
ce_amp_1.sqproj

A representative small-signal equivalent circuit of a common-emitter amplifier at low frequencies is shown in the figure. Device capacitances (C_{π} and C_{μ}) are not included since they present a high impedance at low frequencies and can therefore be treated as open circuits.

Exercise Set

- 1. For the component values given in the figure, calculate the mid-band gain $A_V (= v_o/v_s)$. Verify with simulation.
- 2. How will A_V change if (a) r_{π} is doubled? (b) R_E is doubled? (c) R_C is doubled? (We should keep in mind that, in practice, the above values cannot be changed at will because of their effect on the bias conditions of the transistor.)
- 3. Plot the frequency response (i.e., gain versus frequency on log-log scale). By changing the capacitance values C_B , C_C , C_E one at a time, find out which capacitance is playing a dominant role in determining the frequency response of the amplifier. Explain your observations.

References

- A. S. Sedra, K. C. Smith, and A. N. Chandorkar, *Microelectronic Circuits: Theory and Applications*, Fifth edition, Oxford University Press, 2009.
- P. R. Grey and R. G. Meyer, Analysis and Design of Analog Integrated Circuits, John Wiley and Sons, 1995.