
butterworth_4_digital_ac.sqproj

Shown in the figure are 4^{th} -order low-pass and 4^{th} -order high-pass digital Butterworth filters. Starting with the analog normalised filter function, the z-domain digital filter function can be obtained as follows.

- (a) Substitute $s \leftarrow s/\omega_c$ where ω_c is the desired cut-off frequency in rad/sec.
- (b) Use the bilinear transformation,

$$s \leftarrow \frac{2}{T_d} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right) ,$$
 (1)

where T_d is the sampling interval.

(c) Rewrite H(z) in standard form.

The filters shown in the figure are designed for a cut-off frequency of 200 Hz.

Exercise Set

- 1. Work out the filter coefficients, and check the values against those shown in the figure.
- 2. Run the simulation. Plot the outputs y2_1, y2_2 versus frequency (log-log plot), and verify the low-pass and high-pass functionality.
- 3. From the plots, verify that they are 4th-order filters, and that the cut-off frequency is 200 Hz.

References

 A.V. Oppenheim, R.W. Schafer, and J.R. Buck, *Discrete-time Signal Processing*, Pearson/Prentice-Hall, 1999.