

Figure 1: Emitter-coupled Schmitt circuit.

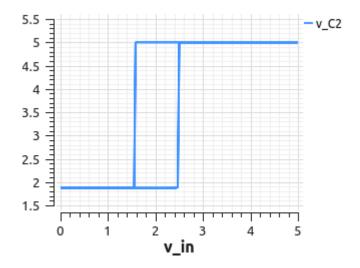


Figure 2: $V_{\text{out}} (= V_{C2})$ versus $V_s (= V_{B1})$ for the circuit of Fig. 1.

An emitter-coupled Schmitt trigger circuit is shown in Fig. 1. The V_o - V_i plot for the circuit is shown in Fig. 2. The circuit works as a comparator, i.e., it compares the input voltage with a threshold voltage and produces a high or low output voltage, depending on the result of the comparison. The threshold voltage V_T depends on the "state" of the circuit: If V_i is increased from the left, $V_T \equiv V_T^+ \approx 2.5$ V. If V_i is decreased from the right, $V_T \equiv V_T^- \approx 1.6$ V. The two threshold values can be seen in Fig. 2. Let us try to understand where this "memory" feature is coming from.

Consider $V_i = 5$ V. In this condition, Q_1 is conducting and in saturation, with $V_{CE1} \approx 0.1$ V. Since $V_{BE2} = V_{CE1}$, Q_2 does not conduct, and the output V_{C2} is pulled up to V_{CC} . As V_{in} is reduced, at some point, Q_1 comes out of saturation, and V_{CE1} starts increasing. When V_{CE1} becomes equal to 0.7 V, Q_2 turns on. At this point, neglecting I_{B1} , we have

$$I_{C1} = \frac{5 - 0.7}{3.9 \,\mathrm{k}\Omega + 1 \,\mathrm{k}\Omega} = 0.88 \,\mathrm{mA},\tag{1}$$

and $V_E \approx I_{C1}R_E = 0.88$ V. The input voltage which makes this transition happen is $V_{in} = V_T^- = V_E + 0.7$ V, about 1.6 V. A further decrease in V_i makes Q_1 turn off. Now consider $V_i = 0$ V. In this condition, Q_1 is off, and Q_2 is in saturation with the base current I_{B2} being supplied through R_1 . In this condition, $I_{E2} = I_{C2} + I_{B2}$ gives

$$\frac{V_E}{R_E} = \frac{V_{CC} - (V_E + 0.1)}{R_2} + \frac{V_{CC} - (V_E + 0.8)}{R_1}.$$
(2)

Solving for V_E , we get $V_E = 1.8$ V. As V_{in} is made larger than $V_T^+ = 1.8 + 0.7$, i.e., 2.5 V, Q_1 turns on, V_{C1} drops, and Q_2 turns off. The output voltage V_{C2} is now 1.8 + 0.1, i.e., 1.9 V.

Exercise Set

- 1. Simulate the circuit. Plot I_{C1} , I_{C2} (together) and V_{CE1} , V_{CE2} (together) versus V_{in} to verify that the above description of transistors Q_1 and Q_2 being on/off is correct. Plot also V_E versus V_{in} , and verify that the values obtained above at the thresholds V_T^- and V_T^+ are reasonable estimates.
- 2. How would the V_o - V_i plot change if R_E is changed to $1.5 \text{ k}\Omega$, with all other parameters the same? Verify with simulation.

References

 D. A. Hodges and H. G. Jackson, Analysis and Design of Digital Integrated Circuits, McGraw-Hill, 1983.