
ee101_diode_clipper_1.sqproj

In the shunt clipper circuit shown in the figure, V_s is a DC voltage. The diode conducts if $V_i > V_s + V_{\rm on}$, where $V_{\rm on} \approx 0.7\,V$ for a silicon diode. In this case, the output voltage is constant, $V_o = V_s + V_{\rm on}$. For $V_i < V_s + V_{\rm on}$, the diode does not conduct, there is no voltage drop across R, and $V_o = V_i$.

The V_o versus V_i characteristic for this circuit can be obtained by

- (a) applying a DC voltage at the input, varying it from V_{start} to V_{end} , and plotting V_o versus V_i , or
- (b) applying a periodic input voltage (say, a sinusoidal or triangular voltage), simulating for one cycle, and then plotting $V_o(t)$ versus $V_i(t)$.

Exercise Set

- 1. For $-5 V < V_i < 5 V$, sketch V_o versus V_i for $R = 1 \text{ k}\Omega$ and $V_s = +2$, 0, -2 V. Verify your result with simulation in each case.
- 2. Sketch $V_o(t)$ for the three cases in (1) if $V_i(t)$ is a triangular voltage going from -5 V to 5 V, with frequency $f = 100 \,\text{Hz}$. Verify by simulation.