system('run_gseim rectifier_1ph_9.in')
get_lib_elements: filename gseim_aux/xbe.aux get_lib_elements: filename gseim_aux/ebe.aux Circuit: filename = rectifier_1ph_9.in Circuit: n_xbeu_vr = 0 Circuit: n_ebeu_nd = 5 main: i_solve = 0 main: calling solve_trns Transient simulation starts... i=0 i=1000 GSEIM: Program completed.
Out[4]:
0
The circuit file (rectifier_1ph_9.in) is created in the same directory as that used for launching Jupyter notebook. The last step (i.e., running GSEIM on rectifier_1ph_9.in) creates a data file called rectifier_1ph_9.dat in the same directory. We can now use the python code below to compute/plot the various quantities of interest.
In [5]:
import numpy as np
import matplotlib.pyplot as plt
import gseim_calc as calc
from setsize import set_size
f_hz = 50.0
T = 1.0/f_hz
slv = calc.slv("rectifier_1ph_9.in")
i_slv = 0
i_out = 0
filename = slv.l_filename_all[i_slv][i_out]
print('filename:', filename)
u = np.loadtxt(filename)
t = u[:, 0]
col_ID1 = slv.get_index(i_slv,i_out,"ID1")
col_ID2 = slv.get_index(i_slv,i_out,"ID2")
col_ID3 = slv.get_index(i_slv,i_out,"ID3")
col_ID4 = slv.get_index(i_slv,i_out,"ID4")
col_V_VS1 = slv.get_index(i_slv,i_out,"V_VS1")
col_I_VS1 = slv.get_index(i_slv,i_out,"I_VS1")
col_I_R = slv.get_index(i_slv,i_out,"I_R")
col_P_R = slv.get_index(i_slv,i_out,"P_R")
l_I_R = calc.avg_rms_2(t, u[:,col_I_R], 0.0, 2.0*T, 1.0e-5*T)
l_P_R = calc.avg_rms_2(t, u[:,col_P_R], 0.0, 2.0*T, 1.0e-5*T)
t_I_R = np.array(l_I_R[0])
print('average current through DC source:', "%11.4E"%(l_I_R[1][0]))
print('average power dissipated in R:', "%11.4E"%(l_P_R[1][0]))
# compute durations of diode conduction:
ndiv = 5000
delt_ID1, ID1p = calc.interp_linear_1(t, u[:,col_ID1], ndiv)
delt_ID2, ID2p = calc.interp_linear_1(t, u[:,col_ID2], ndiv)
delt_ID3, ID3p = calc.interp_linear_1(t, u[:,col_ID3], ndiv)
delt_ID4, ID4p = calc.interp_linear_1(t, u[:,col_ID4], ndiv)
n_ID1 = 0
n_ID2 = 0
n_ID3 = 0
n_ID4 = 0
for k in range(ndiv):
if (ID1p[k] > 0): n_ID1 += 1
if (ID2p[k] > 0): n_ID2 += 1
if (ID3p[k] > 0): n_ID3 += 1
if (ID4p[k] > 0): n_ID4 += 1
print('angle of conduction for D1:', "%6.2f"%(float(n_ID1)*delt_ID1*360.0/(2.0*T)), 'deg.')
print('angle of conduction for D2:', "%6.2f"%(float(n_ID1)*delt_ID2*360.0/(2.0*T)), 'deg.')
print('angle of conduction for D3:', "%6.2f"%(float(n_ID1)*delt_ID3*360.0/(2.0*T)), 'deg.')
print('angle of conduction for D4:', "%6.2f"%(float(n_ID1)*delt_ID4*360.0/(2.0*T)), 'deg.')
color1 = 'blue'
color2 = 'green'
color3 = 'red'
color4 = 'dodgerblue'
color5 = 'olive'
fig, ax = plt.subplots(4, sharex=False)
plt.subplots_adjust(wspace=0, hspace=0.0)
set_size(5.5, 8, ax[0])
for i in range(4):
ax[i].set_xlim(left=0.0, right=2.0*T*1e3)
ax[i].grid(color='#CCCCCC', linestyle='solid', linewidth=0.5)
ax[0].set_ylabel(r'$V_s$' , fontsize=12)
ax[1].set_ylabel(r'$I_R$' , fontsize=12)
ax[2].set_ylabel(r'$I_{D1}$', fontsize=12)
ax[3].set_ylabel(r'$I_{D2}$', fontsize=12)
for i in range(3):
ax[i].tick_params(labelbottom=False)
ax[0].plot(t*1e3, u[:,col_V_VS1], color=color1, linewidth=1.0, label="$V_{S1}$")
ax[1].plot(t*1e3, u[:,col_I_R] , color=color2, linewidth=1.0, label="$I_R$")
ax[2].plot(t*1e3, u[:,col_ID1] , color=color3, linewidth=1.0, label="$I_{D1}$")
ax[3].plot(t*1e3, u[:,col_ID2] , color=color4, linewidth=1.0, label="$I_{D2}$")
ax[1].plot(t_I_R*1e3, l_I_R[1], color=color2, linewidth=1.0, label="$I_R^{avg}$", linestyle='--', dashes=(5,3))
ax[3].set_xlabel('time (msec)', fontsize=11)
ax[1].legend(loc = 'lower right',frameon = True, fontsize = 10, title = None,
markerfirst = True, markerscale = 1.0, labelspacing = 0.5, columnspacing = 2.0,
prop = {'size' : 12},)
#plt.tight_layout()
plt.show()
filename: rectifier_1ph_9.dat average current through DC source: 1.5008E+00 average power dissipated in R: 1.0887E+02 angle of conduction for D1: 89.86 deg. angle of conduction for D2: 89.86 deg. angle of conduction for D3: 89.86 deg. angle of conduction for D4: 89.86 deg.
This notebook was contributed by Prof. Nakul Narayanan K, Govt. Engineering College, Thrissur. He may be contacted at nakul@gectcr.ac.in.