
bjt_ce_amp.sqproj

Shown in the figure is a common-emitter amplifier. We are interested in computing the mid-band gain of the amplifier. Assume that the BJT is working in the active mode.

Exercise Set

- 1. Calculate the bias voltage V_B by ignoring the base current.
- 2. Using the above value of V_B , find V_E and I_E .
- 3. Assuming $I_C \approx I_E$, find g_m and r_{π} . (Take $\beta = 120$ for the r_{π} calculation).
- 4. Compute the gain v_o/v_s , input resistance R_i , and output resistance R_o in the mid-band region.
- 5. Verify your results with simulation as follows.
 - (a) DC bias point: Use solve block 1.
 - (b) Mid-band gain and frequency response: Use solve block 2. Plot v_o versus frequency (log-log plot). From this plot, the mid-band region can be identified.

- (c) Time-domain variation of the collector voltage: Use solve block 3. The frequency is set in the mid-band region here. Verify that $v_C(t)$ observed in the simulation plot is $v_C(t) = V_C + A_V v_s(t)$, where V_C is the collector bias voltage, A_V is the mid-band voltage gain, and $v_s(t)$ is the input voltage.
- (d) Input resistance: Use solve block 2. Find the source current i_s in the mid-bad region. R_i is then given by $|v_s|/|i_s|$.
- (e) Output resistance: Use solve block 5. Here, the frequency is set in the mid-band region, and the load resistance R_L is varied. When R_L is large, the amplifier gain corresponds to the open-circuit (no-load) gain. When R_L is made smaller, the gain drops. The gain becomes half of its open-circuit value when R_L is equal to R_o of the amplifier. By plotting $|v_o|$ versus R_L , R_o can be estimated.
- (f) Distortion: Use solve block 3. Increase the source voltage amplitude from 1 mV to 10 mV. Observe that the output voltage is distorted. What is the reason behind this distortion?
- 6. Change the coupling and bypass capacitance values (one at a time), and see how it affects the frequency response of the amplifier.
- 7. Change the BJT parameters cje and cjc (one at a time) which affect the transistor parasitic capacitances C_{π} and C_{μ} , and observe its effect on the amplifier frequency response.

References

- 1. J. Millman and A. Grabel, *Microelectronics*, McGraw-Hill, 1988.
- A. S. Sedra, K. C. Smith, and A. .N. Chandorkar, *Microelectronic Circuits*, Oxford University Press, 2004.
- 3. M.B. Patil, Basic Electronic Devices and Circuits, Prentice-Hall India, 2013.