

In the circuit shown in the figure, let V_C be 0 V at t = 0, and V_D , the diode on voltage, be 0.7 V. Up to time t_1 , the diode does not conduct, and the capacitor voltage remains at 0 V. At $t = t_1$, the diode starts conducting, and the capacitor charges. The charging process is instantaneous because of the very small diode resistance. In other words, $V_C(t) = -V_i(t) - 0.7 V$. At $t = t_2$, V_C has reached its maximum value. The capacitor subsequently holds this voltage since any decrease in V_C would require the diode to conduct in the reverse direction, which is not possible. As a result, beyond $t = t_2$, we have

$$V_o(t) = V_i(t) + V_C(t) = V_m \sin \omega t + (V_m - 0.7), \qquad (1)$$

i.e., the output voltage gets clamped at a minimum value of -0.7 V.

Exercise Set

- 1. Simulate the circuit and observe the V_C and V_o waveforms along with V_i for $C=1\,\mu F,$ $V_m=10\,V,\;f=1\,\rm kHz.$
- 2. How will the waveforms change if C is decreased by a factor of 2?
- 3. How will the waveforms change if the input voltage V_i has an offset voltage of 5V? An offset voltage of -5V?

Verify your answers with simulation.