bjt_ttl_dc_1.sqproj

Figure 1: TTL inverter circuit.

Fig. 1 shows the circuit diagram of a TTL inverter driving another TTL inverter. When the input voltage is 0 V, the B-E diode of T1 conducts, T4 is off, and node C4 is pulled up to V_{CC} . The output voltage is $V_{CC} - V_{BE2} - V_D$, i.e., about 3.5 V.

When the input voltage is 5 V, T1 is in the inverse active mode, T4 conducts, making V_{E4} large enough to turn T3 on. T3 works in the saturation mode, and the output voltage, which is equal to V_{CE3} , is about 0.1 V.

Between these two extremes, there is a region in which T4 begins to conduct and remains in the active region before finally entering the saturation region, as $V_{\rm in}$ increases. Simulation helps us to understand these transitions.

Note that this project is similar to bjt_ttl_dc_2.sqproj except that the transfer curve is obtained here by applying a ramp as input.

Exercise Set

- 1. In the SEQUEL project file, a ramp input is applied to the TTL inverter. The input voltage variation is slow enough to ensure DC-like operation of the gate¹. Run the simulation, and plot V_{out} (the output of the first TTL gate) versus V_{in} .
- 2. Plot I_{C1} , I_{B1} , I_{E1} versus V_{in} . From this plot, determine the region of operation of T1 as V_{in} changes.
- 3. Repeat the above exercise for T2, T3, T4.
- 4. Plot V_{B1} , V_{C1} , V_{C4} , V_{E4} versus V_{in} . Explain the important features of these graphs.

References

- 1. H. Taub and D. Schilling, Digital Integrated Electronics, McGraw-Hill, 1977.
- 2. K. Gopalan, Introduction to Digital Microelectronic Circuits, Tata McGraw-Hill, 1998.

¹In other words, the device capacitances do not contribute to the waveforms here.