ee101_counter_hw.sqproj

Note that the flip-flops are negative edge-triggered.

A synchronous counter is shown in the figure. We are interested in the sequence produced by the counter, starting with the initial state $Q_2Q_1Q_0 = 000$. This can be done by preparing a table in the following format:

clock	Q_0	Q_1	Q_2	J_0	K_0	J_1	K_1	J_2	K_2	$Q_0^{\rm next}$	Q_1^{next}	Q_2^{next}
1												
2												
3												
4												
5												
6												

Note that Q_0^{next} , Q_1^{next} , Q_2^{next} of the first row will be Q_0 , Q_1 , Q_2 , respectively, of the second row, and so on. From this table, we can find the counter sequence and also its modulo number.

Exercise Set

- 1. Work out the counter sequence.
- 2. Verify your sequence with simulation.