
bjt_class_ab.sqproj

Shown in the figure is a Class AB amplifier which has higher efficiency than a Class A amplifier. Furthermore, it does not exhibit cross-over distortion, which is a drawback of a Class B amplifier. The input to this amplifier is $V_i = V_m \sin \omega t$, and the BJTs have $\beta = 50$. The transistors marked as D1 and D2 are used as diodes and can be assumed to have a voltage drop of 0.7 V when conducting.

Exercise Set

- 1. Simulate the circuit, and plot $V_i(t)$ and $V_o(t)$ on the same plot. Observe that there is no cross-over distortion.
- 2. For the values given in the circuit diagram, plot approximately (on paper) the collector currents of Q_n and Q_p as a function of time. Verify with simulation. Compare the current plots with those for a Class B amplifier (in bjt_class_b.sqproj).
- 3. Change the global parameter R0 to $3\,\mathrm{k}\Omega$, and simulate the circuit again. Explain your observations.

- 4. If the amplitude of the input voltage V_m is changed to 12 V, what is the minimum resistance (R0 in the figure) required to ensure distortion-free output waveform? Verify with simulation.
- 5. Repeat for $V_m = 8 \text{ V}$.

References

1. A. S. Sedra, K. C. Smith, and A. .N. Chandorkar, *Microelectronic Circuits*, Oxford University Press, 2004.