
adc_dual_slope.sqproj

Consider an analog voltage V_A (denoted by v_in in the figure) to be converted to the digital format. In a dual-slope ADC, conversion starts by connecting V_A to the input of the integrator and starting the counter. When the counter exceeds 2^N , an overflow is generated by the counter¹. By this time, the integrator output has reached $-V_A 2^N T_c/RC$ (a negative voltage, assuming V_A to be positive), where T_c is the period of the clock driving the counter. The overflow signal causes the integrator input to switch from V_A to V_R , a reference voltage (which is negative and larger in magnitude than V_A). The integrator output now starts going

¹Note that, in the figure, an 8-bit counter is used to serve as a 7-bit counter (bits q0-q6 and an overflow in the form of q7.

back to 0 V. When it crosses 0 V, the comparator output changes, and the counter stops counting. The counter output at this stage is the desired digital representation of V_A .

Exercise Set

- 1. For $V_A = 5$ V, $V_R = -8$ V, and the other parameters as specified in the figure, what would be the ADC output? Verify with simulation.
- What would be the ADC output for the following values of V_A: 1 V, 1.5 V, 1.8 V, 2.3 V, 6 V? Verify with simulation.
- 3. Will the ADC output for a given V_A (say, 1 V) change if the integrator R is doubled? Verify with simulation.
- 4. Will the ADC output for a given V_A (say, 1 V) change if the clock frequency is doubled? Verify with simulation.

References

- K. Gopalan, Introduction to Digital Microelectronic Circuits, Tata McGraw-Hill, New Delhi, 1978.
- 2. H. Taub and D. Schilling, Digital Integrated Electronics, McGraw-Hill, 1977.